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Abstract

Identifying and understanding modular organizations is cen-
trally important in the study of complex systems. Sev-
eral approaches to this problem have been advanced, many
framed in information-theoretic terms. Our treatment starts
from the complementary point of view of statistical model-
ing and prediction of dynamical systems. It is known that
for finite amounts of training data, simpler models can have
greater predictive power than more complex ones. We use the
trade-off between model simplicity and predictive accuracy
to generate optimal multiscale decompositions of dynami-
cal networks into weakly-coupled, simple modules. State-
dependent and causal versions of our method are also pro-
posed.

Introduction
The study of complex dynamical systems – such as gene
regulatory networks (Han et al., 2004), structural and func-
tional brain networks (Bullmore and Sporns, 2009), ecolog-
ical food webs (Krause et al., 2003), and others (Hartwell
et al., 1999, Schlosser and Wagner, 2004) – has frequently
uncovered the presence of modularity. Broadly speaking,
modular systems are composed of tightly-integrated subsys-
tems, called modules, which are in turn weakly coupled to
one another.

Numerous explanations have been proposed for the func-
tion of modularity in complex systems, only a few of which
are mentioned here. Simon (1962) suggested that modular-
ity can contain the effects of harmful perturbations and lead
to greater developmental and operational robustness, espe-
cially when modules are hierarchically arranged. Kashtan
and Alon (2005) argued that modular systems can take ad-
vantage of reusability when adapting to changing combi-
nations of fixed environmental tasks. Tononi et al. (1998)
proposed that modularity balances the conflicting needs for
subsystems that are functionally specialized but also inte-
grated into globally coherent states. Notably, it has also been
shown to arise as a result of non-adaptive processes, such as
neutral evolution of gene regulatory networks (Force et al.,
2005, Solé and Valverde, 2008) and stochastic fluctuations
in network connectivity patterns (Guimera et al., 2004).

Though the concept of modularity has acquired a central
place in the study of complex systems, its meaning and op-
erationalization varies widely between scientific paradigms,
fields, and processes of interest. In the biological sciences
alone, one can find references to structural, developmen-
tal, physiological, variational, and functional modularity
(Winther, 2001, Wagner et al., 2007), among others. In this
work, we propose a formal notion of modularity based on
statistical modeling. Our approach applies to a broad class
of discrete-time multivariate dynamics, whether represented
by dynamic models, such as Boolean or dynamic Bayesian
networks, or empirical distributions estimated from time se-
ries recordings. Unlike much recent work on community-
structure in static graphs, we identify modularity in the or-
ganization of dynamically interacting components. We ar-
gue that in addition to being useful for analysis of real-life
dynamical systems, our approach can shed light on connec-
tions between notions of modularity utilized in different do-
mains, as well as the general role of modularity in modeling.

The next section provides a brief background on infor-
mation theory. We then outline traditional information-
theoretic approaches to modularity in dynamical systems,
and develop our own treatment in terms of statistical mod-
eling. After applying it to an example dynamical system,
we consider state-dependent and causal versions of modular
decompositions. We conclude by discussing issues of pa-
rameterization, directions for further work, and connections
between our method and broader questions of modeling.

Information theory
Information theory provides principled measures of infor-
mation transfer and statistical dependence in distributed sys-
tems. As such, it is well-suited for quantifying measures of
coupling and modularity.

To review, Shannon entropy measures the uncertainty in
the measurement outcomes of a random variable. If X is a
discrete random variable with an associated probability dis-
tribution P (X), then its entropy is:

H(X) = −
∑
x∈X

P (x) logP (x)



A random variable that takes a single value with probabil-
ity 1 has an entropy of 0, while an equiprobable random
variable assumes the maximum entropy of log |X|, where
|X| is the number of possible outcomes. When the base of
the logarithm is 2, as in this work, the units of entropy are
bits (1 bit is the uncertainty in the choice between 2 equally
possible outcomes). Because measuring a variable reduces
uncertainty about its value, entropy can also be considered a
measure of information.

When provided with a joint distribution over two random
variables such as P (X,Y ), conditional entropy measures
the expected uncertainty in the value of one variable given
that the value of the other is known:

H(X|Y ) = H(X,Y )−H(Y ) = −
∑
x,y

P (x, y) logP (x|y)

Mutual information is a symmetric measure of nonlinear
correlation between two random variables. Expressed as the
difference between entropy and conditional entropy, it can
be interpreted as the reduction in uncertainty about the value
of one random variable provided by knowledge of the other:

I(X;Y ) = H(X) +H(Y )−H(Y,X)
= H(X)−H(X|Y ) = H(Y )−H(Y |X)

=
∑
x,y

P (x, y) log P (x, y)
P (x)P (y)

Mutual information captures the amount of constraint in
the joint distribution of two variables not present in their
marginal distributions. It is equal to 0 when two variables
are statistically independent, and reaches its maximum pos-
sible value of min{H(X), H(Y )} when one variable is a
function of the other.

Mutual information can be extended to the case
of more than two variables. Let random vector
X=(X1, X2, . . . , XL) with distribution P (X) represent the
state of a system composed of L distinct variables. The total
constraint in this system not present in any single variable
is measured by a multivariate version of mutual informa-
tion, often called multi-information (Studeny and Vejnarova,
1998) or integration (Tononi et al., 1994):

I(X) =
L∑
i=1

H(Xi)−H(X) (1)

=
∑

x
P (x) log P (x)∏L

i=1 P (xi)

Kullback-Leibler (KL) divergence is a measure of the dif-
ference between two distributions:

KL(P‖Q) =
∑
x

P (x) log P (x)
Q(x) (2)

It is always positive and 0 iff P = Q, though it is not a

distance because it is not symmetric. Importantly, many
information-theoretic measures can be restated in terms of
KL divergence. For example, the multi-information of eq. 1
is equal to the KL divergence between the distribution of X
and a product of the marginal distributions over the individ-
ual variables of X.

Modularity in multivariate dynamics
As previously mentioned, multi-information measures the
total amount of higher-order constraint present among the
variables of a multivariate system. It is 0 when these vari-
ables are independent, and increases when more statistical
interaction between variables is present (Studeny and Vej-
narova, 1998). For this reason, many formal approaches to
modularity search for system transformations that minimize
this measure.

Several kinds of transformations can be investigated. In-
dependent component analysis attempts to minimize multi-
information over the space of linear mappings (coordi-
nate changes) of a multivariate system (Hyvärinen and Oja,
2000). A different approach, closer to the one pursued
here, looks for partitions of system variables with low multi-
information.

A partition π of set S is a set of mutually exclu-
sive, nonempty subsets B ⊆ S, called blocks, such that⋃
B∈π B = S. For example, {{1}, {2, 3}} and {{1, 2, 3}}

are two possible partitions of the set {1, 2, 3}. We also use
a more concise notation: the two partitions above, for ex-
ample, can be referred to as 1/23 and 123 respectively. Ad-
ditionally, π0 is used to indicate the total partition, which
includes the entire set in a single block, i.e. π0 ≡ {S}.

We look at partitions of V = {1, . . . , L}, the set of in-
dexes of the variables of random vector X. For partition π
and block B ∈ π, P (XB) indicates the marginalization of
P (X) onto the variables whose indexes are in B. For exam-
ple, P

(
X{1,2}

)
is the marginal distribution of the first two

variables of X.
We define the multi-information of partition π as:

Iπ(X) =
∑
B∈π

H(XB)−H(X)

This measure quantifies the amount of constraint holding
among the blocks of π. Finding partitions with low multi-
information corresponds to identifying weakly-coupled sub-
systems. Variations on this theme appear in information-
theoretic treatments of modularity starting from early cyber-
netics (Conant, 1972) to more recent approaches in compu-
tational neuroscience (Tononi and Sporns, 2003).

Multi-information is defined over a time-invariant distri-
bution of system states. Though it does not account for the
dynamic flow of information within a system, it can be gen-
eralized to this case. Assume a multivariate system with
Markovian dynamics represented by P (X′ = x′|X = x),
the conditional probability distribution of transitioning to
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1100 1100
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π Iπ(X′|X)
1234 0.00

12 / 34 0.50
1 / 234 1.00
123 / 4 1.00
134 / 2 1.25
124 / 3 1.31

12 / 3 / 4 1.31
1 / 2 / 34 1.50
14 / 23 2.00

1 / 23 / 4 2.00
13 / 24 2.16

13 / 2 / 4 2.16
14 / 2 / 3 2.31
1 / 24 / 3 2.31

1 / 2 / 3 / 4 2.31

Figure 1: A simple four node Boolean network (nodes 1, 2,
3, and 4 perform OR, AND, majority, and OR update func-
tions respectively). Its full state transition table is shown in
center. On the right, the stochastic interaction of every pos-
sible partition of the network.

each future state x′ given starting state x, as well as
P (X = x), the distribution over starting states.1 The
amount of information flowing dynamically among the
blocks of π is called stochastic interaction (Ay and Wen-
nekers, 2003). It is a conditional version of KL divergence
between the transition distribution of the whole system and
the product of marginal transition distributions of the vari-
able blocks specified by partition π:

Iπ(X′|X) =
∑
B∈π

H(X′B |XB)−H(X′|X) (3)

= KL
[
P (X′|X)

∥∥∥∥∥∏
B∈π

P (X′B |XB)
]

These kinds of dynamic generalizations of multi-
information have recently been proposed as measures
of system-wide coupling in brain dynamics (Balduzzi and
Tononi, 2008, Barrett et al., 2011).

A simple demonstration is provided by the Boolean net-
work in fig. 1. It has four nodes, whose update functions are
OR, AND, majority rule, and OR respectively. The stochas-
tic interaction of each possible partition is provided, assum-
ing a uniform distribution over starting states. For exam-
ple, the partition 12/34 is the bi-partition having the lowest
stochastic interaction: the block {1, 2} has conditional en-
tropy H

(
X′{1,2}|X{1,2}

)
= 0 (nodes 1 and 2 do not depend

on the rest of the system, so their marginalized dynamics
are deterministic), while block {3, 4} has conditional en-
tropy H

(
X′{3,4}|X{3,4}

)
= 0.5. Because the system as a

1We assume that the dynamics are stationary, in that the tran-
sition probability distribution does not change through time. Our
analysis can also be applied to higher-order Markovian systems,
though for simplicity they are not considered here.

whole is deterministic, H(X′|X) = 0 and the total stochas-
tic interaction of partition 12/34 is H

(
X′{1,2}|X{1,2}

)
+

H
(
X′{3,4}|X{3,4}

)
−H(X′|X) = 0.5.

Unfortunately, stochastic interaction is not a suitable cost
function for identifying modular partitions of a multivari-
ate dynamical system (similarly for multi-information and
multivariate non-dynamical systems). In any such system,
a minimal stochastic interaction of 0 will be assigned to the
total partition π0, and generally a partition will never have
a greater stochastic interaction than any of its refinements
(where one partition is a refinement of another if every block
of the former is a subset of some block of the latter). Select-
ing partitions using stochastic interaction will thus favor par-
titions with large blocks, the total partition being a (possibly
non-unique) global minimum.

Due to this, several authors have proposed normalizing
factors that penalize large partitions (Conant, 1972, Balduzzi
and Tononi, 2008). However, the derivation and justification
of these normalizing terms is ad hoc. In this work, we ap-
proach the problem of identifying modules from the point
of view of statistical prediction. This yields principled pe-
nalization terms for large partitions and leads us to uncover
modular decompositions with clear interpretations in terms
of statistical modeling.

Statistical modeling and modular
decompositions

Information theory is intimately connected with statistical
modeling (Rissanen, 2007). For example, assume a model
that assigns a probability value to data x:

Q(x) =
ˆ

Θ
Q(x|θ)ω(θ)dθ (4)

This term, called the marginal likelihood in the Bayesian
literature, is the expectation of the likehood functionQ(x|θ)
with respect to distribution ω(θ) over parameter values.
Q(x) is a measure of predictive fit to data, and its log-

arithm is often maximized over parameter distributions or
model choices. Equivalently, one can minimize the negative
of its logarithm, a measure of predictive error called log loss.
If data samples are drawn from some true probability distri-
bution P (X = x), then the expectation of the log loss of the
marginal likelihood is:

−
∑
x∈X

P (x) logQ(x) = KL(P‖Q) +H(P (X))

The KL term (from eq. 2) is non-negative, and reaches its
minimum of 0 when the model is perfectly fit, i.e. Q =
P . It is a measure of excess prediction error of the model
above the minimum possible. This minimum is specified by
the entropy term, and depends only on the true distribution
P (X) and not on model or parameter choices.

A similar situation holds in the dynamic setting. We call



dynamic models those that generate conditional distributions
of multivariate future states x′ given starting states x:

Q(x′|x) =
ˆ

Θ
Q(x′|x, θ)ω(θ)dθ

We look at statistical prediction of dynamical systems from
the perspective of an agent who does not possess a perfectly
fit model, but must learn a dynamic model given previous
observations. The agent is provided with a set of factorized
models: for each partition of system variables π, there is
a dynamic model Qπ whose parameters and marginal like-
lihood obey the independence conditions imposed by the
block structure of π:

Qπ(x′|x) =
∏
B∈π

Qπ(x′B |xB) (5)

The predictive performance of our agent depends on the
chosen model and the amount of previously observed data.
It can be quantified with a risk function, which here is the
KL divergence between the true distribution P (X′|X) and
the distribution predicted by a dynamic model (Haussler and
Opper, 1997). The risk of model Qπ on the next sample,
after observing N previous samples, is:

rN,Qπ = KL
[
P (X′|X)

∥∥Qπ(X′∣∣X,X′1..N ,X1..N)] (6)

The expectation in the KL term is taken over the next sample
of X′,X, as well asN previous i.i.d. samples X′1..N,X1..N .
The Bayesian posterior predictive distribution:

Qπ
(
x′
∣∣x,x′1..N,x1..N)=

ˆ
Qπ(x′|x,θ)Qπ

(
θ
∣∣x′1..N,x1..N)dθ

is the marginal likelihood of eq. 4, with the distribution over
parameter values conditioned on N previous data samples.
From the point of view of machine learning, such Bayesian
updating of parameters in light of observed data corresponds
to model training, while evaluating the expected model risk
on new samples corresponds to model testing. More con-
cretely, our dynamic models can be considered supervised
learners: given data, they infer probabilistic mappings from
inputs (starting states X) to outputs (future states X′).

Given the independence assumption of eq. 5, risk rN,Qπ
becomes:

Iπ(X′|X)+
∑
B∈π

KL
[
P(X′B |XB)

∥∥Qπ(X′B∣∣XB ,X′1..NB ,X1..N
B

)]
This form draws attention to the two components that con-
tribute to risk (that is, predictive error). The stochastic inter-
action term (see also eq. 3) arises as a consequence of ignor-
ing dynamic coupling between variables in different blocks.
It is the minimal excess error of a factorized model (in which
the dynamics of the variable blocks induced by partition π
are independent) above an optimally fit whole-system model
(where interactions between all variables can be captured).

The second term, called the complexity term, reflects the
excess predictive error of a trained model above the min-
imum possible. It arises because a model trained on a fi-
nite amount of data maintains some uncertainty about opti-
mal parameter values. For a given amount of training data,
complex models (with larger parameter spaces) will have
greater parameter uncertainty than simpler models, resulting
in more excess predictive error. AsN →∞, the complexity
term can be asymptotically approximated by dπ

2N , where dπ
refers to the number of parameters of model Qπ (Komaki,
1996, Barron and Hengartner, 1998). This yields:2

rN,Qπ ≈ Iπ(X′|X) + dπ
2N (7)

For a given amount of training dataN , the model with the
lowest risk,

Q?(N) = arg min
Qπ

rN,Qπ

corresponds to the partition providing an optimal predictive
decomposition of the system. Models that minimize risk of-
fer a balance between two conflicting constraints: on one
hand, low stochastic interaction (better predictions under op-
timal fit), on the other, low model complexity (easier param-
eter estimation with limited training data). Because parti-
tions with smaller blocks (which have smaller-state-space
dynamics representable by fewer parameters) generally in-
duce simpler models, risk presents a principled cost function
for identifying small, weakly-coupled modules. The amount
of data N parameterizes this trade-off: as N increases, em-
phasis is shifted from the complexity term to the stochastic
interaction term, and groups of variables whose dynamic in-
teractions carry the most information while being easiest to
learn are first to coalesce into multivariate blocks of the op-
timal model.3 Thus, selecting optimal decompositions while
increasing the amount of training data generates a modular
multiscale decomposition of system variables. In the infinite
data limit, the risk of each modelQπ reaches its minimum of
Iπ(X′|X), and the partition corresponding to Q? becomes
the one with lowest stochastic integration (the total partition
being a possibly non-unique minimum).

Decomposing a dynamical system
The complexity term in eq. 7 depends on the parametric
form of the dynamic model. Though a variety of possibili-

2This approximation assumes continuously-parameterized
models and standard regularity conditions. It also assumes that,
for all π, some parameterization of Qπ offers a perfect fit to the
factorized ΠB∈πP (X′

B |XB). It is possible to generalize beyond
this case, where the factorizations of the true distribution are ‘out-
of-class’ of the models Qπ .

3Minimizing risk can be seen as a form of information bottle-
neck (Tishby et al., 1999): it searches for factorized models whose
parameters minimize information about training data while maxi-
mizing information about system dynamics; the size of the training
data serves as a trade-off parameter.
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Figure 2: Top: approximate risk for optimally-predictive
models of the Boolean network from fig. 1. Dots mark
switches of the optimal model Q?; inset shows first two
switches. Bottom: cumulative risk, or total accumulated
prediction error for models plotted in the top graph. Total
modularity (T ) is asymptotic difference between cumulative
risks of Q1234 and Q? or, alternatively, area between lines
corresponding to (non-cumulative) risks of Q1234 and Q?.

ties exist, here our dynamic models are assumed to be prod-
ucts of first-order Markov chains with Dirichlet priors. The
number of parameters of model Qπ from this class is:

dπ =
∑
B∈π
|XB |(|X′B | − 1) (8)

where |XB | is the number of supported starting state out-
comes and |X′B | is the number of possible future state out-
comes of the variables with indexes in block B. For ex-
ample, for a single block of Boolean variables with a fully
supported starting state distribution, these are both equal to
2|B|. For this model class, the complexity term scales expo-
nentially with the number of variables in each block.

As an example, we look at optimal decompositions of the
network in fig. 1. Its risk, calculated using the approxima-
tion of eq. 7 and parameter counts of eq. 8, is shown at the

top of fig. 2.4 The risk is plotted for those models which
reach minimum risk at some point of the training process,
as well as that of the overall minimal risk model Q? at each
N . Predictive power is initially optimized by the model cor-
responding to partition 1/2/3/4 (the simplest model which
treats all nodes independently). At N ≈ 3 (inset), it is re-
placed by the model corresponding to partition 12/3/4 (vari-
ables 1 and 2 now merged into a single block); at N ≈ 4
(inset), by the model corresponding to partition 12/34; and
finally at N ≈ 215, the most predictive model becomes the
one corresponding to the total partition 1234.

Total modularity
So far, our measure of modularity has been parameterized by
N , the amount of training data. Here, we derive a parameter-
free measure of the total modularity in a dynamical system.

In our definition of risk (eq. 6), we used the posterior
predictive distribution Qπ

(
X′
∣∣X,X′1..N ,X1..N), the prob-

ability assigned to the next data sample by a model trained
onN previous data samples. Given our assumptions, the fol-
lowing relationship holds between the prior predictive dis-
tribution, the probability an untrained model assigns to N
data samples, and the posterior predictive distribution:

Qπ
(
X′1..N

∣∣X1..N)=
N−1∏
n=0

Qπ
(
X′n+1∣∣Xn+1,X′1..n,X1..n)

This suggests the prequential interpretation of Bayesian
prediction (Dawid, 1992): the expected predictive error of a
model on N samples is the sum of the expected predictive
errors on each successive sample after training on the pre-
vious samples. This accumulated prediction error is termed
cumulative risk (Haussler and Opper, 1997):

RN,Qπ =
N−1∑
n=0

rn,Qπ

The risk of eq. 6 can be seen as the rate of change of the
cumulative risk as the amount of training data grows.

Total modularity is the total gain in predictive accuracy
(i.e., decrease in cumulative risk) provided by the optimally
predictive models Q?(N) versus the unfactorized, total-
partition model Qπ0 . Let RN,Q? =

∑N−1
n=0 rn,Q?π(n) be

the cumulative risk of an agent who selects the risk-minimal
model at each N . The total modularity is then:

T = lim
N→∞

(
RN,Qπ0

−RN,Q?
)

(9)

Total modularity measures the overall predictive advan-
tage gained by using factorized models, and is not a function
of a particular N . High values of total modularity indicate

4In general, the approximation of eq. 7 is only accurate for large
N . However, it suffices for our explanatory purposes.
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Figure 3: Total modularity of two binary variables which
copy each others’ state with probability p and maintain their
own state with probability 1− p. Total modularity increases
as coupling decreases, and diverges as p→ 0.

that simpler models have significantly improved predictive
performance during earlier stages of the learning process.5

To use the previous example, the cumulative risk of the mod-
els plotted at the top of fig. 2 is shown at the bottom of that
figure. The total modularity of the dynamic network shown
in fig. 1 is equal to the asymptotic difference between the
cumulative risks of Q1234 (= Qπ0 ) and Q?. Equivalently, it
is also the total area between the lines corresponding to the
(non-cumulative) risks of Q1234 and Q?.

For another illustration of total modularity, we consider a
simple dynamical system composed of two binary variables.
Each variable is parameterized in the following manner: at
each time step, with probability p it assumes the value of
the other variable in the previous time step, and with prob-
ability 1 − p it maintains its own value from the previous
time step. The amount of dynamic coupling between the
two nodes increases with p: at p = 0 the variables have no
interaction, while at p = 1 their values are completely cor-
related (with a one timestep lag). This dynamic coupling is
illustrated in fig. 3, which plots the total modularity of this
system against the coupling parameter p. The total modu-
larity monotonically decreases as p increases, showing that
greater coupling leads to lower total modularity. As p → 0,
the two variables become completely independent and total
modularity diverges (in this case, it grows without bound at
a rate proportional to logN ).

State-dependent and causal modularity
The way information flows within a dynamical system can
depend on the system’s state. For example, a partition’s
stochastic interaction can be different in different attractors.
We can quantify this by different choices of the starting

5Minimization of accumulated error by online switching from
simpler to more complex models is related to a learning framework
recently proposed by van Erven et al. (2007)
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Figure 4: Risk for two systems, each having two binary vari-
ables: in system A (left column) each variable copies previ-
ous value of the other, in systemB (right column) each vari-
able takes opposite of its own previous state. a) and d): Risk
under uniform starting state distribution. Lowest risk model
of A becomes the total one, while factorized model remains
optimal for B. b) and e): Risk and optimal decompositions
depend on the starting state distribution. Computed over
P (X=(0, 1))= 0.5, P (X=(1, 0))= 0.5, risk and optimal
decompositions become the same for A and B, though their
causal organization is different. c) and f): Causal risk leads
to different decompositions of A and B, even when com-
puted over same starting state distribution as in b) and e).

state distribution, P (X). Though we have generally taken
P (X) to be a fully-supported uniform distribution, it can be
weighted preferentially over some subset of starting states.

For example, consider two systems, each composed of
two binary variables. In system A, each variable copies the
previous value of the other, while in systemB, each variable
takes the opposite of its own previous state. Fig. 4 shows
the risk plots for both A (left column) and B (right col-
umn), where 4a and 4d are calculated for a uniform starting
state distribution. The risk, as well as the optimal decom-
positions, is different between the two systems: A (which
performs the copy operation) eventually chooses the total
partition {{1, 2}} as the most predictive, while B (whose
variables perform independent state flips) never does.

If, however, a non-uniform starting state distribution
is chosen, risk and optimal decompositions can change.
The risk for starting state distribution P (X=(0, 1)) =
0.5, P (X=(1, 0)) = 0.5 are shown in fig. 4b and 4e (for
systems A and B respectively). Different parts of the start-



ing state space induce different risk values and optimal de-
compositions: for this distribution, fig. 4b shows that the
total partition {{1, 2}} is never chosen as the optimally pre-
dictive one for system A.

Additionally, for these starting states the transition distri-
butions of A and B are identical: if either system is started
in state (0, 1), it deterministically transitions to state (1, 0),
and similarly for the transition from (1, 0) to (0, 1). Because
the observed dynamics of the two systems are identical, the
risk functions and optimal decompositions are also equal.
Though systems A and B are defined using different causal
architectures, here their modular organizations are indistin-
guishable. Specifically, A is postulated to have a causal con-
nection among its variables but – for this starting state dis-
tribution – they display no stochastic interaction.

This example highlights the difference between statisti-
cal correlation and causal interaction. To properly handle
the latter, we utilize a notion of causality based on seman-
tics of intervention (Pearl, 2000), recently developed in an
information-theoretic direction by Ay and Polani (2008). In
Pearl’s treatment, conditional probability distributions rep-
resent not only correlations, but also responses of variables
to externally-imposed interventions. This is especially natu-
ral when dynamics of interest are generated by causal mod-
els, such as dynamic causal Bayesian or Boolean network
models frequently used in artificial life and systems biology.

In our example, the functional organization of systems A
and B can be differentiated – even within the non-uniform
starting state distribution mentioned above – if the starting
states of the systems can be intervened upon. This is because
in system A – but not system B – changing the starting state
of one variable can change the other variable’s future state.

We consider interventions formally by noting that the risk
rN,Qπ of eq. 6 need not take the same starting state distribu-
tion for training data as for the testing data. Instead, we take
the starting state distribution for training data to be drawn
i.i.d. from a fully-supported and uniform distribution P̂

(
X
)

(the distribution of interventions), while the testing starting
states can be drawn from any P (X) of interest. We refer to
risk evaluated under this learning scenario as causal risk:

r̂N,Qπ =
∑
x,x′

P (x)P (x′|x)
[

logP (x′|x)−

∑
x1..N,x′1..N

P̂
(
x1..N)P (x′1..N∣∣x1..N)logQπ

(
x′
∣∣x,x′1..N,x1..N)]

As N → ∞, the posterior predictive distribution of model
Qπ approaches

∏
B∈π P̂

(
X′B |XB

)
, where P̂

(
X′B |XB

)
is the whole-system transition distribution P

(
X′|X

)
marginalized onto variables in block B using P̂

(
X
)
. Then,

r̂N,Qπ can be approximated by:

Iπ(X′|X) +
∑
B∈π

KL
[
P (X′B |XB)

∥∥∥P̂ (X′B |XB)
]

+ dπ
2N

where Iπ , dπ , and the expectations in the KL terms use the
testing starting state distribution. The KL divergence be-
tween P

(
X′B |XB

)
(the whole-system transition distribution

marginalized onto variables in block B using P
(
X
)

) and
P̂
(
X′B |XB

)
reflects the amount of extra perturbation that

active interventions inject into block dynamics. The two
distributions need not be equal, unless P (X) = P̂

(
X
)

or
the partition under consideration is the total one. Because
KL divergence is non-negative, causal risk r̂N,Qπ is not less
than the statistical risk rN,Qπ (compare above to eq. 7).

Fig. 4c and 4f show the causal risk for systems A and
B (respectively) with P (X=(0, 1)) = 0.5, P (X=(1, 0)) =
0.5. In 4c – but not 4f – the total partition model assumes a
lower risk than the factorized model, indicating that for the
starting states in question, system A – but not system B –
has causal interactions between its variables.

Conclusion
Modularity is normally treated as an objective property of a
system’s organization. Our approach instead considers from
the perspective of modeling and prediction. In the context
of inferring dynamic models from limited data, modularity
allows for models that are predictive but simple, with the
amount of training data controlling the trade-off. Our sta-
tistical treatment connects to previous information-theoretic
approaches, but goes further by providing principled terms
for identifying small modules.

Our approach can also be used to find state-dependent
modular organizations, both in statistical and causal (inter-
ventional) senses: models trained on interventional dynam-
ics but tested on arbitrary distributions give rise to a mea-
sure that identifies causal modules. This is related to ex-
isting information-theoretic measures of causal interactions
between subsystems (Tononi and Sporns, 2003), but here
emerges naturally from the framework of statistical model-
ing. This framework also produces a measure of total mod-
ularity present in the system, which quantifies the overall
predictive advantage that modularity provides through the
entire model inference process.

As a side note, if the learning of real-world cognitive sys-
tems (such as scientists or organisms) proceeds in a man-
ner somewhat similar to the statistical framework presented
here, our approach suggests why such systems may infer
modular organizations in the external world: under condi-
tions of limited data, this assumption can simplify learning
and lead to gains in predictive power.

One important issue with our treatment is its model-
dependence. The complexity penalization term of eq. 6 de-
pends on the model class, and different model classes may
have different parameterizations and functional forms. Our
examples employed products of Markov chain models, a
rather general dynamic model class but one heavily parame-
terized; others could be used. The choice of model class can
be thought of as a null model of system dynamics.



Several generalizations suggest themselves. For example,
it is possible to infer module timescales by searching not
only over decompositions, but also model orders (numbers
of previous states on which transition probabilities depend;
for inferring Markov chain order, see Strelioff et al., 2007).
Fuzzy modular organizations, in which a variable can be-
long to more than one module, can be accommodated by
allowing partially-overlapping blocks. More generally, the
model search space could include other structures besides
partitions (e.g. trees or networks) to impose independence
constraints on information flow between blocks.

Identifying modularity in dynamical systems is important
in complex systems research in general, and biological sys-
tems modeling in particular. Our method differs from recent
community-detection methods that find modularity in static
graphs, in that it focuses on the organization of interactions
between dynamic system components. In future work, we
hope to apply it to the analysis of regulatory and signal-
ing control in biochemical networks, as well as inference
of functional neural organization from brain recordings.
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