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� Monday: Overview and Background
� Luis Rocha

� Tuesday: Gene Expression Arrays – Biology and
Databases
� Tom Brettin

� Wednesday: Data Mining and Machine Learning
� Luis Rocha and Deborah Stungis Rocha

� Thursday: Gene Network Inference
� Patrik D'haeseleer

� Friday: Database Technology, Information
Retrieval and Distributed Knowledge Systems
� Luis Rocha

Bioinformatics: A Complex Systems Approach

Course Layout
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�A Synthetic Approach to Biology
� Information Processes in Biology

– Biosemiotics
� Genome, DNA, RNA, Protein, and Proteome

– Information and Semiotics of the Genetic System
� Complexity of Real Information Proceses

– RNA Editing and Post-Transcription changes
� Reductionism, Synthesis and Grand Challenges
� Technology of Post-genome informatics

– Sequence Analysis: dynamic programming, simulated
anealing, genetic algorithms

� Artificial Life

Bioinformatics: A Complex Systems Approach

Overview and Background
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� Genetic System
� Construction (expression, development, and maintenance) of cells

ontogenetically: horizontal transmission
� Heredity (reproduction) of cells and phenotypes: vertical

transmission

� Immune System
� Internal response based on accumulated experience (information)

� Nervous and Neurological system
� Response to external cues based on memory

� Language, Social, Ecological, Eco-social, etc.

Information Processes in Biology
Distinguishes Life from Non-Life

Different Information Processing Systems (memory)
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What is Information?
Choice, alternative, memory, semiosis....

Information

Structural
(Syntactic)
Information
Theory

Alternatives, possibility
2 DNA molecules with same length
store the same amount of information

Semantic Function, use
One is used to construct a functional
protein, the other contains junk 

Pragmatic Evolution, Value
Is the function useful in context? 

For Discrete Memory Structures !!
What does information mean in continuous domains?
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Biology and Biosemiotics
The Study of the Semiosis of Life

Biology is the science of life that aims at
understanding the structural, functional, and
evolutionary aspects of living organisms 

Biosemiotics is the study of informational
aspects of biology in their syntactic,
semantic, and pragmatic dimensions. 

Genomics research has focused mostly on the
syntactic (structural) dimension.  Bioinformatics is an
important tool for a more complete Biosemiotics
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� Mendelian Gene
� Hereditary unit responsible for a particular characteristic or trait

� Molecular Biology Gene
� Unit of (structural and functional) information expression (via

Transcription and Translation)
� Genome
� Set of genes in the chromosome of a species
� Unit of (structural) information transmission (via DNA replication)

� Genotype
� Instance of the genome for an individual

� Phenotype
� Expressed and developed genotype

� Proteome
� (Dynamic) Set of proteins that are encoded and expressed by a

genome

Genomics and Proteomics
Information and Expression Units
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Nucleic Acids as Information Stores
Nucleotides (bases) as linguistic symbols

Purine (R)

Pyrimidine (Y)

Adenine (A)
Guanine (G)
Cytosine (C)
Thymine (T)

Uracil (U)DNA: A, G, C, T
4 Letter Alphabet

RNA: A, G, C, U

Nucleotides

Form sequences
that can store
information

Linear molecules with a
phosphate-sugar
backbone (deoxyribose
and ribose)

Requirements for structural information

Complementary base pairing
(Hydrogen-bonding between
purines and pyrimidines)

A-T (U) G-C

Possibility of repeated copying
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Information and Sequence Space

2

4

8

16

64

For a sequence of
length n, composed
of m-ary symbols, mn

possible values
(structures) can be
stored
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Proteins: Functional Products
Sequences of Amino acids via peptide bonds

Primary Structure
Polypeptide chains of aminoacids

Folding 

Secondary and tertiary bonds
3-dimensional structure

� In proteins, it is the 3-
dimensional structure
that dictates function
� The specificity of

enzymes to recognize
and react on
substrates

� The functioning of the
cell is mostly
performed by proteins
� Though there are also

ribozymes
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The Genetic Code � The genetic code
maps information
stored in the
genome into
functional proteins
� Triplet combinations

of nucleotides into
amino acids

Triplets of 4 Nucleotides
can define 64 possible
codons, but only 20
amino acids are used
(redundancy) 
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The genetic
code at work

Structural and
Functional Information

� Reproduction
� DNA Polymerase

� Transcription
� RNA Polymerase

� Translation
� Ribosome

� Coupling of AA’s to
adaptors
� Aminoacyl Synthetase
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Variations
of Genetic
Codes
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The Semiotics of the Genetic System
The Central Dogma of Information Transmission

DNA
Genotype Transcription RNA

Syntactic relations (structure)

Amino Acid Chains

Code
Translation

Phenotype

Development

Environmental
Ramifications

Unidirectional

A code mediates between rate-
independent and rate-dependent
domains.  The components of
the first are effectively inert and
used as memory stores
(structural information,
descriptions, etc.)  While the
components of the second are
dynamic (functional) players
used to directly act in the world
(e.g. enzymes). sa2.html.

“Genetic information is not expressed by the dynamics of
nucleotide sequences (RNA or DNA molecules), but is
instead mediated through an arbitrary coding relation that
translates nucleotide sequences into amino-acid sequences
whose dynamic characteristics ultimately express genetic
information in an environment.” sa2.html.
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Real Information Processes in The
Genetic System

A More Complex Picture of Syntactic Operations

� Reverse-Transcription
� Retroviruses store genetic information in genomic RNA rather than

DNA, so to reproduce they require reverse transcription into DNA
before replication

� Complex Transcription of DNA to RNA before translation
� Intron Removal and Exon Splicing (deletion operation)
� RNA Editing (insertion and replacement operation)

� Do not challenge the Central Dogma but increase the
complexity of information processing

DNA
GenotypeTranscription

RNA
Editing

Splicing

Amino Acid Chains

Code
Translation

Unidirectional

Reverse-Transcription
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RNA Editing
Example

Gln Glu Gly Arg Gly STOP
CAGGAGGGCCGUGGAuAAG
Gln Glu Gly Arg Gly Lys

...

AuGuuuCGuuGuAGAuuuuuAuuAuuuuuuuuAuuA
Ser Gly Glu Lys

Mer Phe Arg Cys  Arg Phe Leu Leu Phe Phe Leu Leu

...
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RNA Editing acts on Memory (syntax)

DNA

mRNA

Memory

Dynamics
Rate-Dependent

Rate-
Independent

gRNA

(edited)

RNA Editing System

mRNA
mRNA
(edited)

RNA Editing System

gRNA

aa-chains

Proteins

Genetic Code System
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RNA Editing as a Measurement Code

Expanding the Semiotics of the Genetic System

DNA
Genotype Transcription RNA

Syntactic relations

Amino Acid Chains

Code

Phenotype

Development

Environmental
Ramifications

Action

Measurement

A Richer Computational
process with Evolutionary

Advantages

� Suggested Process of Control of
Development Processes from
environmental cues
� In Trypanosomes : Benne, 1993; Stuart,

1993. Evolution of parasites:  Simpson
and Maslov, 1994. Neural receptor
channels in rats: Lomeli et al, 1994

� Metal ion switch (with ligase and
cleavage activities) in a single RNA
molecule used to modulate biochemical
activity from environmental cues.  
Landweber and Pokrovskaya, 1999 ises.html and e95_abs.html
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Post-Translation
Complex Dynamic Interactions

� Rate-dependent expression products: non-linear,
environmentally dependent, development
� Catalysis, metabolism, cell regulation

� Protein folding though thermodynamically reversible in-vitro,
is expected to depend on complex cellular processes
� E.g. chaperone molecules

� Prediction of protein folded structure and function from
sequence is hard 

� Biological function is not known for roughly half of the genes
in every genome that has been sequenced
� Lack of technology
� The genome itself does not contain all information about expression

and development (Contextual Information Processing)
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� Genome Informatics initially as enabling technology for the
genome projects
� Support for experimental projects
� Genome projects as the ultimate reductionism: search and

characterization of the function of information building blocks (genes)
� Deals with syntactic information alone

� Post-genome informatics aims at the synthesis of biological
knowledge (full semiosis) from genomic information
� Towards an understanding of basic principles of life (while developing

biomedical applications) via the search and characterization of
networks of building blocks (genes and molecules)
– The genome contains (syntactic) information about building blocks but it is

premature to assume that it also contains the information on how the
building blocks relate, develop, and evolve (semantic and pragmatic
information)

� Interdisciplinary: biology, computer science, mathematics, and physics

Bioinformatics
A Synthetic Multi-Disciplinary Approach to Biology
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� Not just support technology but involvement in the systematic design and
analysis of experiments
� Functional genomics: analysis of gene expression patterns at the mRNA

(syntactic information) and protein (semantic information) levels, as well as
analysis of polymorphism, mutation patterns and evolutionary considerations
(pragmatic information).
– Using and developing computer science and mathematics

� Where, when, how, and why of gene expression 
� Post-genome informatics aims to understand biology at the molecular network

level using all sources of data: sequence, expression, diversity, etc. 
� Cybernetics, Systems Theory, Complex Systems approach to Theoretical Biology

� Grand Challenge: Given a complete genome sequence, reconstruct in a
computer the functioning of a biological organism
� Regards Genome more as set of initial conditions for a dynamic system, not as

complete blueprint (Pattee, Rosen, Atlan).  The genome can be contextuall and
dynamically accessed and even modified by the complete network of reactions in
the cell (e.g. editing).

� Uses additional knowledge for comparative analysis: Comparative Biology
– e.g. reference to known 3D structures for protein folding prediction, or reference

databases across species

Bioinformatics as Biosemiotics

A Synthetic Multi-Disciplinary Approach to Biology
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Components of Bioinformatics

Functional
Genomics

Drivers

Data
Collection

Machine
Learning

Information
Retrieval

Modeling
Simulation

Brettin

D’Haeseleer

(Kepler)
Rocha

Rocha
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Sequence Analysis
Uncovering higher structural and functional characteristics
from nucleotide and amino acid sequences

Data-Driven approach rather than first-principles equations.
Assumption:when 2 molecules share similar sequences, they are likely to
share similar 3D structures and biological functions because of
evolutionary relationships and/or physico-chemical constraints.

� Similarity (Homology) Search
� Pairwise and multiple sequence alignment, database search, phylogenetic tree

reconstruction, Protein 3D structure alignment
– Dynamic programming, Simulated annealing, Genetic Algorithms, Neural Networks

� Structure/function prediction
� Ab initio: RNA secondary and 3D structure prediction, Protein 3D structure

prediction
� Knowledge-based: Motif extraction, functional site prediction, cellular

localization prediction, coding region prediction, protein secondary and 3D
structure prediction
– Discriminant analysis, Neural Networks, Hidden Markov Model, Formal Grammars
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Similarity Search vs. Motif Search
Data-driven vs.  Knowledge-based Functional Interpretation

� Similarity (Homology) Search
� A query sequence is compared with others in database.  If a similar

sequence is found, and if it is responsible for a specific function, then
the query sequence can potentially have a similar function.
– Like assuming that similar phrases in a language mean the same thing.

� Motif Search (Knowledge-based)
� A query sequence is compared to a motif library, if a motif is present,

it is an indication of a functional site.
– A Motif is a subsequence known to be responsible for a particular function

(interaction sites with other molecules)
– A Motif library is like a dictionary
– Unfortunately there are no comprehensive motif libarries for all types of

functional properties
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Similarity Search vs.  Motif Search
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Sequence Similarity Search
Sequence Alignment

� Produce the optimal (global or local) alignment that best
reveals the similarity between 2 sequences.  
� Minimizing gaps, insertions, and deletions while maximizing

matches between elements.
� An emprirical measure of similarity between pairs of elements is

needed (substitution scoring scheme)
– Such as the amino acid mutation matrix

Dayhoff et al [1978] collected data for accepted point mutations (frequency
of mutation) (PAMs) from groups of closely related proteins.  Different
matrices reflect different properties of amino acids (e.g. volume and
hydrophobicity)
AAIndex: www.genome.ad.jp/dbget/aaindex.html 
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Mutation Matrix as Substitution Table
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Dynamic Programming
For Sequence Alignment Optimization

Optimal alignment maximizing the
number of matched letters

AIMS
AMOS

Score function: 1 for match, 0 for
mismatch, 0 for insertion/deletion

AIM-S
A-MOS

3 matches, 2 mismatches, 2 gap insertions = 3

Dynamic programming is a very general optimization technique for
problems that can recursively be divided into two similar problems of
smaller size, such that the solution to the larger problem can be obtained
by piecing together the solutions to the two subproblems.  Example:
shortest path between 2 nodes in a graph.
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Dynamic Programming

Path Matrix
Left-right

Align a letter from
horizontal with gap
(inserted) in vertical

A path starting at the upper-left corner and ending at the lower-right corner of the
path matrix is a global alignment of the two sequences.  The optimal alignment is
the optimal path in the matrix according to the score function for each of the 3
path alternatives at each node.  Most path branches are pruned out locally
according to the score function. 
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Global Sequence Alignment
With Dynamic Programming

� Score Function D (to optimize) sum of weights at each
alignment position from a substitution matrix W
� Nucleotide sequences

– Arbitrary weights: a fixed value for a match or mismatch irrespective
of the types of base pairs

� Amino acid sequences
– Needs to reveal the subtle sequence similarity.  Substitution matrix

constructed from the amino acid mutation frequency adjusted for
different degrees of evolutionary divergence (since the table is built for
closely related sequences)

Weigth for aligning  (Substituting ) element i from sequence s with
element j of sequence tWs(i),t(j)

Weigth for a single element gapd

D0,0 = 0, Di,0= id (i=1...n),  D0,j= jd (j=1...m)

Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1  + d)
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Global Alignment

D0,0 = 0, Di,0= id (i=1...n),  D0,j= jd (j=1...m)

Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1  + d)

Starting at D1,1, repeatedly
applying the formula, thefinal  Dn,m
is the optimal value of the score
function for the alignment.  The
optimal path is reconstructed from
the stored values of matrix D by
tracing back the highest local
values

Number of operations
proportional to the size
of the matrix n×m: O(n2)

Needleman and Wunsch algorithm introduces a gap
length dependence with a gap opening and
elongation penalty.
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Local Alignment
Alignment of subsequences

D0,0 = 0, Di,0= id (i=1...n),  D0,j= jd (j=1...m)

Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1  + d)

 D0,j= 0 (j=1...m) Any letter in the horizontal sequence can be a starting
point without any penalty: detects multiple matches
within the horizontal sequence containing multiple
subsequences similar to the vertical sequence
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Local Alignment
Smith-Waterman Local Optimality Algorithm

Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1  + d, 0)

Ws(i),t(j) < 0 mismatch Ws(i),t(j) > 0 match d < 0 

D0,0 = 0, Di,0= id (i=1...n),  D0,j= jd (j=1...m)

Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1  + d)

Forces local score to be non-negative.  Optimal path is
not entered, but clusters of favourable local alignment
regions.  Trace back starts at the matrix element with
maximum score.
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Similarity Database Search
Parallelized Dynamic Programming

Number of operations in DP is proportional to the size of the
matrix n×m: O(n2)

Sequential

Parallel
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FASTA Method
Dot Matrix Reduces DP Search Area

AIMS
A
M
O
S

*
 

 
*

*
Dot Matrix

The dot matrix can be used to recognize local alignments which show as diagonal
stretches or clusters of diagonal strectches.  DP can be used only for the portions
of the matrix around these clusters – a limited search area. 
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FASTA
Hashing the Dot Matrix

Rapid access to stored data items by hashing.  Sequences are stored as hash
(look-up) tables.  This facilitates the sequence comparison to produce a dot
matrix.  4 times faster for nucleotide sequences: the number of operations is
proportional to to the mean row size of the hash table (times dots are entered),
which is on averahe 1/4 of the sequence.
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Statistical Significance
Is the similarity found biologically significant? 

Because good alignments can occur by chance alone, the statistics of alignment
scores help assess the significance.  We know that the average alignment score
for a query sequence with fixed length n increases with the logarithm of length m
of a database sequence.  Thus, the distribution of sequence lengths in the
database can be used to estimate empirically the value of the expected frequency
of observing an alignment with high score.

Another idea is to use the Z-test:

S is the optimal alignment between 2 sequences

Each sequence is randomized k times (preserving the composition) and new optimal
alignment is computed: s1, s2, ...., sk with mean  � and standard deviation �. If the
score distribution is normal, Z values of 4 and 5 correspond to threshold probabilities
of 3×10-5 and 3×10-6.  However, the distribution typically decays exponentially in S
rather than S2 (as in the normal distribution).   Thus, a higher Z value should be
taken as a threshold for significant similarity.
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Multiple Alignment
Simultaneous Comparison of a Group of Sequences

� DP can be expanded to a n-dimensional search space.
� Exhaustive search is manageable for 3, and for a limited portion of the

space for up to 7 or 8 sequences.  
� Heuristics and approximate algorithms

� Compute score for sequences A-C, from A-B, and B-C – which is in
general different from the optimal A-C.

� Hierarchical Clustering of a set of sequences, followed by computation of
the alignment between groups of sequences without changing the
predetermined alignment within each group.
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Simulated Annealing
For Multiple Alignment

� SA is a stochastic method to search for global
minimum in the optimization of functions to be
minimized. 
� Starting with a given alignment for a set of

sequences, a small random modification is
repeatedly introduced and a new score is
calculated.  When the score is better (negative
energy function), it is accepted.

� Would Not escape local minima
� A stochastic unfavourable modification is accepted

with (Metropolis Monte Carlo) probability:

E(-S)

x

� �E is the increment of the energy function from the
modification. T is a simulated temperature parameter. The
probability is calculated until equilibrium is reached.  Then
the temperature is lowered, and so on.

� Global miniumum is guaranteed for infinite MMC steps and
infinitesimal �T.
� Success depends onTi, Tf, �T, and # of MMC steps
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Genetic Algorithms
For Multiple Sequence Alignment

x x x1 2 np

�Code:

���

S S np21 S

Selection

Variation

Genotype

Phenotype

Traditional Genetic Algorithm

Used for optimization of solutions for
different problems. Uses the syntactic
operators of crossover and mutation for
variation of encoded solutions, while
selecting best solutions from generation
to generation.  Holland, 1975; Goldberg,
1989; Mitchell, 1995.

� GAs are another stochastic method
used for optimization.
� Solutions to a problem are encoded

in bit strings.
� The best decoded solutions are

selected for the next population
(e.g. by roulette wheel or Elite)

� Variation is applied to selected new
population (crossover and
mutation).
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�BLAST
� Heuristic algorithm for sequence alignment that

incorporates good guesses based on the
knowledge of how random sequences are related.

�Prediction of structures and functions
� Neural Networks and Hidden Markov Models

Other Bioinformatics Technology
Major Components not Fully Discussed
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�Biology Driver

�Gene Expression Databases

�Statistical and Machine Learning Analysis

�Network Analysis and Modeling

�Database Technology, Information Retrieval,
and Recommendation

Bioinformatics Technology
Gene Expression Focus


