imfFormatics
luis rocha 2006

luis m. rocha

Indiana university

school of informatics and cognitive science program
901 East Tenth Street, Bloomington IN 47408

and

Instituto Gulbenkian de Ciencia

Computational and Mathematical Biology
Oeiras, Portugal

e Cognitive the
rocha@indiana.edu Scieres bioghiniexity LARIGIEN
UNIVERSITY

http:/finformatics indiana.edu/rocha Progrgm  ingtitute




brief introduction to bioinformatics and computational biology
8 summary

imfFormatics
luis rocha 2006

Information Processes in Biology
Systems Biology, Computational Biology, Bioinformatics
Synthetic, Multi- Disciplinary Approach to Biology

Grand Challenges of Systems Biology

Components of Bioinformatics & Computational Biology
Some traditional components of Bioinformatics
Literature Discussion and Useful Resources

rocha@indiana. edu
hitp:ffinformatics.indiana.edufrocha




systems biology

from systems science to post-genome informatics

The word “system”™ 18 almos never used by itself; it 18
generallv accompanied by an adjective or other moditier:
info rmatics pll}’SiC_ﬂl system. biulogic_al system; social system [._..] T_he
e | adjective describes what 18 specific and particular; 1.e., 1t
refers to the specific “thinghood™ of the system: the
“gystem” describes those properties which are mdependent
of this specific “thinghood.” [Rosen, 1986]

m Systems Science is the methodology used to study systemhood not
thinghood properties in Nature.
» General Principles of Life (and other systems)
» Modeling and Simulation of systems measured from and validated in real things.

» |t accumulates knowledge via Mathematical and Computational analysis of classes of
systems, models, and problems.
— Dynamical system s, Automata Theory, Pattern Recognition, etc.

= |nterdisciplinary Meta-Methodology

» Comparative, Integrative, Non-reductionist
m Historically Related to Cybernetics

» Complex Systems, Artificial Life
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systems science

dealing with general principles of complex systems

m\Weaver [1948] identified 3 types of problems in Science

» Organized Simplicity: systems with small number of components
:nfor , — Classical mathematical tools: calculus and differential equations
poispheie | > Disorganized Complexity: systems with large number of erratic
components
— Stochastic, Statistical Methods
Organized Complexity: systems with a fair number of
components with some functional identity

— When the behavior of components depends on the organization and
function of the whole

— Techniques depend on Computer Science and Informatics. Require
massive combinatorial searches, simulations, and knowledge
iIntegration.

— The realm of Systems Science

Complex Systems are systems of many components which

cannot be completely understood by the behavior of their

CDIT‘I]’JDHEHTS.

— Complementary models, Hierarchical Organization, Functional
decomposition [See Klir, 1991]
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Systems Biology

8 And its Involvement with Systems Science
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B People
» VVon Bertalanffy [1952, 1968], Mesarovic [1968], Rosen [1972, 1978, 1979,
1991], Pattee [1962, 1979, 1982, 1991, 2001], Maturana and Varela [1980],
Kauffman [1991], Conrad [1983], Matsuno [1981], Cariani [1987].

» Leading Journal: Biosystems
BBiology Is the most Fundamental Inspiration for Systems Science
» Cybernetics and Control Theory derive Feedback Control from the
physiological concept of Homeostasis

» Automata Theory, Artificial Intelligence, Artificial Life derived from attempts
(by Turing, McCulloch and Pitts) to study the behavior of the Brain and
Evolution (Von Neumann)

» Self-Organizing, Autopoiesis, Complex Adaptive Systems, Artificial Life,
Embodied Cognition from developmental and evolutionary biology.

BBut Systems Science has had a Small impact in the practice of Biology

» Due to a large gap between theoretical and experimental biologists.
— Systems-based theoretical Biology versus a reductionist view

— Theoretical biology has had more impact on other areas (Al, Alife, Complexity,
Systems Science) than Biology itself.
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imfermatics biologically-inspired computing
general principles and metaphors from life

|uis rocha 2005

biologically
Inspired :

computing e -
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infoermatics the ||Vlng organization?
|uis rocha 2005 how to identify it? g X

m List of properties .1 e
. Growih = VIruses, candle

Metabolism I$ |lfe 3 flames, the
Reproduction  FUZZy? &9

Adaptibility

Self-maintenance (autonomy)

Self-repair

Reaction

Evolution
Choice

m [hreshold of complexity

e Categorization and Control |s there a synthetic

e Function (self-reference) criteria’? How
o e | Open-ended evolution general can it be’?

Inspired e| Information
computing
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infoermatics the roles of information
in the living organization

|uis rocha 2005

m organisms act according to information they perceive in an
environment
organisms reproduce and develop from genetic information

¢ genetic information is fransmitted “vertically” (inherited) in
phylogeny and cell reproduction, and expressed
*horizontally” within a cell in ontogeny and plain functioning

Self-reference
¢ [nformation relevant to organism: function

¢ Only in reference to an organism does a piece of DNA
function as a gene

¢ Biology is contextual, physics is universal

“Biology and physics have
matter organized by . nothing to do with each
information”. Manfred T other because biological

] ] | ; Eigen [1992] AV evolution is essentially

biologically ' . KNS historical, and physical
|“5P|!'Ed Al TS e laws must be independent

computing = siigs G W s of history”. Ernst Mayer
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infermatics emergence and explanation
|lais racha 2005

m impossibility of epistemological reduction of the
properties of a system to its components
o VWave-particle duality
e [nformation and function are contextual and historical

m “Clockness”. many possible material implementations
m Several biological designs for similar function (e.g. flying)

m The function of DNA does not lie in its dynamic (bio-
chemical) characteristics

“First, nothing in biology contradicts the laws of physics and chemistry;
any adequate biology must be consonant with the ‘basic’ sciences.
Second, the principles of physics and chemistry are not sufficient to
| explain complex biological objects because new properties emerge
4 as a result of organization and interaction. These properties can
i only be understood by the direct study of the whole, living systems
8 in their normal state. Third, the insufficiency of physics and
; chemistry to encompass life records no mystical addition, no
biologically ' ' ‘ contradiction to the basic sciences, but only reflects the hierarchy of
Inspired natural objects and the principle of emergent properties at higher
computing levels of organization”. Stephen Jay Gould

rocha@indiana.edu INDIANA
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imfermatics how much of life Is organization?
Sl How much is specific bio-chemistry?

m Can there be several implementations of life?

e [0 study life do we need to find and synthesize the
necessary threshold of complexity?
m Hard and wet Artificial Life
e Or is it enough to simulate the behavior of life?
m Soft Artificial Life

m Important to study the living organization

e VWhat can be abstracted and implemented in a different
medium?
e Understanding organization and design principles
m Scientific advancement of the essential principles of life
e Systems Biology, Artificial Life

m Solving engineering and design problems

biologically e Bio-inspired computing
Inspired
computing
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informatics Information Processes in Biology
|ais racha 2005

Genetic System

e Construction (expression,

development, and maintenance) of
cells ontogenetically: horizontal

transmission

o Heredity (reproduction) of cells and
phenotypes: vertical transmission

Immune System

o Internal response based on | ‘Life Is 2 complex system
accumulated experience (Information) and processing’.
Nervous and Neurological system EESGT Kanehisa
e Response to external cues based on
memory
Language, Social, Ecological,
blologically Eco-social, etc.

Inspired
computing
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Information units in biology

infoermatics’ _
LERCELEREE memory, structural and functional

| m Mendelian Gene
i ° HEI‘EdItEI‘}F unit responsible for a particular characteristic or trait
| Moleculal 5*““{"16“ Gene
e Unit of mformatlun exXpression via transcription and transiation
m Horizontal information expression (semantics, active)
Genome
e Unit of information transmission via DNA replication
= Vertical information transmission (syntactic, passive)
e Set of genes in the chromosome of a species
Genotype
e Instance of the genome for an individual
FPhenotype
e Expressed and developed genotype
m Genes have different alleles
Transcriptome
e Setof expressed genes (MRNA transcripts) in a given context
Proteome

e Set of proteins that are encoded and expressed by a genﬂme
biologically = == _ P o e . T W

Inspired
computing

“Biology is the science of life that aims at understanding both functional and structural
aspects of living organisms”. Minoru Kanehisa [2000]
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informatics the eukaryatic cell
|uis racha 2005

j Structure and organelles

Life is made up of structural

and functional units called /MIC rofilament
cells (19" Century) —

N AN Centriole

.Y \\/

o Lo Do S
QZ72%5%, .

Ribosomes

Smooth /

endoplasmic
reticulum

Mitochondrion

Rough

“‘“'.?,2;;?23; endoplasmic
computing reticulum

Golgi apparatus Lysosome




imformatics’ more about cells
|dis racha 2005 = : ‘. : _ = | o

0¥ e Y%
Eukaryote
Mucleolis Mitochondria

biologically | PR N D
Inspired | 8312008 Bennéi Place, Dur

computing | photo Patick Coin' b= =
Y B

-
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imformatics Cell division

|ais rocha 2003 —— Daughter
m Meiosis Nuclei Il

e Diploid cell's genome is

replicated once and split

twice

produces four haploid

(germ) cells each with half

the chromosomes

Sexual reproduction

combines germ cells from

two individuals to produce

diploid (zygocyte) cells Chotmossmit

Vertical genetic information

transmission

m Offspring with a new
genotype
m  Mitosis

e Eukaryotic cell separates its
duplicated genotype into

two identical halves
= som_atic cells in _
multicellular organisms
e Horizontal genetic ONA

biologically information expression “*P“““m
Inspired m development

computing

Crossovers may occur in meiosis
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imfoermatics
EERESRREE deoxyribonucleic acid

m [he chromatin contains DNA and protein

m James Watson and Francis Crick (1953)
e Proposed the double helix model for DNA
e Composed of 4 nucleotides

m 2 purines (adenine and guanine) and 2
pyramidines (thymine and cytosine)

e 2 Chains each a linear repetition of the 4
nuclectides (bases)

e [he double helix is stabilized due to base

pairing via hydrogen bonding between Aand T
and G and C

m Onhe chain determines the sequence of the other
w1

biologically

Inspired

computing
, W “'Y
rocha@indiana.edu

INDIANA
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informatics nucleic acids as information stores

PERLERVE 2 molecular l[anguage system

Complementary base pairing

: Adenine (A) (Hydrngen bonding between
Purine (R) <:G EE (G) purines and pyrimidines)

Nucleotides . _ c
Pyrimidine ()< -Ytosine (<)
Thymine (T)

4 Letter Alphabet @ :

DNA:A,G,C, T Uracil (U)

RNA:A.G.C. U Linear molecules with a
phosphate-sugar

orm sequences  hackbone (deoxyribose
that can store and ribose) /
information

G

U 3 L L (3 A G G
L4 e ey
eI I N uévh@é% 9‘3

. Z e
b Ll R e quirements for structural information

Inspired S :
computing Possibility of repeated copying
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Information and Sequence Space

imfFoermatics
ldis racha 2005

For a sequence of
length », composed
of mary symbols, »
possible values
(structures) can be
stored

TR Wy

biologically .
Inﬁpirﬂd Digzance from RRRBFAT
computing
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imfFermatics Proteins

IEgernewhhcl functional products

Table 1.4. Aming acid codes

Polypeptide chains of aminoacids Al

Primary Structure Arg
Asn

Folding o
Glu

Alanine
Argimine
Asparagine
Asparric acid
Cysteine
Glutamine
Glutamic acid
Glycine
Histdine
Isoleuane
Leucine
Lysine
Methiomnge
Phenvlalanine
Prohne
Serine
Threonine
Tryprophan
Trrosne
Valine

Asn or Asp
Gln or Glu
Selenocysteine
Unknown

3-dimensional structure
Secondary and tertiary bonds

m |n proteins, it is the 3-
dimensional structure
that dictates function

» The specificity of
enzymes to recognize
and react on
substrates

® The functioning of the
cell is mostly
performed by proteins
» Though there are also
ribozymes

=

MONEd<LgHVUTnr R ~ToOmMO00TZ >

biologically
Inspired
computing
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The Genetic Code

imfFoermatics
ldis racha 2005

®m The genetic code
maps information
stored in the
genome Into
functional proteins

» Triplet combinations
of nucleotides into
amino acids

Triplets of 4 Nucleotides
can define 64 possible
codons, but only 20
amino acids are used
(redundancy)

biologically
Inspired
computing

rocha@indiana.edu : : : INDIANA
http:Hfinformatics.indiana.edulrochali-bic Figures from Eigen [1992] . Steps Towards Life. UNIVERSITY




imfermatics the genetic code at work

DA g NN
WMWJ—W—@ DNA 7
| B AN Y

0 E | Fnpyme |

A 4 DA Replication/Synthesis
s ' [RNA

|uis rocha 2005

m
=]
Py
o
=
Las]
(]

uonduasuel |

m Reproduction
» DNA Polymerase
® Transcription
» RNA Polymerase
® Translation
» Ribosome
m Coupling of AA’s to
adaptors
» Amincacyl Synthetase

Aminpacy! tRMNA

biologically
Inspired Growirg polypeptide
computing chain
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informatics’ iInformation expression in the genetic system
|ais racha 2005 Pa— g
transcription and translation

lt:_l:: Transcription \
\
RNA |

(b) Post-transcription |
mRNAﬁ;"

i
Muciear
" Membrane

(c) Translation 1

@, Polypeplide

(d) Post-translation /'

@ Proten Folds
Upon Itsell

g o © Effector Molecule

biologically
Inﬁpirﬂd Active Protein
computing
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informatics transcription
|uis racha 2005

generating a message to be expressed

-

Transcription

fpemmn rrarakegqer HMNA

——

biologically
Inspired
computing
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imformatics translation
|uis rocha 2005

constructing (decoding) the message

biologically
Inspired
computing
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biologically
Inspired
computing

genetic information at work
central dogma

Syntax (passive information)

'Transcription RNA

Code
(Translation) -

. Amino Acid Chains \
e \ '|

Qreplication .'

Y

@
0
2
0]
=
_/"-d-

Development

Phenotype O

Aitogls

Fitos

_ Environmental
l Ramifications
Germ Cell Line

(UONBULIOJUI 8AI0B) SONUBLLSS
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imfFoermatics

LIERLMERVE |ife-as-it-could-be

biologically
Inspired
computing

rocha@indiana.edu
http:flinformatics.indiana.edufrochali-bic

the logical mechanisms of life

m Chris Langton

Artificial Life can contribute to
theoretical biology by locating /ife-
as-we-know-it within the larger
picture of fife-as-it-could-be

life as a property of the
organfzation of matter, rather than
a property of the matter which is
SO organized

m The way information is processed

Whereas biology has largely
concerned itself with the material
basis of life, Artificial Life is
concerned with the formal basis
of life.

B VvViews an organism as a large
population of simple machines

m Synthetic approach or emergent
behavior

INDIANA
UNIVERSITY
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biologically
Inspired
computing

scientific approaches of life

m Analytical

e Reduction to (non-
living) components

m Reductionism

e Life s complicated
chemistry

e [ied to specific
materiality

e Does not allow
emergence

m Function, control,
measurement,
categorization,
information are
unnecessary
“illusions”

m Synthetic
e Construction from
components
m Holist
o Life Is Organization

m Networks of
components

o Universalor
Implementation
independent

¢ Emergence
m “‘bottom-up™ approach

INDIANA

rocha@indiana.edu
UNIVERSITY

http:flinformatics.indiana.edufrochali-bic




infoermatics goals of alife
|uis racha 2005

m Hard Alife

¢ Logical mechanisms of life

® Dijsi-._?over and synthesize the design principles
of life

m [hreshold of complexity
m Lists of characteristics

m Soft or weak Alife
e [0 simulate life

¢ Compare design principles of life with
simulations
¢ Extract design principles to solve problems
m Blo-inspired computing

biologically L Bottom-up methodology

Inspired
computing

rocha@indiana.edu INDIANA
http:flinformatics.indiana.edufrochali-bic UNIVERSITY




infermatics Artificial life as Systems Science
|lais racha 2005 Systemhood

m A system possesses systemhood and
thinghood properties

¢ Thinghood refers to the specific material that
makes up the system

¢ Systemhood are the abstracted properties

m E.g. a clock can be made of different things, but
there are implementation-independent properties of
“clockness”

¢ Systems science deals with the
implementation-independent aspects of
systems

m Robert Rosen, George Klir...

biologically
Inspired
computing
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traditional view of gene function

genotype/phenotype mapping In artificial life

imfFormatics

WENGTGERY | Genotype F o Transcription 3

Translation
[Code)

. '.-‘hl-'.-;'"":'
.. = _-.1I;I"I"'

_— -rﬂminn acid
iZhains

Feplication
Inheritance

Traditional Genetic Algorithm

Genotype Genoh-*pe
Inert 5,
Rate-Independent | [aie |—_"’—| Variation

§ /O'%W!Jw

H”p Selection
Phenotype 'llﬂlli:l-f}-']}&
Dynamic
Fate- Dependent

FEuvirvonmental
Ramifications
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non-coding RNA
NcRNA: a regulatory hidden layer in Eukaryots

BEvidence for non-protein coding RNA (ncRNA) in complex
organisms (higher eukaryotes)

» “ncRNA dominates the genomic output of the higher organisms and
has been shown to control chromosome architecture, mRNA turnover
and the developmental timing of protein expression, and may also
regulate transcription and alternative splicing.”

— Mattick, J. S. (2003). BioEssays. 25: 930-939
» A Hidden Layer of Non-protein-coding RNAs in Complex Organisms.

imfFormatics
luis rocha 2006

B Two types of genetic information i e ol i b g, s WO

» MRNA for proteins

» NcRNA for RNA products Prokaryotic gene Eukaryotic gene«------
B Three types of genes in eukaryotes i

» Encoding only proteins .

» Encoding only ncRMNA : i |

» Encoding both --=mRNA and/or EHNA'_'_:
B Many types of ncRNA i

P IRMA, rTRMNA, SnoRMNA MIEMNA, sIRMNA, eRMNA, etc. 4 !

protein protein «----—---—----.

Mattick, J. 5. [2001].EMB0 Reporfs 2, 11, 986-991

rocha@indiana.edu Mattick, J. 5. And V. Makunin [2005]. Human Molecuwiar IRIDIENEEY
hitp:ffinformatics.indiana.edufrocha Genetics 14, 11 R121-R132  [OANEINN'E




RNA editing
u-insertion (via gRNA)

Ser Gly (lu Lys

AUG uUUCGUUGUAGA AuuA AUUA

imfFormatics

e | \MerPhe Arg Cys Arg Phe LeulLeu Phe PhelLeu Leu

Gln Glu Gly Arg Gly Lys e
ICA(.'-‘:GAG”GG(_TI;’.:G U”(_'-j.GA: IAAG: Bass, BL. (Ed ) (2001) RiVA Editing.

Eenne, R.(Ed.) (1993 ENA Editing. The Alferalion
(7ln Flu Glv Are Glv STOP of Profein Coding Sequences of RIVA.
3 - : = JLY 2 :

= RNA Editing: post-transcriptional alteration of genetic information
» can be performed by ncRNA structures (and proteins).
m U-|Insertion/deletion RNA Editing (mitochondria of kinetoplastid protozoa)
» involve small guide RNAs (gRNA) complementary to the target mRNA
= Adenosine (A) to inosine (1) Substitition (higher Eukaryotes)
» |nosine () is read as guanosine (G) in translation
» |nvolve enzymes: adenosine deaminases acting on RNA (ADAR) RNA Editase
— Implicated in epilepsy, Parkinson's Disease, depression, etc.

rocha@indiana. edu
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RNA editing

Transcription

imformatics
luis rocha 2006 e & 3

MRNA transcript J

h,

-
-"-.-.
-'-.-.

T -
i
- i —— —
-
.

. Base-pairing ( substitution )

T — "'-\..\_\_\_

- !

Edition ‘ Edition | ‘ o

| Edited mRNA J Edited mRNA ]

"

. Translation
Translation ,

l Protein ]

[ Protein ]
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RNA editing modulates gene expression
genes may encode different proteins depending on environment

- - - . A Richer informational
LT%IT%E]MRNA DNA process---re-programmatle
‘ l{:u;u-h: (Symbolic) genotype??
imformatics

luis rocha 2006 oy Amino Acid Chains Memory

Development 5 <)
Phenotvpe
Emvironmental
Ramifications

B Only mutations that occur during
DNA replication can become
permanent and heritable

m RNA Editing may produce different
MRNA’s (and thus proteins), but
editions are not inherited.

» Wyhat 15 inheritable, and subjected to
variation, 1s the genetic material (both
coding and non-coding ) which is
ultimately selected and transmitted to
the offspring of the organism

rocha@indiana. edu
hitp:ffinformatics.indiana.edufrocha




agent-based model of genotype editing
pmpul;éimn of agents with codotype and editype

m Genome contains both coding and non-
coding portions

informatics [Eﬁ!iﬂﬂf-} 51 [ENIEEIEREETY] Codotype » Codome and Editome (Editosome)

luis rocha 2006 e T m For each agent

1 1

sl -y » Codotype edited by editype before "translation”
® Mocdeling pre-translation information

(syntactic) processes

& P o RMNADNA distinction

S, [TTTTERET Eqi e :
T 5 Edited Genotype » a process of non-inheritable alteration of

genotypes via edition, not any specific type of
FEMNA Editing.

Genotype

] }|Selectio

X » Mot mutation

m co-evolution of editype and codotype
1 » Mot in the EC sense of independenp populations
Fhenotype r Independent variation

= - GeEnolyp e
-H_'.-:hl;.p-r =z
= ﬂ:m- - - -
! [ |
= - f :
" . |=| - LI R |
=

Rl =11z —an |

bl = o |
X N
rocha@indiana. edu i L ./ — INDIANA
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oscillatory royal road function

Firad 1000 Cenerations for Roysl Road Oyvnamle 4000 Censradlons, Oecllatiens 100 |, rues 50

B0 T e ! T T
5 D gt :

H e :
:|,--" B :
3 3
1 : ]
1 ;
: !
; k |

m Oscillation period
T Jenttatey > 100 (50, 200)
luis rocha 2006 generations

m First 1000 generations

» Same parameters as in
static case

Small Rmyal Rmad G SR ﬂ’j:i::i oot

rocha@indiana.edu INDIANA
http:/finfarmatics indiana. edu/rocha Rocha, LM, [2006] Alife X. MIT Fress. pp. 105-111  LERIAEAEINGY




oscillatory royal road function

dramatic environmental changes 1 Oscillation period

» 100 generations
SRRO m Last 1000 generations fromm 4000

» Same parameters as in static case

SRR1

imfFormatics

I'.-"5 rc} Chﬂ EEH:}E | ast 1000 Generations for Royal Road- ynamec — 4000 Gensrafions, Oscillations 100 | Runs
|

Verni il ﬁ’ i

=i Besi-so—fars

Averag

0
AN A100 A0 4730000 Ew A RSO 4100 SR 4 rCM]
Senaration ‘ e

—  — - ANMGE without crosnowver
ABBMGE wilh cipssover (Edir Pe=0.5}
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Oscillatory royal road

behavior of 3 algorithms

GA

imfFormatics
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|
] f
1

ABMGE no Edt Cross

oA Il M mn A
| | | |
|
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dynamic Shaffer function
E de l t a = U 28 | ! Schaffer - Dynamee - 1000 Generations Seventy 0.1, Update Freguency 100 Rurs 100 Size 1;:-

! ! ! ! !

imfFormatics
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B Severtty parameter _ |
funtion every p generations —
» 100 (50, 200)

» Linear and jumping dynamics

m 50 agents

» 1000 generations
» 100 runs

that changes fithess = = ABMGE wihout crossoves

rocha@indiana. edu
hitp:ffinformatics.indiana.edufrocha
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100 run fitness distribution

dynamic Schwafel function example (GA)

i

Gen 0 Gen 49

il . 1 &Dr
imfFormatics | I|MWI1
luis rocha 2006

Il ll &l -0 J 41 &l il 10

(zen 50
il MJ. "

| ll &l -0 | J 4]

(Gen 99

r.l.

(ven 100

iUl wll -l
L) J

(ven 150
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100 run fitness distribution

imfFormatics
luis rocha 2006

(3en 100

(Gen 150
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exploration and exploitation with genotype editing

! dynamic Schwafel function fithess distribution videos
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modeling bioclogical systems
the gap between experimental reductionism vs. Systems view

The onlv conzensus found among biologists about their subject 1s that biological svstems
are complicated, by anv criterion of complexity that one may care to specify. [Rosen, 1972]

I'u'l'ﬁf;}:‘l:?ggﬁ B Biology must simplify organisms to study them — some type of
abstraction or modeling 1s needed.

» External (Functional) description (favored by Systems Thinking)
— Blackbox, input-output behavior of observables
— Tells us what the system does
— Function depends on repercussions in an environment
» Internal (structural) description (favored by Experimentalists)
— State description, trajectory behavior
— Tells us how the system does what it does
— Structural information can be measured for any component
» |deally, we would like to move between the two descriptions
— But in Biology, the structural states we can measure, are not obviously related to the
observed functional activities (and vice versa).

— Thus, Systems Biology has mostly been relegated to deal with evolutionary problems,
and Experimental Biology to increase our knowledge of the molecular components of
organisms

rocha@indiana. edu
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Why Structural Reductionism is Not Sufficient

)& Destruction of Dynamical Properties

B Naive Structural Decomposition

informatics » Breaks an organism into simpler components, gathers
IS FRENS SE90 information about those, and attempts to assemble
Information about the organism from the components

» But some properties of the original system cannot be
reconstructed from components
—E.g. the crucial stability properties of 3-body system cannot be

reconstructed from knowledge of 2-body or 1-body constituents
— the dynamics Is destroyed.

— Think what this means for the methodologies of molecular
biology!

http://faculty.ifmo.ru/butikov/Projects/Collection2.htm|
http://www.freewebz.com/vitaliy/triApplet/triGrav.html

http://www.dynamical-systems.org/threebody
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How To Close the Gap
Coupling Structural Data with Functional Decomposition

BBiological Systems require “function-preserving” and “dynamics-
snformatics preserving’ Decompositions
luis rocha 2006 » |In biology, the same physical structure typically is simultaneously involved in
several functional activities
— E.g. unlike airplanes, birds use the same structure (wing) as both propeller and
airfaoil
» We must allow the simplifying decompositions to be dictated by system
dynamics
— lterative Design of Experiments from Knowledge of Dynamics
— Data accumulated from experiments based on naive structural decompositions are
simply the first iteration!
» Search for Global Patterns and Juxtaposed Functional Modes

— E.g. studying global patterns of antigens rather than specific molecular interactions
[Coutinho et al]

— Spectral, PCA-like, Fourrier Analysis approaches
» Build Integrative Technology to Disseminate and Utilize Structural Data — for
a diverse group of scientists
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Biolnformatics and Computational Biology
Integrative Link for bridging Experimental and Systems Biology

BGenome Informatics initially as enabling technology
for the genome projects

s nformatics R Support for experimental projects

luis rocha 2006 » Genome projects as the ultimate reductionism: search

and characterization of the function of information building
blocks (genes)

B Post-genome Informatics [Kanehisa 2000] aims at the

synthesis of biological knowledge from genomic e
: ‘ : ife is a complex system
iInformation for information storage

» Towards an understanding of basic principles of life (while and processing".
developing biomedical applications) via the search and Minoru Kanehisa

characterization of networks of building blocks (genes and [2000]
molecules)

— The genome contains information about building blocks but,
given the knowledge of Systems Biology, it is naive to assume

that it also contains the information on how the building blocks
relate, develop, and evolve.

» Interdisciplinary: biology, computer science, mathematics,
and physics

rocha@indiana. edu
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post-genome Informatics

Enabling a Systems Approach to Biology

= Not just support technology but involvement in the systematic design and
analysis of experiments
» Functional genomics
» Where, when, how, and why of gene expression
» Post-genome informatics aims to understand biology at the molecular network level using
all sources of cdata: sequence, expression, diversity, etc.

» Cybernetics, Systems Theory, Artificial Life, Complex Systems approach to Theoretical
Biology

» Synthetic Biology: to engineer novel life forms and bio-technology
= Grand Challenge of Computational Biology
» Given a complete genome sequence, reconstruct in a computer the functioning of a
biological organism

— Kegards Genome more as set of initial conditions for a dynamic system, not as complete blueprint
(FPattee, Rosen, Atlan). The genome can be contextual and dynamically accessed and even
modified by the complete networl of reactions in the cell {e.g. editing).

— Uses additional knowledge for integration comparative analysis: Comparative Biology
= Grand Challenge of Sythetic Biology

» |f we understand it, we can build it!
— intentional design of real biological systems

— reversal of aging and innovative medical treatments such as beneficial bactenal infections
programmed to augment immunity

rocha@indiana. edu
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Post-Genome Informatics or the "New"™ Systems Biology

B Systems biology Is a unique approach to the study of genes and
proteins which has only recently been made possible by rapid
advances Iin computer technology. Unlike traditional science which
examines single genes or proteins, systems biology studies the
complex interaction of all levels of biological information: genomic
DNA, mRNA, proteins, functional proteins, informational pathways and
informational networks to understand how they work together.
Systems biology embraces the view that most interesting human
organism traits such as immunity, development and even diseases
such as cancer arise from the operation of complex biological systems
or networks.

» |nstitute for Systems Biology: http:/iwww.systemsbiology.org
» Kitano Symbiotic Systems Project: http://iwww.symbio.jst.go.jp/

BT he "New' Systems Biology Is not novel per se, it is rather a result of
nhew enabling technology for doing “Old” Systems Biology
» But it is finally allowing experimentalists to work with theorists.
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Needs of Systems Biology

BExperimental Side

» Improving cellular measurement methods

— High-throughput identification of the components of protein complexes; Parallel,
comparative, high-throughput identificationof DNA fragments among microbial
communities and for community characterization; WWhole-cell imaging including in vivo
measurements; Better Separtion techniques.

» Measurements Based on Functional Decompositions

— Functional assays? Flexible, fast, novel experimental design based on informatics
results.

B Computational Side

» Integrative Technology
— Standardized formats, databases, and visualization methods
— Automated collection, integration and analysis of biological data
— Algorithms for genome assembly and annotation and measurement of protein
expression and interactions;
» Simulation Technology
— Improved methods for distributed simulation, analysis, and visualization of complex
biological pathways;
— Prediction of emergent functional capabilities of microbial communities

rocha@indiana. edu
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Needs of Systems Biology

Continuation

mModeling Side

» Algorithms for Discovery of Global Patterns and Juxtaposed Functional
Modes
— Pattern Recognition, data-mining, “Spectral” methods.
» Network Models and Analysis
— Predictive Models based on biochemical pathways of observed networks
— Simplification Strategies for Network Modeling
— Reduction of possible cell-behaviors from steady-state models of metabolic network
models
— High-Perforemance Algorithms to allow whole-system Kinetic models

imfFormatics
luis rocha 2006

rocha@indiana. edu
hitp:ffinformatics.indiana.edufrocha




singular value decomposition

for microarray analysis
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Gene Expression  Columns of U: eigenassays (rows

Matrix: Columns are 4ff QEHES} describe how each Z”: 1
. : .= . ﬂ = Y. .5 u . _-_.--._._.H
assays (time steiz-s_} component contributes to a single i ~ gdpUys

and rows are genes gene’'s expresssion pattern

Wall, Rechtstemer and Rocha [2002]. “Smgular value
decomposition and principal component analysis™. In
Uniderstamding and Using Microarray Analvsis

Techmigues: A Practical Guide. D.P. Berrar, W

o nbitzkv, Granzow, eds
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singular value decomposition

gene expression (13000 genes) after infection with herpes virus
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Data-Mining of Global Patterns

Discovery of Juxtaposed Functional Modes

imformatics BGene Expression Modes

luis rocha 2006 » Cluster analysis provides little insight into inter-relationships among
groups of co-regulated genes. Tends to demand separated grupings.

» Component ( “spectral”) analysis vields a description of superposed
behavior of gene expression networks, rather than a partition.
— PCA, SVD, etc.

— Holter et al [2000] compares the superposed components to the characteristic
vibration modes of a violin string which entirely specify the tone produced
Holter et al [2000] compared SVD analysis of yeast cdc15 cell-cycle
[Spellman et al 1998] and sporulation [Chu et al, 1998] data sets, as
well as the data set from serum-treated human fibroblasts [lyer et al,

1999].
— Essential temporal behavior is captured by first 2 modes (sine and cosine)
— Large group of genes with same sinosoidal period but dephased

rocha@indiana. edu
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Holter et al SVD Analysys
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biological discovery via SVD

. human cytomegalovirus infection
uu,

a) Correlation
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Eigenarray Coefficient Plot

Plot of the coefficients of the first 2 modes for all genes

cdcl5

imformatics m Clusters of genes by other

luis rocha 2006 = . : methods cluster in these plots,
' : but the temporal progression
in the cell cycle and in the
course of sporulation is more
evident in the SVD analysis

m Holter et al conclude that
genes are not activated in
discrete groups or blocks, as
historically implied by the
division of the cell cycle into
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Eigenarray Coefficient Plot
Random data
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leading publication and conferences sources

Most common areas

m Journals
» Bioinformatics
BMC Bioinformatics
Journal of Theoretical Biology
PNAS
Biosystems
Genome Research
IEEE Transactions on Com putational Biology and Bioinformatics

m Conferences
> Intelligent System s for Molecular Biology (ISMB)
» Research in Computational and Molecular Biology (RECOMB)
» Pacific Symposium on Biocom puting (PSB)
m Areas
Genome Analysis
Sequence Analysis
Systems Biology
Data and Text Mining
Structural Bioinformatics
Gene Expression
Genetics and Population Analysis
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Curriculum For Computational Biology
Graduate Study in Computational Biology: The Gulbenkian CB PhD program

mDirection

» Marie-France Sagot (Program Director)
snformatics » Jorge Carneiro (Program Deputy-Director)
luis rocha 2006 » Luis Rocha (Collaboratorium Director)

mBackground

» Knowledge of empirical sciences (Physics, Chemistry, Biology) and
quantitative technical disciplines (programming, appplied mathematics,
statistics)

— Introduction Module to catch up on biology, modeling, and CS
BRegular Syllabus
» Training in Biology
— Molecular evolution and sequences
o Theory of evolution and population genetics, sequence alignment, from pairwise to
multiple, from genes to genomes, molecular phylogeny
— Structures (DNA, RNA and proteins)
o Introduction to biomolecular structures, determination and visualisation, biomolecular
structure mechanics, dynamics, prediction and design
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Curriculum For Computational Biology
Graduate Study in Computational Biology: The Gulbenkian CB PhD program

BRegular Syllabus (Cont)
» Training in Biology
informatics — Genome structure
LIS FOENE 2000 — Genome evolution and genome dynamics
— Function classification
— Transcriptomics and proteomics
— Networks
o Generic aspects, Protein interaction networks, Metabolic networks, Genetic networks

— Systems Biology

o Population bioclogy, epidemiology and immune system, Cytoskeleton and cell
morphogenesis, motion and chemotaxis modelling, Development and whole organism
modelling, Evolutionary development, Computational Neurobiology

» Training in Computer Science
— Algorithms in computational bioclogy
— Statistical data mining and machine learning
— Database management systems, knowledge systems and integration
— Introduction to dynamical systems

http://bc.1gc.gulbenkian.pt/pdbc/syllabus.htm
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What's to come

BMonday, June 19, 2006

» 10:00 — 13:00 Introduction: From Bioinformatics to Systems
Biology
— by Luis M. Rocha, Indiana University and Instituto Gulbenkian de Ciencia
il_lfﬂrma}icg » 14:30 — 15:30 Microarray Data Analysis with Data Mining and
uls rocha 2005 Machine Learning Methods
— by Miguel Rocha and Isabel Rocha, Universidacde do Minho
» 15:30 — 16:30 Modeling and Optimization of Metabolic and
Regulatory Networks in Systems Biology by Miguel Rocha and
|Isabel Rocha, Universidade do Minho

B uesday, June 20, 2006

» 10:00 — 11:00 GENE-CBR: a Case-Based Reasoning Tool for
Cancer Diagnosis using Microarray Datasets
— by Florentino Fernandez Riverola, Universidad de Vigo.

» 11:00 — 12:00 Bibliome Informatics

— by Luis M. Rocha, Indiana University and Instituto Gulbenkian de Ciencia
» 12:00 — 13:00 Machine Learning Methods for Computational

Proteomics and Beyond

— by Pierre Baldi, University of California, Irvine
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