Introduction to Bioinformatics
These were the course materials for an introduction to Bioinformatics for the PhD program in Biomedicine at the Instituto Gulbenkian da Ciencia, Oeiras, Portugal. It was designed as a one week intensive course, taught March 5-9, 2001. Below are some of the materials used. The materials for the more recent 2006 course are available separately.
Lecture Slides
- Introduction to Bioinformatics (Adobe Acrobat) - Luis Rocha - Los Alamos National Laboratory)
- Artificial Life (Adobe Acrobat) - Luis Rocha - Los Alamos National Laboratory
- Normalization of Gene Expression Arrays and Analysis of Gene Expression Data using Singular Value Decomposition (Adobe Acrobat) - Luis Rocha - Los Alamos National Laboratory
- Beyond Co-Expression: Gene Network Inference (Adobe Acrobat) - Patrik D'Haeseleer - Harvard University
- Database Technology for Bioinformatics:From Flat Files to Latent Databases (Adobe Acrobat) - Luis Rocha - Los Alamos National Laboratory
Materials and References
Materials and References
Bioinformatics Overviews
Dynamic Programming and Sequence Alignment
Similarity Matrices
FASTA algorithm and BLAST algorithm
Statistical Significance
Simulated Annealing
Genetic Algorithms
Normalization of Gene Expression Arrays
Singular Value Decomposition for Gene Expression Analysis
Singular Value Decomposition and Latent Semantic Analysis in Information Retrieval
Artificial Life
Biosemiotics
Kanehisa, M. [2000]. Post-Genome Informatics. Oxford University Press.
Waterman, M.S. [1995] Introduction to Computational Biology. Chapman and Hall.
Baldi. P. and S. Brunak [1998]. Bioinformatics: The Machine Learning Approach. MIT Press.
Wada, A. [2000]. Bioinformatics:the necessity of the quest for first principles in life. Bioinformatics. V. 16, pp. 663-664.
Bertsekas, D. [1995]. Dynamic Programming and Optimal Control. Athena Scientific.
Needleman, S. B. and Wunsch, C. D. [1970]. A general method applicable to the search for similarities in the amino acid sequence of two proteins.J. Mol. Biol., 48,443-53.
Giegerich, R. [2000]. A systematic approach to dynamic programming in bioinformatics. Bioinformatics. V. 16, pp. 665-677.
Sankoff, D. [1972]. Matching sequences under deletion/insertion constraints. Proc. Natl. Acad. Sci. USA, 69,4-6.
Sellers, P. H [1974]. On the theory and computation of evolutionary distances. SIAM J. Appl. Mat ., 26,787-793.
Sellers, P. H. [1980]. The theory and computation of evolutionary distances: pattern recognition. Algorithms, 1,359-73.
Smith, T. F. and Waterman, M. S. [1981] . Identification of common molecular subsequences. J.Mol. Biol., 147,195--7.
Goad, W. B. and Kanehisa, M. I. [1982]. Pattern recognition in nucleic acid sequences. I. A general method for finding local homologies and Symmetries. Nucleic Acids Res., 10, 247-63.
Dayhoff, M. 0., Schwartz, R. M. and Orcutt, B.C. [1978] A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 3 (ed. M. 0. Dayhoff), pp. 345--52. National Biomedical Research Foundation, Washington, DC.
Henikoff, S. and Henikoff, J. G. [1992]. Amino acid substitution matrices from protein blocks. Proc. Natl.Acad. Sci. USA,89, 10915--19.
Wilbur, WJ. and Lipman, D.J. [1983]. Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl.Acad. sci. USA, 80,726-30.
Lipman, D.J. and Pearson, W R. [1985]. Rapid and sensitive protein similarity searches. Science, 227,1435-41.
Altschul, S. F., Gish, W, Miller, W, Myers, E. W, and Lipman, D.J. [1990]. Basic local alignment search tool. J. Mol. Biol., 215,403-10.
Altschul, S. F., Madden, T. L., Schaeffer, A. A., Zhang, J., Zhang, Z., Miller, W, and Liprnan, D.J. [1997]. Gapped BLAST and PSI-BLAST:a new generacion of protein database search programs. Nucleic Acids Res., 25, 3389--402.
Karlin, S. and Altschul, S. F. [1990]. Methods for assessing the statiscical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. sci. USA, 87 . 2264-8.
Pearson, W R. [1995]. Comparison of methods for searching protein sequece databases. Protein sci.,4, 1145--60.
Ishikawa, M. et al [1993]. Multiple sequence alignment by parallel simulated annealing. Compt. Appl. Biosci. 9, 267-73.
Bertsimas, D. and J. Tsitsiklis [1993]. Simulated Annealing. Statis. Sci. 8, 10-15.
Kirkpatrick, S. C.D. Gelatt, and M.O. Vecchi [1983]. Optimization by simulated annealing. Science. 220, 671-680.
Goldberg, D.E. [1989]. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.
Holland, J.H. [1975]. Adaptation in Natural and Artificial Systems. University of Michigan Press.
Holland, J.H. [1995]. Hidden Order: How Adaptation Builds Complexity. Addison- Wesley.
Mitchell, Melanie [1996]. An Introduction to Genetic Algorithms. MIT Press.
Kepler, T., L. Crosby and K. T. Morgan [2000]."Normalization and analysis of DNA microarray data by self-consistency and local regression." Nucleic Acids Research. Submitted. Santa Fe Institute preprint: 00-09-055.
Alter, O., P.O. Brown and D. Botstein [2000]."Singular value decomposition for genome- wide expression data processing and modeling." PNAS. Vol. 97, no. 18, pp. 10101-06.
Hastie, T. et al [2000]."'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns." Genome Biology. Vol. 1, no. 2, pp. 3.1-3.21.
Holter, N.S. et al [2000]."Fundamental patterns underlying gene expression profiles:Simplicity from complexity." PNAS. Vol. 97, no. 15, pp. 8409-14.v\
Raychaudhuri, S., J.M. Stuart and R.B. Altman [2000]. "Principal components analysis to summarize microarray experiments: Application to sporulation data." Pacific Symposium on Biocomputing 2000, Honolulu, Hawaii, 452-463. 2000.
Wall, M., P.A. Dyck, and T. Brettin [2001]."SVDMAN -- Singular value decomposition analysis of microarray data." Bioinformatics. In Press.
Berry, M.W., S.T. Dumais, and G.W. O'Brien [1995]."Using linear algebra for intelligent information retrieval." SIAM Review. Vol. 37, no. 4, pp. 573-595.
Landauer, T.K., P.W. Foltz, and D. Laham [1998]."Introduction to Latent Semantic Analysis." Discourse Processes. Vol. 25, pp. 259-284.
Emmeche, Claus [1994]. The Garden in the Machine: The Emerging Science of Artificial Life. Princeton University Press.
Pattee, Howard H. [1982]."Cell psychology: an evolutionary approach to the symbol- matter problem." Cognition and Brain Theory. Vol. 5, no. 4, pp. 191-200.
Rocha, Luis M. [1996]."Eigenbehavior and symbols." Systems Research. Vol. 13, No. 3, pp. 371-384.
Rocha, Luis M. [2000]."Syntactic Autonomy: or why there is no autonomy without symbols and how self-organizing systems might evolve them." In: Closure: Emergent Organizations and Their Dynamics.. J.L.R. Chandler and G. Van de Vijver (Eds.). Annals of the New York Academy of Sciences. Vol. 901, pp.207-223.
Rocha, Luis M. [2001]. "Evolution with material symbol systems". Biosystems.Special Issue of BioSystems On The Physics and Evolution of Symbols