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data sets and feature selection

Single Words
Top 650 wi

with S(wi)=|pTP(wi)-pTN(wi)| .
“word bigrams”

Sbi(wiwj)
“Window-10 Word Pairs”

S10(wi,wj).
Number of protein Mentions

np(a)
Using Settles’ ABNER (A Biomedical 
Named Entity Recognizer) 
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classification methods

Feature Selection
Top 650 Words plus number of protein mentions
Filtered via t-test
Dimensionality reduction via PCA

Final configuration
linear support vector machine.

Results
Our best AUC: 0.7995

Post-results
Selecting features differently leads to same results
Training and test set very different

An SVM predictor for labeled vs. unlabeled data
AUC = 69%, F-score = 92%

Bootstrapping from unlabeled data
Making training data more similar to test data

AUC = 81.5% (on 650 word features(

Feature Selection
Top 650 Words plus number of protein mentions
Filtered via t-test
Dimensionality reduction via PCA

Final configuration
linear support vector machine.

Results
Our best AUC: 0.7995

Post-results
Selecting features differently leads to same results
Training and test set very different

An SVM predictor for labeled vs. unlabeled data
AUC = 69%, F-score = 92%

Bootstrapping from unlabeled data
Making training data more similar to test data

AUC = 81.5% (on 650 word features(

IAS:Run 1: Support Vector Machine (SVM)
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feature example
“window-10 word-pairs”
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classification methods

Feature Selection
“Window-10 word pairs” plus number 
of protein mentions

Also “bigrams” for Run 3
Linear Decision Model

λ: relative cost of features
β: number of protein mentions

Results
Our most balanced run

F1: 0.745, AUC: 0.7567, accuracy: 
0.7371

Feature Selection
“Window-10 word pairs” plus number 
of protein mentions

Also “bigrams” for Run 3
Linear Decision Model

λ: relative cost of features
β: number of protein mentions

Results
Our most balanced run

F1: 0.745, AUC: 0.7567, accuracy: 
0.7371

IAS: Run 2: Variable Trigonometric Threshold (VTT)
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IAS: VTT Plots
training data
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IAS: VTT Plots
all data
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IAS: VTT video
Test data
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classification methods

Pool from 4 classification methods and integrate them via the 
“smallest neighborhood entropy” criteria on the space of words

SVD/LSA, VTT, VTT-bi, Fixed Threshold
Same feature set (650)

Results
Same labeled prediction as SVD alone, different ranking
Our worst run (though still above the mean for accuracy)
No change with more features
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IAS: Run 3: SVD plus uncertainty integration
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IAS
summary
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ISS and IPS Subtasks

Full Text 
Docs
≈ 740

Proximity 
Networks

1. Compute a proximity network from co-occurrence 
data. Use co-occurrence in paragraph. 
2. Using IAS word pair features, compute feature 
vectors for each paragraph.

For each document:

IAS
features

5. Expand protein pair sentences with closest words 
in proximity network (using biocreative 1 method). 

3. Select & rank paragraphs with highest number of 
features with inverse frequency ( protein mentions).

6. Rank sentences obtained in 4, with (1) most word 
features, (2) same with expansion, (3) same with 
weighting factor. (ISS output). 

4. Select and rank protein interaction pairs in 
sentences of paragraphs in 3. Organisms restricted 
only by MeSH information. (ISS and IPS output)
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Proximity networks

Proximity 
Networks

Computed a proximity network from co-occurrence data. Used co-occurrence 
in paragraph. Removed stop words, stemmed text,TFIDF

For each document:

Full 
Text 
Docs≈ 740

Intermediate 
files
≈ 740

( )
( )

( )∑

∑

=

=

∨

∧
= m

k
kjki

m

k
kjki

ji

rr

rr
wwWPP

1
,,

1
,,

,{ }1,0,: , ∈× jirWPR

P is the set of all m
paragraphs in a document, 
and W is the set of all n
words.

# paragraphs words wi and wj co-occur

# paragraphs words wi or wj occur
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Proximity network
Document 10464305 (wpp>0.4)
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Proximity network
Document 10464305 (wpp>0.4)
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IPS and ISS results

IPS
No appreciative difference between three runs
recall was above the mean and median of all submissions (above one 
standard deviation). Precision very low 
F-score near the mean and median 
These results were true for both the identification of protein-protein 
interaction pairs

ISS
Slight improvement with runs
Proximity expansion improved and so did weight factor with 
paragraph rank (from IPS) and protein mentions
Average performance
Again our results were in line with the averaged

matches (387) and unique matches (156) to previously selected  above 
average (207.46 and 128.62)
we predicted many more passages (18371) and unique passages (5252) 
than the average (6213.54 and 3429.65, respectively), but with some cost 
to accuracy. 
mean reciprocal rank of correct passages substantially higher than 
average (0.66 to 0.56)--- second group

Both cases with higher Recall
Probably due to errors in feature calculation, and organism 
disambiguation
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