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Chapter 1

Introduction

1.1 Overview and Motivation of Work

This dissertation is comprised of several manuscripts1 of my PhD work on developing new algo-

rithms for gene expression analysis and automated mining offunctional information from literature

for Bioinformatics. Here in the introduction I will give a high level overview of the work, present

its motivation, some of the necessary technical backgroundand how the different parts of the work

relate to each other.

1.1.1 Gene Expression Analysis Work

Biology used to be a mainly hypothesis driven science in which experiments were carefully de-

signed to answer one or few very specific questions, like the function of a specific protein in

a specific context. The development and success of molecularbiology and genetics, combined

with computer technology, has lead to the emergence of techniques that draw on inferences from

large amounts of data derived from so-calledhigh-throughput experiments[Lander, 1996, Lander,

1999,Zweiger, 1999,D’haeseleer, 2000]. These experiments allow for the analysis and monitoring

of many cellular components, e.g. genes and proteins, in parallel. The genome sequencing projects

marked the first step into this new, data-rich and inference driven era, i.e. the new high-throughput

sequencing technologies allowed the focus of sequencing toshift from individual genes of inter-

est to the whole genome of an organism. New high-throughput technologies, many of which are

based on the sequencing results, are being developed. These technologies enable the monitoring

of many genes or proteins and their interactions in parallelto obtain a system level perspective

1Some already published or in part presented at conferences,some in preparation for publication [Wall et al.,
2003, Challacombe et al., 2004, Rechtsteiner et al., 2003, Rechtsteiner and Rocha, 2004a, Rechtsteiner and Rocha,
2004b,Rechtsteiner et al., 2005].

1



2 CHAPTER 1: INTRODUCTION

of cellular processes. The termsFunctional GenomicsandSystems Biologydescribe research at-

tempting such global characterization and understanding of cellular behavior [Kitano, 2001,Ideker

et al., 2001, Kanehisa, 2000]. The development of algorithms to mine the large amounts of data

from high-throughput experiments for biological information is the main area of research within

the field ofBioinformatics.

The first part of this dissertation is concerned with algorithms for analysis of data frommi-

croarrayexperiments to measure mRNA or gene transcript levels [Fodor et al., 1993,Schena et al.,

1995] (see appendix A.1 for some background on the biology ofgene expression). Microarrays

allow for the simultaneous measurement of the expression levels of tens of thousands of genes,

sometimes the whole genome, of an organism. One of the fundamental ways in which a cell regu-

lates its biological processes and responds to changing conditions is by regulating the expression

of its genes. Large scale gene expression measurements can be used for determining the functions

of newly identified genes, for obtaininggenetic fingerprintsfor diseases and for getting a broader,

system-level understanding of life on the cellular level [Lander, 1999,Ideker et al., 2001]. Two time

series data sets that will be discussed specifically in this dissertation are gene expression data from

human fibroblast cells that were infected with a herpes virus[Browne et al., 2001, Challacombe

et al., 2004] and expression data obtained during the cell-cycle of yeast [Cho et al., 1998]2. For the

herpes data, the goal of the study is to identify the genes whose expression responds significantly

to the virus infection, what their expression response patterns are and what their functions in the

context of the virus infection are. For the yeast cell-cyclestudy the goal is to identify the genes

that are significantly cell-cycle regulated, i.e. identifygenes that have periodic expression patterns

in synchrony with the cell-cycle, and identify which genes are induced (increased expression) in

which phase of the cell-cycle.

To answer such questions, much of the multi-variate data analysis of gene expression data has

focused on clustering techniques. Examples are hierarchical clustering [Eisen et al., 1998], K-

means [Tavazoie et al., 1999], Self-Organizing Maps (SOM) [Tamayo et al., 1999] and the fitting

of Multi-Variate Gaussian Mixture Models (Mclust algorithm) [Yeung et al., 2001a] (see appendix

B.4 for brief discussions of these algorithms and some of their applications). The assumption

underlying the use of clustering techniques is that a group of genes participating in the same bio-

logical process is similarly expressed because their proteins will be in similar demand. In chapter

4 concerns with the application of clustering algorithms totime series gene expression data will

be discussed. It has been shown that clusters obtained with different clustering algorithms for time

series expression data are not as distinct and discrete in expression space as one might expect and

might be desirable when applying clustering algorithms. A problem for some clustering algorithms

2The herpes data is analyzed in more detail, the cell-cycle data is used to illustrate the developed clustering algo-
rithm.
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is also that they require the number of clusters in the data tobe known. Examples of algorithms

needing such parameters are K-means, SOM and the Mclust algorithm. Both problems might be

helped with proper visualization of the expression data. Here we present Singular Value Decom-

position (SVD) [Press et al., 1992, Golub and Van Loan, 1996]as an algorithm that can help in

such visualization. SVD is discussed in detail in chapter 2 and examples of different applications

of SVD are given. Chapter 3 presents the analysis of a gene expression data set of herpes virus

infected human fibroblast cells [Browne et al., 2001] with SVD. The study identified two clusters

of genes with very different response patterns. The biological significance of the genes in the two

clusters was assessed manually, by a biologist. This assessment validated the derived clusters.

The findings of this study and insights we gained from others [Holter et al., 2000, Alter et al.,

2000,Raychaudhuri et al., 2000,Cho et al., 1998,Tavazoie et al., 1999,Tamayo et al., 1999] moti-

vated work on two new algorithms for gene expression analysis based on SVD and the subspaces

in expression space it can identify. The motivations and thealgorithms are presented in chapter 4.

The first algorithm uses the distribution of the polar anglesof genes projected into two-dimensional

SVD subspaces to identify genes that are significantly expressed. The second algorithm clusters

these significantly expressed genes based on the density of the distribution of their polar angles.

The application of the algorithms to a well studied expression data set is presented, the yeast cell-

cycle data set of [Cho et al., 1998]. Chapter 5 presents the application of the algorithms to the

herpes data set from chapter 3.

1.1.2 Automated Information Retrieval from Literature for Computational

Biology

In chapter 5 and 6 work on automated mining of biological information from literature is presented.

This work was motivated by the gene expression analysis workpresented in the earlier chapters.

Although gene expression analysis provides useful insights to biologists, the biological meaning

of numerical gene expression analysis results is often not obvious. Co-expression clusters can

contain hundreds of genes, as do the clusters presented in chapter 4 for the yeast cell-cycle data

and in chapter 5 for the herpes virus infected human fibroblast cells. Although databases like

GenBank [Benson et al., 2004,NCBI, 2004] and SwissProt/UniProt [Bairoch et al., 2005,SIB/EBI,

2004] exist which contain functional annotations for individual genes and proteins, it is difficult to

identify the significant biological function, what we frequently term afunctional theme,for large

numbers of genes in the context of an experiment. Further, finding such functional themes from

individual protein or gene annotations manually, often requires expert knowledge. Whereas much

of the annotations in databases is free text, progress is being made in standardizing annotations, for

example by the Gene Ontology (GO) consortium [The Gene Ontology Consortium, 2004, Harris



4 CHAPTER 1: INTRODUCTION

et al., 2004] which is developing a hierarchical ontology for annotation of genes and proteins. But

as the annotation of the clusters in chapter 3 with GO by a biological expert showed, identifying

functional themes for large groups of genes and proteins still proves difficult.

In chapter 5 a algorithm is presented that will assist in identifying functional themes for groups

of genes or proteins (e.g. genes from co-expression clusters) in an automated fashion. Thevector

space modelfrom Information Retrieval(IR) [Baeza-Yates et al., 1999] was adapted to represent

and mine knowledge in the bio-medical literature database MEDLINE for information about clus-

ters of genes. The vector space model is used in IR for indexing and retrieval of documents based

on keyword queries. Here the Medical Subject Headings (MeSH) are used as the keyword vocabu-

lary. The presented technique identifies functional themesthat are associated with groups of genes

in the literature. An application to the gene expression clusters of the herpes data is presented.

Although our results in chapter 5 show the validity of the developed method, we present a

more quantitative validation in chapter 6. Here a large-scale study on how well the developed

method can classify proteins into known protein sequence families (the Pfam family classification)

is presented. Over 15,000 proteins are classified into 1600 different families based on 26,000

publications.

In section 1.2 a short description of the different array technologies used to measure gene

expression is presented. In appendix B an overview of data analysis techniques typically applied

to gene expression data is given.

1.2 Microarrays for Transcript Level Measurements on a Ge-

nomic Scale3

Microarrays are extensions ofhybridization(see Glossary) based methods like Southern and North-

ern blots that have been used for decades to identify and quantify individual nucleic acid sequences

in biological samples [Knudsen, 2002]. Hybridization is the process by which two complementary

nucleic acid sequences, like DNA or RNA strands, interact sothat double-stranded structures are

formed. Complementary sequences are nucleic acid sequences that can form such double-stranded

structures with each other by following base-pairing rules(in DNA adenine (A) pairs with thymine

(T) and cytosine (C) with guanine (G) so that the complementary sequence of GTAC would be

CATG). The main novelty of microarray technology is the ability to measure the abundance of

transcripts of thousands of genes in a single experiment with a single chip. Several developments

in biology have made it possible to perform these measurements in such a highly parallel fashion.

3The termstranscript levels, expression levelsandmRNA levelswill be used interchangeably. Similarly will the
termsmicroarrayandchip,or DNA chip,be used interchangably.
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Large-scale genome sequencing projects have made it possible to assemble collections of DNAs

that correspond to all, or a large fraction of, the genes in many organisms from bacteria to humans.

Second, technical advances have made it possible to generate arrays with very high densities of

DNA probes, allowing for tens of thousands of genes to be represented on standard glass micro-

scope slides or similar sized chips. Finally, advances in fluorescent labeling of nucleic acids and

fluorescent detection have made the use of these arrays simpler and more accurate.

Two main microarray technologies have emerged, oligonucleotide arrays [Fodor et al., 1993]

and cDNA microarrays [Schena et al., 1995,Duggan et al., 1999,DeRisi et al., 2000]. All microar-

rays have DNA nucleotide strands from genes to be assayed, called theprobes,fixated at known

positions on the chip. The preparation of the pool of mRNA nucleotide strands to be assayed,

the target strands, as well as the process of measuring the abundance of individual mRNAs, are

similar for all microarrays as well. The target mRNAs are reverse transcribed to cDNA and are

fluorescently labeled in the process. After hybridization to the probe strands, the abundance of the

different mRNAs is measured by the intensity of the fluorescent signal at the known probe strand

locations. Some of the details and differences between cDNAand oligonucleotide microarrays are

discussed in the next two sections.

1.2.1 cDNA Microarrays

One of the differences between cDNA microarrays and oligonucleotide arrays is that for the for-

mer the fixated probes are cDNA strands. cDNA stands forcomplementary DNA, a single stranded

DNA molecule that is complementary to a full-length mRNA, typically 500-5000 bases long.

cDNA probes are placed on a coated glass microscope slide using a computer-controlled robot.

Besides the difference in the probes, another main difference to oligonucleotide array technology

is that for cDNA microarrays, the cDNA target pool is a mixture of differently labeled cDNA from

samples to be tested and from some control or reference sample (see also Fig. 1.1). The mRNA

from both the test and reference sample have been reverse transcribed to cDNA and in the process

fluorescently labeled with two different dyes (usually Cy-3and Cy-5-dUTP). Both fluorescent

cDNA samples are mixed and allowed to hybridize to the cDNA probes on the array.Comparative

hybridization4 of the test and reference cDNA target samples is supposed to take care of differ-

ences among the probe spots, like varying density of probe strands, which could bias intensity

measurements and introduce so-calledspot effects. The test and reference mRNA target samples

should be affected equally by such spot effects and the ratioof fluorescent signal intensity of the

test to reference sample should then be free of spot effect biases.

4Sometimes also referred to ascompetitive hybridization,because test sample cDNA and reference sample cDNA
’compete’ for hybridization to the probes.
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To measure mRNA abundance of the test and reference sample, the hybridized, fluorescent

targets are excited with a laser and the spectra for the two dyes are measured using a scanner.

Usually monochrome images from the scanner are imported into software in which the images are

pseudo-colored and merged (Fig. 1.1 #5 and #6). The data froma hybridization experiment is

then reported as an intensity ratio (Cy-3/Cy-5) in which significant deviations from 1 (no change)

are indicative of increased (>1) or decreased (<1) levels ofgene expression relative to the reference

sample.

An advantage of cDNA microarrays over oligonucleotide arrays is that the technology is non-

proprietary and less expensive. An online guide on how to build and arrayer from scratch can be

found at the Brown lab at Stanford University [DeRisi et al.,2000]. More details on microarray

technology can be found in [DeRisi Lab, 2005, Leming, 2002, Schena et al., 1995, Duggan et al.,

1999,Eisen and Brown, 1999].

1.2.2 Oligonucleotide arrays

The most used oligonucleotide arrays are commercially produced and distributed by Affymetrix

[Affymetrix, 2005, Fodor et al., 1993]. The discussion herefocuses on the technology of these

often calledAffymetrixor justAffy chips. Oligonucleotide arrays [Fodor et al., 1993] useoligonu-

cleotides,relatively short sequences of 20 to 25 nucleotides, as probestrands on the chips. In

Affy chips these probes are synthesized directly onto the chip surface using a combination of

semiconductor-based photolithography and light-directed chemical synthesis5. The main differ-

ence of the Affy chip technology to cDNA microarray technology is that a gene’s expression level

is not measured with one kind of nucleotide probe strand, e.g. one type of cDNA probe strand at

each spot as for cDNA microarrays. A set of typically about 20different oligonucleotide probe

pairs of length 20 to 25 are used to assay the expression levelof a single gene. Affymetrix there-

fore introduced a slightly different terminology than has been used for cDNA microarrays. The 20

different oligonucleotide pairs used to assay a gene’s expression level are referred to asprobesor

probe pairs, the 20 different probe pairs for a specific gene are referredto as aprobe set. One of the

oligonucleotides of each probe pair is aperfect matchto a gene’s sequence, the other is a so-called

mismatchsequence where the center nucleotide has been altered. The mismatch sequence serves

as a control and is supposed to detect background or noise signal due to non-specific hybridization

of sequences that are not from the gene to be assayed but may besimilar in sequence. Affymetrix’s

analysis software GeneChip calculates an expression levelfor each probe pair by subtracting the

mismatch value from the perfect match value. An expression value for each gene, or probe set,

5Other technologies for producing oligonucleotide chips, for example based on ink-jet printer technology, have
been developed [Stekel, 2003]
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Figure 1.1: A typical cDNA microarray experiment: 1.) obtain test and control cell populations.
2.) mRNA extraction. 3.) reverse transcription to cDNA and fluorescent labeling. 4.) hybridization
of both samples to cDNA microarray. 5.) scanning of the hybridized array. 6.) the resulting image.
Figure adapted from http://www.cs.wustl.edu/~jbuhler/research/array/
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is calculated by simple averaging the 20 probe pair differences with extreme value, or outlier,

removal.



Chapter 2

Singular Value Decomposition for Gene

Expression Analysis1

As outlined above, one of the challenges in current bioinformatics is to develop effective ways to

analyze global gene expression data. In addition to being ofa broader utility in analysis methods,

Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) can be valuable

tools for characterizing the structure of the data. SVD and PCA are common techniques for anal-

ysis of multivariate data, and gene expression data are wellsuited to analysis using SVD/PCA. A

single microarray experiment can generate measurements for thousands of genes. Present experi-

ments typically consist of around a dozen assays, but can consist of hundreds [Hughes et al., 2000].

Gene expression data are currently rather noisy, and SVD candetect and extract small signals from

noisy data. The goal of this chapter is to provide precise explanations of the use of SVD and PCA

for gene expression analysis, illustrating methods using simple examples. Our aims are 1) to pro-

vide specific examples of the application of SVD methods and interpretation of their results; 2) to

establish a foundation for understanding previous applications of SVD to gene expression analysis;

and 3) to provide interpretations and references to relatedwork that may inspire new advances.

In section 2.1, the SVD is defined, with comparisons to other methods described. A summary

of previous applications is presented in order to suggest directions for SVD analysis of gene ex-

pression data. In section 2.3 we discuss applications of SVDto gene expression analysis, including

specific methods for SVD-based visualization of gene expression data, and use of SVD in detection

of weak expression patterns. Some examples are given of previous applications of SVD to analysis

of gene expression data. The discussion in section 2.4 givessome general advice on the use of

SVD analysis on gene expression data, and includes references to specific published SVD-based

methods for gene expression analysis. Finally, in section 2.5 we provide information on some

1This chapter has been adapted from [Wall et al., 2003].

9
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CHAPTER 2: SINGULAR VALUE DECOMPOSITION FOR GENE EXPRESSION

ANALYSIS

available resources and further reading.

2.1 Mathematical definition of the SVD

Let X denote anm× n matrix of real-valued data with rankr, where without loss of generality

m≥ n, and thereforer ≤ n. In the case of microarray data,xi j is the expression level of the ith gene

in the jth assay. The elements of the ith row ofX form the n-dimensional vectorgi, which we refer

to as theexpression vectoror transcriptional responseof the ith gene. Alternatively, the elements

of the jth column of X form the m-dimensional vectora j , which we refer to as theexpression

profileof the jth assay. The equation for the singular value decomposition of X is the following:

X = USVT (2.1)

whereU is anm× n matrix, S is ann×n diagonal matrix, andVT is also ann× n matrix.

The columns ofU are called theleft singular vectors, {uk}, and form an orthonormal basis for

the assay expression profiles, so thatuiu j = 1 for i = j, anduiu j = 0 otherwise. The rows ofVT

contain the elements of theright singular vectors, {vk}, and form an orthonormal basis for the gene

expression vectors. The elements ofSare zero everywhere except on the diagonal. The elements

on the diagonal are called thesingular values. Thus,S= diag(s1, ...,sn). Furthermore,sk > 0 for

1 ≤ k ≤ r, andsk = 0 for (r + 1) ≤ k ≤ n. By convention, the ordering of the singular vectors is

determined by high-to-low sorting of singular values, withthe highest singular value in the upper

left index of the S matrix.

Closest Rank-l Approximation. One important result of the SVD ofX is that the matrixX(l)

in Eqn. 2.2 is the closest rank-l approximation ofX in the sense that it minimizes the sum of the

squares of the residuals of the matrix elements.

X(l) =
l

∑
k=1

ukskvT
k (2.2)

Calculation of SVD. One way to calculate the SVD is to first calculateVT andSby diagonal-

izing XTX:

XTX = VS2VT (2.3)

and then to calculateU as follows:

U = XVS−1 (2.4)

where the null space ofX spanned by the(r+1),...,n columns ofV is ignored in the matrix multi-

plication. Choices for the remainingn-r singular vectors in V or U (which have singular values of
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exactly zero) may be calculated using the Gram-Schmidt orthogonalization process or some other

extension method. Note that Eqn. 2.3 also illustrates that the singular values squared correspond

to the eigenvalues of matrixXTX. In practice there are several methods for calculating the SVD

that are of higher accuracy and speed. A linear algebra or matrix computation book like [Golub

and Van Loan, 1996] can be consulted for such algorithms.

2.1.1 Relation to Principal Component Analysis

There is a direct relation between PCA and SVD in the case where principal components are

calculated from the covariance matrix. In this case, PCA canbe formulated for a matrixX with

dimensionsm×n and rankr the following way:

X = 1aT +TPT (2.5)

where the first term is an outer vector product between1, a column vector of all 1’s and length

m, andaT , a row-vector of lengthn containing the means of the column vectors of matrixX. T

is an orthogonalm×n matrix with the column vectors being called theprincipal component score

vectors, andPT being an orthogonaln×n matrix with its row vectors being the eigenvectors of the

covariance matrix of the column vectors ofX:

V = (X−1aT)T(X−1aT) (2.6)

. These row vectors ofPT are called theprincipal component loading vectorsor just principal

component vectors.Typically the principal component vectors are normalized to unit length. The

eigenvaluesof the covariance matrix indicate the amount of variance captured or modeled by the

corresponding eigenvectors. PCA and SVD can be directly compared if matrixX is conditioned so

that its column vectors have mean zero, i.e.a = 0. From equations 2.1 and 2.5 it follows that

USVT = TPT (2.7)

We know further that the row vectors of bothVT andPT are the eigenvectors of the covariance

matrixXTX. Therefore

VT = PT

and it follows

US= T

Therefore, the principal component loading vectors ofPT correspond to the right-singular vectors

of VTand the score vectors ofT correspond to the left-singular vectors of matrixU , scaled by
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the corresponding singular values ofS. The Euclidean length of each score vector is equal to the

corresponding singular value squared, equal the variance captured by the corresponding principal

component vector:

t i t i = siuisiui = s2
i

Most PCA implementations return for a matrixX the principal component vectors and the

corresponding variances (the corresponding eigenvalues of the covariance matrix). The principal

component scores then have to be calculated by projection ofthe object vectors (rows of column

centered matrixX) onto the principal component vectors:

T = (X−aT)P

In contrast, SVD algorithms in general provide all this information without further calculations

in matricesU andVT plus the respective variances or square roots of variances in the singular

value matrixS.

2.2 Illustrative Applications of SVD and PCA

SVD and PCA have found wide-ranging applications. Here we describe several that also might

suggest potential applications to gene expression analysis.

Image processing and compression.The property of SVD to provide the closest rank-l ap-

proximation for a matrixX (Eqn. 2.2) is used in image processing for compression and noise

reduction, a common application of SVD also in other fields. By setting the small singular values

to zero, we can obtain matrix approximations whose rank equals the number of remaining singular

values (see Eqn. 2.2). Each termukskvT
k is called aprincipal image. Very good approximations

can often be obtained using only a small number of terms [Richards, 1993]. SVD is applied in

similar ways to signal processing problems [Deprette, 1988].

Immunology. One way to capture global prototypical immune response patterns is to use PCA

on data obtained from measuring antigen-specific IgM (dominant antibody in primary immune

responses) and IgC (dominant antibody in secondary immune responses) immunoglobulins using

ELISA assays. Fesel and Coutinho [Fesel and Coutinho, 1998]measured IgM and IgC responses

in Lewis and Fischer rats before and at three time points after immunization with myelin basic

protein (MBP) in complete Freud’s adjuvant (CFA), which is known to provoke experimental al-

lergic encephalomeyelitis (EAE). They discovered distinct and mutually independent components

of IgM reaction repertoires, and identified a small number ofstrain-specific prototypical regulatory

responses.
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Molecular dynamics. PCA and SVD analysis methods have been developed for character-

izing protein molecular dynamics trajectories [Garcia, 1992, Romo et al., 1995]. In a study of

myoglobin, Romo et al. [Romo et al., 1995] used molecular dynamics methods to obtain atomic

positions of all atoms sampled during the course of a simulation. The higher principal components

of the dynamics were found to correspond to large-scale motions of the protein. Visualization of

the first three principal components revealed an interesting type of trajectory that was described as

resembling beads on a string, and revealed a visibly sparse sampling of the configuration space.

Small-angle scattering.SVD has been used to detect and characterize structural intermediates

in biomolecular small-angle scattering experiments [Chenet al., 1996]. This study provides a

good illustration of how SVD can be used to extract biologically meaningful signals from the data.

Small-angle scattering data were obtained from partially unfolded solutions of lysozyme, each

consisting of a different mix of folded, collapsed and unfolded states. The data for each sample was

in the form of intensity values sampled at around 100 different scattering angles. UV spectroscopy

was used to determine the relative amounts of folded, collapsed and unfolded lysozyme in each

sample. SVD was used in combination with the spectroscopic data to extract a scattering curve for

the collapsed state of the lysozyme, a structural intermediate that was not observed in isolation.

Information Retrieval. SVD became very useful in Information Retrieval (IR) to dealwith

linguistic ambiguity issues. IR works by producing the documents most associated with a set of

keywords in a query. Keywords, however, necessarily contain much synonymy (several keywords

refer to the same concept) and polysemy (the same keyword canrefer to several concepts). For

instance, if the query keyword is "feline", traditional IR methods will not retrieve documents using

the word "cat" - a problem of synonymy. Likewise, if the querykeyword is "java", documents

on the topic of Java as a computer language, Java as an Island in Indonesia, and Java as a cof-

fee bean will all be retrieved - a problem of polysemy. A technique known as Latent Semantic

Indexing (LSI) [Berry et al., 1995] addresses these problems by calculating the best rank-l approx-

imation of the keyword-document matrix using its SVD. This produces a lower dimensional space

of eigen-keywordsandeigen-documents(singular vectors). Each eigen-keyword can be associated

with several keywords as well as particular senses of keywords. In the synonymy example above,

"cat" and "feline" would therefore be strongly correlated with the same eigen-keyterm. Similarly,

documents using "Java" as a computer language tend to use many of the same keywords, but not

many of the keywords used by documents describing "Java" as coffee or Indonesia. Thus, in the

space of singular vectors, each of these senses of "java" is associated with distinct eigen-keywords.
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2.3 SVD analysis of gene expression data

In this section examples of SVD-based analysis methods as applied to gene expression data are

provided. Before illustrating specific techniques, we willdiscuss ways of interpreting the SVD in

the context of gene expression data. This interpretation and the accompanying nomenclature will

serve as a foundation for understanding the methods described later. A natural question a biologist

might ask is, "What is the biological significance of the SVD?" There is no general answer to this

question, as it depends on the specific application. Classesof experiments can be provided as a

guide for individual cases, however. Two broad classes of applications under which most studies

will fall are defined:systems biology applications, anddiagnostic applications. In both cases, the

n columns of the gene expression data matrixX correspond to assays, and them rows correspond

to the genes. The SVD ofX produces two orthonormal bases, one defined by right singular vectors

and the other by left singular vectors. Referring to the definitions in section 2.1, the right singular

vectors span the space of the gene expression vectors{gi} and the left singular vectors span the

space of the assay expression profiles{a j}. Following the convention of Alter et al. [Alter et al.,

2000], we refer to the left singular vectors{uk} aseigenassaysand to the right singular vectors

{vk} aseigengenes. We sometimes refer to an eigengene or eigenassay generically as a singular

vector, or, by analogy with PCA, as acomponent. We refer to a triplet of corresponding eigenassay,

singular value and eigengene as a SVD mode. Eigengenes, eigenassays and other definitions and

nomenclature in this section are depicted in Figure 2.1. In applications related to systems biology,

we generally wish to understand relationships among genes.The signal of interest in this case is

the gene expression vectorgi. By Equation 2.1, a gene expression vectorgi can be expressed as a

linear combination of the eigengenes{vk}:

gi =
r

∑
k=1

uikskvk (2.8)

The ith row of U,g′i (see Fig. 2.1), contains the coordinates of the ith gene expression vector in

the basis of the scaled eigengenes,skvk. Note that becauseV is orthonormal (as isU ) it follows

XV = US (2.9)

and that the new basis is a rotation of the original basis vectors.

If r < n, theg′i are lower dimesnional than thegi, although they capture all the information of

the gi . Note that due to noise in the data,r = n in any real gene expression data set. Similar to

other applications of SVD like in image processing or LatentSemantic Analysis (see discussions

above), the last ’few’ (depending on the problem and dimensionalityn of the data) singular values

in S are often found to be close to zero and considered as only capturing noise in the data. The
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Figure 2.1: Graphical depiction of SVD of a matrixX with notations adopted in this section.

corresponding dimensions are therefore usually neglectedin the analysis (i.e. thesesk are set to

zero). Use of the SVD in such a way is usually referred to asdimensionality reductionof the data

(see for example alsoImage Processingin section 2.2).

In diagnostic applications, we may wish to classify tissue samples from individuals with and

without a disease. Referring to the definitions in section 2.1, the signal of interest in this case is

the assay expression profilea j . By Equation 2.1,a j can be expressed as a linear combination of

the eigenassays{uk}:

a j =
r

∑
k=1

v jkskuk (2.10)

The jth column ofVT , a′j (see Fig. 2.1), contains the coordinates of the jth assay in the co-

ordinate system (basis) of the scaled eigenassays,skuk. The a′j capture the expression profiles

of the assays inr ≤ n dimensions, which is always fewer than them dimensions of the original

expression profilesa j . So, in contrast to gene expression vectors, SVD can generally reduce the

dimensionality of the assay expression profiles without neglecting dimensions with small singular

values.

As hinted on above, analysis of the spectrum formed by the singular valuessk can lead to the

determination that fewer thann components capture the essential features in the data, a topic dis-

cussed in more detail below in the section on the visualization of the SVD (section 2.3.1). In the
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literature the number of components that results from such an analysis is sometimes associated

with the number of underlying biological processes that give rise to the patterns in the data. It is

then of interest to ascribe biological meaning to the significant eigenassays (in the case of diag-

nostic applications), or eigengenes (in the case of systemsbiology applications). For example, in

diagnostic applications one eigenassay might correspond to a characteristic expression profile of

healthy tissue whereas a second eigenassay might correspond to a characteristic expression profile

of diseased tissue. In a systems biology application with time series expression data, two eigen-

genes might correspond to (roughly) average expression profiles of two different groups of genes

involved in two different biological processes. And even though individual components (eigenas-

says/eigengenes) may not necessarily be biologically meaningful on their own, biologically mean-

ingful signals might be found in two or higher dimensional SVD subspaces (see, e.g.,small-angle

scattering in section 2.2). In the context of describing scatter plots in section 2.3.1, we discuss the

application of SVD to the problem of grouping genes by expression vector, and grouping assays

by expression profile. This discussion will also touch on thetopic of searching for biologically

meaningful signals. Sometimes it might not be possible to resolve gene groups, either because

there really is no such structure in expression space, or because it has been ’washed out’ by noise

in the data. In such cases it might still be of interest to identify the underlying gene expression

patterns through the eigengenes, and the expression subspace these patterns span. This is a case

where the utility of the SVD distinguishes itself from the typically used clustering techniques (see

also section 2.3.2). Finally we discuss some published examples of gene expression analysis using

SVD, and a couple of SVD-based gene grouping methods (section 2.3.3).

2.3.1 Visualization of the SVD and the MatricesS, VT and U

Visualization is central to understanding the results of application of SVD to gene expression

data. For example, Figure 2.2 illustrates plots that are derived from applying SVD to Cho et

al.’s budding yeast cell-cycle data set [Cho et al., 1998]. In the experiment, roughly 6200 yeast

genes were monitored for 17 time points taken at ten-minute intervals. To perform the SVD,

the data were pre-processed by replacing each measurement with its logarithm, and normalizing

each gene’s expression vector to have zero mean and unit standard deviation. In addition, an auto-

correlation filter was applied (see chapter 4) to filter out ~3200 genes that showed primarily random

fluctuations in their expression profiles. The plots in Fig. 2.2 reveal interesting patterns in the data

that we may wish to investigate further: plot a) shows a leveling off of the relative variance after

the first few components; b) shows a pattern in the first eigengene primarily resembling a steady

decrease, or decay; plots c) and d) show patterns with cyclicstructures in the second and third

eigengenes.
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Figure 2.2: Visualization of the SVD of the Cho et al. [Cho et al., 1998] yeast cell-cycle gene
expression data. Plots of relative variance (a); and the first (b), second (c) and third (d) eigengenes
are shown. The methods of visualization employed in each panel are described in section 2.3.1.
These data inspired our choice of the sine and exponential patterns for the synthetic data of section
2.3.1.
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Figure 2.3: Gene expression vectors from the synthetic dataset. Overlays of a) five noisy sine
wave genes and b) five noisy exponential genes.

A Synthetically Generated Example Data Set

To aid our discussion of visualization, we use a synthetic time series data set with 14 sequential

expression level assays (columns ofX) of 2000 genes (rows ofX). Use of a synthetic data set

enables us to provide simple illustrations that can serve asa foundation for understanding the

more complex patterns that arise in real gene expression data. Genes in our data set have one of

three kinds of expression vector, inspired by experimentally observed patterns in the Cho et al.

cell-cycle data: 1) noise (1600 genes); 2) noisy sine pattern (200 genes); or 3) noisy exponential

pattern (200 genes). Noise for all three groups of genes was modeled by sampling from a normal

distribution with zero mean and standard deviation 0.5. Thesine pattern has the functional form

asin(2πt/140), and the exponential pattern the formbe−t/100. a was sampled from the uniform

distribution over the interval (1.5,3) and b was sampled from the uniform distribution over (4,8).

t contains 14 time points covering one period of the sine wave.In analogy with the cell-cycle

data, the time points can be thought of as samples taken at 10 min intervals starting at t=0. Each

(synthetic) gene expression vector was centered to have a mean of zero. Figure 2.3 depicts genes

of type 2) and 3).

2.3.1.1 Singular value spectrum

The diagonal values of S (i.e.,sk) make up the singular value spectrum, which is easily visualized

by simply plotting the values. A singular value indicates the importance of a SVD mode in terms

of the amount of variance in the data it explains. More specifically, the square of each singular

value denotes the variance in the data explained by the corresponding singular vector. The relative
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variancess2
k/∑i s

2
i are often plotted (see Fig. 2.4 a) and Fig. 2.2 a)). Cattell has referred to these

kinds of plots asscree plots [Cattell, 1966] and proposed to use them as a graphical method to

decide on the significant components. If the original variables are linear combinations of a smaller

number of underlying variables, combined with some low-level noise, the plot will tend to drop

sharply for first few singular values associated with the underlying variables and then much more

slowly for the remaining singular values, causing an ’elbow’ in the plot. Components (eigenassays

and eigengenes) whose singular values plot to the right of such an elbow are ignored because

they are assumed to be mainly due to noise. In Figure 2.4 a) such an elbow is clearly visible at

component 3, as one might expect because only two linearly independent signals (except for the

noise genes), the sine and exponential patterns, are present in the data2.

Other heuristic approaches for deciding on the significant SVD components for a data set have

been proposed. One approach is to require the cumulative relative variance of the selected compo-

nents to be larger than a certain threshold which is usually dependent upon the dimensionality of

the data. For gene expression time series data with around a dozen assays it has been found that

the first 2 or 3 components usually capture 70% of the variancein the data [Holter et al., 2000]. In

the cell-cycle data of Cho et al., for example (see Fig. 2.2 a)), the first three components capture

close to 70% of the variance. For our synthetic example data set, the first two components cap-

ture about 64% of the total variance in the data (Fig. 2.2 a). If we re-construct the data matrixX

for the synthetic example data by using the first two components, we would obtainX(2) (the best

rank-2 approximation ofX), which would account for 64% of the variance in the data. An alter-

native approach for component selection was proposed by Everitt and Dunn [Everitt and Dunn,

2001]. They suggest a threshold for the variance captured bythe individual components. In their

approach, a component is selected as significant if its relative variance is larger than 0.7/r, where

r is again the rank of matrixX [Everitt and Dunn, 2001]. For our example data set this threshold

is th = 0.7/14= 0.05, which again selects the first two components as significant. For the yeast

cell-cycle data set, with a threshold on the variance ofth = 0.7/17≈ 0.04, this approach would

select the first 5 components, illustrating that these heuristic approaches for component selection

can lead to different results and can not be taken as last truths.

2.3.1.2 Eigengenes

When assays correspond to samplings of an ordinal or continuous variable (e.g., time; radiation

dose; toxin concentration), a plot of the elements of the eigengenes{vk} may reveal recognizable

patterns. In our synthetic data set, the first two eigengenesshow an obvious cyclic structure (Figs.

2.4 b, c; see also eigenvectors 2 and 3 in Fig. 2.2 for the yeastcell-cycle data). Neither eigengene

2Also note that for a real data set, as the yeast cell cycle dataset in Figure 2.2 a), such a clear ’elbow’ is not visible
in the singular value spectrum.
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Figure 2.4: Visualization of the SVD of the synthetic data matrix. a) Singular value spectrum
(relative variance plot). The first two singular values account for 64% of the variance. The first
(b), second (c), and third (d) eigengenes are plotted vs. time (assays) in the remaining panels. The
first two eigengenes capture the signals of the sin and exponential patterns completely. There is no
signal in the third eigengene and it only represents noise.
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is exactly like the underlying sine or exponential pattern,as the two patterns are not orthogonal.

However, each original pattern in the data is closely approximated by a linear combination of the

first two eigengenes. When assays correspond to discrete experimental conditions (e.g., mutational

varieties; tissue types; distinct individuals), visualization schemes are similar to those described

below for eigenassays. When the jth element of eigengenek is of large-magnitude, the jth assay is

understood to contribute relatively strongly to the overall variance of eigenassayk, a property that

may be used for associating a group of assays.

2.3.1.3 Eigenassays

Alter et al. [Alter et al., 2000] have visualized eigenassays {uk} resulting from SVD analysis of

cell-cycle data by adapting a previously developed color-coding scheme for visualization of gene

expression data matrices [Eisen et al., 1998]. For visualization, individual elements ofU are

displayed as rectangular pixels in an image, and color-coded using green for negative values, and

red for positive values, the intensity being correlated with the magnitude. The rows of matrixU

can be sorted using correlation with the eigengenes. In Alter et al.’s study, this scheme sorted the

genes by the phase of their periodic pattern. The information communicated in such visualization

bears some similarity to visualization using scatter plots, with the advantage that the table-like

display enables gene labels to be displayed along with the eigenassays, and the disadvantage that

differences among the genes can only be visualized in one dimension.

2.3.1.4 Visualization of Genes and Assays with Scatter Plots

Visualization of structure in high-dimensional data requires display of the data in a one, two, or

three-dimensional subspace. SVD identifies the subspaces in which the data varies the most. Even

though our discussion here is about visualization in subspaces obtained by SVD, the illustrated

visualization techniques are general and can in most cases be applied for visualization in other

subspaces (see section further reading and resources for techniques that use other criteria for sub-

space selection). For gene expression analysis applications, we may want to classify samples in

a diagnostic study, or classify genes in a systems biology study. Projection of data into SVD

subspaces and visualization with scatter plots can reveal structures in the data that may be used

for classification. Here we discuss the visualization of features that may help to distinguish gene

groups by their expression vectors. Analogous methods are used to distinguish groups of assays by

expression profile. We discuss two different sources of gene"coordinates" for scatter plots: pro-

jections of the expression vector onto eigengenes, and correlations of the expression vector with

eigengenes.
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Projection and correlation scatter plots for gene expression vectors Projection scatter plot

coordinatesqik for expression vectorgi projected on eigengenevk are calculated as

qik = givk (2.11)

The SVD ofX readily allows computation of these coordinates using the equationXV = US, so

that

qik = (US)ik (2.12)

As we noted before, the projection of thegi onto the eigengenesvk in V represents a rotation of

thegi from the original basis.

The projection of gene expression vectors from our example data onto the first two eigengenes

reveals the a priori known structure of the data (Fig. 2.5 a)). The groups of the 200 sine wave genes

(bottom right cluster), and the 200 exponential decay genes(top right cluster) are clearly separated

from each other and from the 1600 pure noise genes, which cluster about the origin.

Correlation scatter plots may be obtained by calculating the Pearson correlation coefficient of

each gene’s expression vector with the eigengenes:

r ik =
δgiδvk

|δgi | |δvk|
(2.13)

wherer ik denotes the correlation coefficient of the expression vector gi with eigengenevk, δgi

the mean-centeredgi , andδvk is the mean-centeredvk. The normalization by the lengths of the

vectors|δgi | and |δvk|
3 leads to−1 ≤ r ik ≤ 1. Note that if eachgi is pre-processed to have zero

mean and unit norm,

r ik = qik = (US)ik (2.14)

and it follows that the correlation scatter plot is equivalent to the projection scatter plot (gi = δgi

implies vk = δvk ; and |δgi | = |δvk | = 1). In the projection scatter plot, genes with a relatively

high-magnitude coordinate on the k-axis contribute relatively strongly to the variance of the kth

eigengene in the data set. The farther a gene lies away from the origin, the stronger the contribution

of that gene is to the overall variance accounted for by the subspace. In the correlation scatter plot,

genes with a relatively high-magnitude coordinate on the k-axis have expression vectors that are

relatively highly correlated with the kth eigengene.

Due to the normalization in correlation scatter plots, genes with similar patterns in their ex-

pression vectors, but with different amplitudes, can appear to cluster more tightly in a correlation

scatter plot than in a projection scatter plot. Genes that correlate well with the eigengenes lie near

the perimeter, a property that can be used in algorithms thatseek to identify genes that are highly

3Which are equal the sample standard deviations of the respective mean centered vectors.
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Figure 2.5: SVD scatter plots. Genes from our synthetic example data set are displayed in a) a
projection scatter plot; and b) a correlation scatter plot.The bottom right cluster (red) corresponds
to sine wave genes, and the top right cluster (green) corresponds to exponential decay genes. The
cluster of genes around the origin corresponds to the noise-only genes.

associated with a subspace. At the same time, low-amplitudenoise genes can appear to be magni-

fied in a correlation scatter plot. For our example data, the sine wave and exponential gene clusters

are relatively tightened, the scatter of the noise genes appears to be increased, and the separation

between signal and noise genes is decreased for the correlation vs. the projection scatter plot (Fig.

2.5). The projection scatter plot (Fig. 2.5 a) illustrates how SVD may be used to aid in detection

of biologically meaningful signals. In this case, the position (qci
1 ,qci

2 ) of any clusterci ’s center may

be used to construct the cluster’s expression vectorgci from the right singular vectors:

gci = qci
1 v1+qci

2 v2 (2.15)

If the first and second singular vectors are biologically meaningful in and of themselves, the cluster

centers will lie directly on the axes of the plot. This requires that the average expression patterns of

the cluster genes are uncorrelated. For our synthetic data,the original sine and exponential patterns

have a correlation larger than zero, therefore they have to be represented as linear combinations of

two uncorrelated singular vectors (eigengenes).

SVD and related methods are particularly valuable analysismethods when the distribution

of genes is more complicated than the simple cluster-like distributions in our example data: for

instance, SVD can be used to characterize ring-like distributions of genes such as are observed in
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scatter plots of cell-cycle gene expression data [Alter et al., 2000, Holter et al., 2000] (see section

2.3.3).

Scatter plots of assays Assays can be visualized in scatter plots using methods analogous to

those used for genes. Coordinates for projection scatter plots are obtained by taking the dot prod-

uctsqk j = ukaj of eigenassaysukwith expression profilesa j . These projections are again readily

obtained from SVD asqk j = (UTX)k j = (SVT)k j. Coordinates for correlation scatter plots are ob-

tained by calculating the Pearson correlation coefficientδa jδuk/
∣

∣δa j
∣

∣ |δuk|. Such plots are useful

for visualizing diagnostic data, e.g., distinguishing groups of individuals according to expression

profiles. Alter et al. used such a technique to visualize cell-cycle assays [Alter et al., 2000], and

were able to associate individual assays with different phases of the cell cycle.

2.3.2 Detection of weak expression patterns

As noise levels in the data increase, it is increasingly difficult to obtain separation of gene groups

in scatter plots. In such cases SVD may still be able to detectweak patterns in the data that may

be associated with biological effects. In this respect SVD and related methods provide information

that is unique from commonly used clustering techniques.

We will use an example to illustrate the ability of SVD to detect patterns in gene expression data

even though the individual genes may not clearly separate inexpression space (as visualized in a 2-

dimensional scatter plot). A data matrix was generated using two kinds of expression vector: 1000

genes exhibiting a sine pattern,sin(2πt/140), with added noise sampled from a normal distribution

of zero mean and standard deviation 1.5; and 1000 genes with just noise sampled from the same

distribution. Upon application of SVD, we find that the first eigengene shows a coherent sine

pattern (Fig. 2.6 a). The second eigengene is dominated by high-frequency components that come

from the noise (Fig. 2.6 b), and the singular value spectrum is basically flat after the first singular

value (Fig. 2.6 c), suggesting (as we know a priori) that there is only one interesting signal in the

data. Even though the SVD detected the cyclic pattern in the first eigengene, the sine wave and

noise-only genes are not clearly separated in the SVD eigengene projection scatter plot (Fig. 2.6

d).

2.3.3 Examples from the literature

Cell-cycle gene expression data display strikingly simplepatterns when analyzed using SVD. Here

we discuss two different studies that, despite having used data from different experiments and dif-

ferent pre-processing methods, have produced similar results [Alter et al., 2000,Holter et al., 2000].
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Figure 2.6: SVD-based detection of weak signals. a) A plot ofthe first eigengene shows the
structure of the weak sine wave signal that contributes to the expression vector for half of the
genes. b) The second eigengene resembles noise. c) A relative variance plot for the first six
singular values shows a flat spectrum after the first singularvalue. d) The signal and noise genes
are not separated in an eigengene scatter plot of 150 of the signal genes, and 150 of the noise-only
genes.



26
CHAPTER 2: SINGULAR VALUE DECOMPOSITION FOR GENE EXPRESSION

ANALYSIS

Both studies found cyclic patterns for the first two eigengenes (see Fig. 4.1 for Holter et al.), and, in

two-dimensional correlation scatter plots, previously identified cell cycle genes tended to plot to-

wards the perimeter of a disc (see Fig. 4.2). Alter et al. usedinformation in SVD correlation scatter

plots to obtain the result that 641 of the 784 cell-cycle genes identified in Spellman et al. [Spell-

man et al., 1998] are significantly associated with the first two eigengenes. Holter et al. displayed

previously identified cell-cycle gene clusters in scatter plots, revealing that cell-cycle genes were

relatively uniformly distributed in a ring-like feature around the perimeter, leading Holter et al. to

suggest that cell-cycle gene regulation may be a more continuous process than had been implied

by the previous application of clustering algorithms (see Fig. 4.2). Raychaudhiri et al.’s PCA study

of yeast sporulation time series data [Raychaudhuri et al.,2000] is the first example of application

of either PCA or SVD to microarray analysis. In this study, over 90% of the variance in the data

was explained by the first two components of the PCA. The first principal component contained a

strong steady-state signal. Projection scatter plots wereused in an attempt to visualize previously

identified gene groups, and to look for structures in the datathat would indicate separation of genes

into groups. No clear structures were visible that indicated any separation of genes in scatter plots.

Holter et al.’s more recent SVD analysis of yeast sporulation data [Holter et al., 2000] made use

of a different pre-processing scheme from that of Raychaudhuri et al. The crucial difference is

that the rows and columns ofX in Holter et al.’s study were iteratively centered and normalized,

i.e., the mean value of the (row, column) was subtracted fromeach element in the (row, column),

and each element was divided by the standard deviation. In Holter et al.’s analysis, the first two

eigengenes were found to account for over 60% of the variancefor yeast sporulation data. The first

two eigengenes were significantly different from those of Raychaudhuri et al., with no steady-state

signal, and, most notably, structure indicating separation of gene groups was visible in the data.

Below we discuss the discrepancy between these analyses of yeast sporulation data.

2.4 Discussion

As illustrated in section 2.3.2, an important capability distinguishing SVD and related methods

from other analysis methods is the ability to detect weak signals in the data. Even when the

structure of the data does not allow separation of data points, causing clustering algorithms to fail,

it may be possible to detect biologically meaningful patterns. As an example of practical use of

this kind of SVD-based analysis, it may be possible to detectwhether the expression profile of a

tissue culture changes in response to radiation dose, even when it is difficult to clearly separate the

specific genes that change their expression in response to radiation dose from other genes due to

noise in expression profiles.

SVD allows us to obtain the dimension of the Euclidean space in which the data can be embed-
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ded4, which is the rankr of matrix X. As the number of genesm is generally (at least presently)

greater than the number of assaysn, the matrixVT generally yields a representation of the as-

say expression profiles using a reduced number of variables.When r < n, the matrixU yields

a representation of the gene expression vectors using a reduced number of variables. Although

this property of the SVD is commonly referred to as dimensionality reduction, we note that any

reconstruction of the original data requires generation ofan m× n matrix, and thus requires a

mapping that involves all of the original dimensions. Giventhe noise present in real data, in prac-

tice the rank of matrixX will always ben, leading to no direct dimensionality reduction for the

gene expression vectors. It may be possible, however, to detect the true rankr by ignoring certain

components (typically the lower order ones), thereby reducing the number of variables required

to represent the gene expression vectors. Previous analyses of gene expression data have found

that 2 to 3 components capture much of the significant expression change in the data [Alter et al.,

2000,Holter et al., 2000].

Current thoughts about use of SVD/PCA for gene expression analysis include application of

SVD as pre-processing for clustering. Clustering algorithms can be applied using, e.g., the co-

ordinates calculated for scatter plots instead of the original data points. Yeung and Ruzzo have

characterized the effectiveness of gene clustering both with and without pre-processing using

PCA [Yeung and Ruzzo, 2001]. The pre-processing consisted of using PCA to select only the

highest-variance principal components, thereby choosinga reduced number of variables for each

gene’s expression vector. The reduced variable sets were used as inputs to clustering algorithms.

For the specific clustering algorithms and data tested, Yeung and Ruzzo report better results with-

out pre-processing. However, the specific data sets and clustering algorithms tested, and the sole

focus on gene clustering limit the implications of the results. For example, when grouping assays

is the objective, using{a′j} instead of{a j} (see section 2.3; Fig. 2.1) enables use of a significantly

reduced number of variables (r vs. m) that account for all of the variance in the data. The resulting

reduction of variables trivially decreases the compute time for clustering of assays, and may even

result in higher-quality clusters. Hence, at least for assay clustering the results of Yeung and Ruzzo

can’t be correct.

In section 2.3.3 we discussed how, rather than separating into well-defined groups, cell-cycle

genes tend to be more continuously distributed in SVD projections. For instance, when plotting

the correlations of genes with the first two right singular vectors, cell-cycle genes appear to be

relatively uniformly distributed about a ring. This structure suggests that, rather than using a clas-

sification method that groups genes according to their co-location in the neighborhood of a point

(e.g., k-means clustering), one should choose a classification method appropriate for dealing with

4E.g. the dimension of data points distributed on a sphere is two, the dimension of the Euclidean space in which
the data can be embedded is three. The latter is the dimesnionality that SVD provides.
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ring-like distributions. Previous cell-cycle analyses therefore illustrate the fact that one important

use of SVD is to aid in selection of appropriate classification methods by investigation of the di-

mensionality of the data. SVD analysis expresses signals inthe data as linear combinations of

orthogonal signals. A common misconception is that SVD can only reveal information about un-

derlying signals that are orthogonal. In fact, SVD may be used to detect underlying signals that

are not orthogonal, as can be seen from our synthetic exampledata set with sine and exponential

patterns (see Figures 2.5; see also small-angle scatteringin section 2.2).

In this chapter we have concentrated on conveying a general understanding of the application

of SVD analysis to gene expression data. Here we briefly mention several specific SVD-based

methods that have been published for use in gene expression analysis. For gene grouping, the

gene shavingalgorithm of Hastie et al. [Hastie et al., 2000] and SVDMAN byWall et al. [Wall

et al., 2001] are available. An important feature to note about both gene shaving and SVDMAN is

that each gene may be a member of more than one group (e.g. cluster for clustering algorithms).

For an evaluation of the data, SVDMAN uses SVD-based interpolation of deleted data to detect

sampling problems when the assays correspond to a sampling of an ordinal or continuous variable

(e.g., time series data). A program called SVDimpute [Troyanskaya et al., 2001] implements an

SVD-based algorithm for imputing missing values in gene expression data. Holter et al. have

developed an SVD-based method for analysis of time series expression data [Holter et al., 2001].

The algorithm estimates a time translation matrix that describes evolution of the expression data

in a linear model. Yeung et al. have also made use of SVD in a method for reverse engineering

linearly coupled models of gene networks [Yeung et al., 2002].

It is important to note that application of SVD and PCA to geneexpression analysis is relatively

recent, and that methods are currently evolving. There is notheory that dictates how to perform

SVD-based gene expression analysis, and there is no software package to date that implements

an automated general-purpose gene expression analysis. The detailed path of any given analysis

thus depends on what specific scientific questions are being addressed. Presently, gene expression

analysis in general tends to consist of iterative applications of interactively performed analysis

methods. As new inventions emerge, and more techniques and insights are obtained from other

disciplines, we mark progress towards the goal of an integrated, theoretically sound approach to

gene expression analysis; much remains to be accomplished,however, before we reach that goal.

2.5 Further Reading and Resources

The book of Jolliffe [Jolliffe, 1986] is a fairly comprehensive reference on PCA. It gives inter-

pretations of PCA and provides many example applications, with connections to and distinctions

from other techniques such as correspondence analysis and factor analysis. For more details on the
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mathematics and computation of SVD, good references are [Golub and Van Loan, 1996, Strang,

1998, Berry, 1992, Jessup and Sorensen, 1994]. SVDPACKC hasbeen developed to compute the

SVD algorithm [Berry et al., 1993]5. SVD is also used in the solution of unconstrained linear

least squares problems, matrix rank estimation, and canonical correlation analysis [Berry, 1992].

Applications of PCA and/or SVD to gene expression data have been published in [Alter et al.,

2000,Holter et al., 2000,Holter et al., 2001,Raychaudhuriet al., 2000,Troyanskaya et al., 2001,Ye-

ung and Ruzzo, 2001, Yeung et al., 2002]. Many of the aspects of these studies were discussed

in sections 2.3.3 and 2.4. In addition, SVDMAN [Wall et al., 2001] and gene shaving [Hastie

et al., 2000] are published SVD-based grouping algorithms;SVDMAN is free software available

at http://home.lanl.gov/svdman. Knudsen illustrates some of the uses of PCA for visualization of

gene expression data [Knudsen, 2002].

Everitt, Landau and Leese [Everitt et al., 2001] present PCAas a special case of Projection

Pursuit [Friedman and Tukey, 1974]. Projection Pursuit, which in general attempts to find an

"interesting projection" for the data, is also related to Independent Component Analysis (ICA)

[Hyvarinen, 1999]. As the name implies, ICA attempts to find alinear transformation (non-linear

generalizations are possible) of the data so that the derived components are as much as possible

statistically independent from each other. Hyvärinen provides a discussion of ICA and how it

relates to PCA and Projection Pursuit [Hyvarinen, 1999]. Liebermeister has applied ICA to gene

expression data [Liebermeister, 2002]. Other techniques that are related to PCA and SVD for

visualization of data are Multidimensional Scaling [Borg and Groenen, 1997] and Self-Organizing

Maps (SOM) [Kohonen, 2001]. Both of these techniques use non-linear mappings of the data

to find lower-dimensional representations. SOM’s have beenapplied to gene expression data in

[Tamayo et al., 1999]. There are also non-linear generalizations of PCA [Jolliffe, 1986,Schölkopf

et al., 1996].

5Some resources on SVD can also be found on the Web, see for example the following
URL’s: http://www.cs.ut.ee/~toomas_l/linalg/; http://www.lapeth.ethz.ch/~david/diss/node10.html; and
http://www.stanford.edu/class/cs205/notes/book/book.html.



30
CHAPTER 2: SINGULAR VALUE DECOMPOSITION FOR GENE EXPRESSION

ANALYSIS



Chapter 3

SVD identifies different Modes of Response

to Virus Infection 1

3.1 Introduction

3.1.1 Biological Model

Global gene expression analysis using DNA gene chip technology makes it possible to simul-

taneously monitor the expression levels of large numbers ofmRNAs in cells [Duggan et al.,

1999,Schena et al., 1995]. One area where gene chip analysishas been useful is in studying host-

pathogen interactions. Gene chip analysis allows for the comparison of gene expression levels in

infected and uninfected cells. One pathogen that has been studied by this approach is human cy-

tomegalovirus (HCMV), a member of the herpesvirus subfamily betaherpesvirinae. HCMV causes

life-threatening disease in immunologically immature andimmunocompromised people, including

neonates, AIDS patients and allogenic transplant recipients [Challacombe et al., 2004].

Previous studies of global host gene expression using DNA microarrays have shown that

HCMV infection dramatically changes the gene expression profile of the host cell [Challacombe

et al., 2004]. HCMV infection alters the expression of numerous host cell genes, including genes

that regulate cell cycle progression, cellular proliferation, cell adhesion, and genes encoding tran-

scription factors. Human cells respond to HCMV infection byaltering transcription in an attempt

to antagonize viral replication and spread.

1Work that was published as part of [Challacombe et al., 2004].

31
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3.1.2 Methods of handling data

To go from raw gene expression data to meaningful results generally involves normalization, filter-

ing, and analysis to identify patterns in expression level data. With Affymetrix microarray exper-

iments, the raw data consist of probe pair intensities. The gene expression level is typically com-

puted using a statistic that captures the response characteristic of a specific probe set. Many dif-

ferent commercial and free software packages can perform normalization and expression analysis

of oligonucleotide arrays. A few examples are DNA-Chip Analyzer (dChip) [Li and Wong, 2001a],

Affymetrix’s GeneChip software [Affymetrix, 1999], GeneSpring (http://www.silicongenetics.com),

Cluster and TreeView [Eisen et al., 1998]. In this study, we compared the group of human genes

that responded to HCMV infection in a previous study using GeneChip and a fold change ap-

proach [Browne et al., 2001], to two clusters of co-expressed genes that we identified using dChip

and Singular Value Decomposition (SVD) analysis. The first cluster contained some of the genes

identified in the previous study [Browne et al., 2001], whilenearly all genes in the second cluster

were not identified previously.

3.1.3 Materials and Methods

We analyzed gene expression time course data (from Affymetrix CEL files; NCBI Gene Expression

Omnibus accession GSE675 available at http://www.ncbi.nlm.nih.gov/geo/) obtained after HCMV

infection of human fibroblast cells by [Browne et al., 2001].dChip [Li and Wong, 2001a, Li and

Wong, 2001b] was used to normalize the intensities of the array data and estimate the expression

levels. SVD [Wall et al., 2003,Golub and Van Loan, 1996] was employed to identify and visualize

the two dimensional subspace that captured most of the variance in the expression data. In this

subspace, two clusters of co-expressed genes were identified. We annotated the genes comprising

these clusters and grouped them into functional categories.

3.1.3.1 Expression Level Estimation

One key issue in expression level estimation of oligonucleotide chips is the way that probe-specific

effects are handled. Affymetrix’s GeneChip uses the average difference of the perfect match (PM)

and mismatch (MM) probes as an expression index for the target gene. However, even using MM

intensities as controls, the expression levels of the different probe pairs in a probe set are still highly

variable [Li and Wong, 2001a]. dChip accounts for probe-specific effects in the computation of

expression levels by using a probe-sensitivity index to capture the response characteristic of a

specific probe pair, and by calculating model-based expression indices [Li and Wong, 2001a].
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3.1.3.2 Expression Level Data Analysis

Singular Value Decomposition (SVD) is a standard techniquefor dimensionality reduction and

interpretation of data [Golub and Van Loan, 1996, Wall et al., 2003] (see chapter 2 in this disser-

tation). When applied to a gene expression matrix consisting of the expression levels of m genes

measured at n time points (assays), SVD can be viewed as a linear transformation of the expression

data from an m x n space to a number of characteristic modes that describe the temporal patterns

of gene expression. The SVD analysis of the dChip normalizeddata was performed with the sta-

tistical software package R2 [R Development Core Team, 2004]. The R svd function providesan

interface to the LINPACK routine DSVDC. Prior to performingSVD, the data was log transformed

and for each gene its transcriptional response vector was centered by subtracting its mean and then

standardized to unit variance. Following SVD analysis, we calculated the correlations of the tran-

scriptional response vectors with the first two modes, then visualized the correlations in a scatter

plot (see chapter 2 for an explanation of the scatter plot). The plot indicates two distinct clusters

of genes, one correlated with each mode. We identified the setof genes in each cluster by visual

inspection of the correlation plot and by manually identifying a boundary around the cluster based

on the density of genes. The genes in our newly identified clusters were ranked by the magnitude

of their expression variance and exported as a list to a file, where each gene was identified by its

Affymetrix probe set id. Since the genes in a co-expression cluster have similar transcriptional

response patterns, the variance is a measure of the amplitude (or magnitude) of the transcriptional

response vectors.

3.1.3.3 Annotation Protocol

The gene chip IDs were mapped to GenBank accession numbers and uploaded to the Stanford Uni-

versity’s sourceBatchSearch (http://genome-www5.stanford.edu/cgi-bin/SMD/source//sourceBatchSearch)

to obtain annotation information for each GenBank accession number.

3.2 Results

3.2.1 Data Normalization

The GeneChip model is additive, and models the expression level of a given gene by the sum of the

probe effect and gene effect plus a stochastic component, which represents the measurement error.

The dChip model is multiplicative, modeling the expressionlevel of a given gene as the product

2Freely available under the GNU public license. R and its plugin BioConductor are becoming widely used in gene
expression analysis.
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Figure 3.1: Graphs showing the residuals of the statisticalmodels used by GeneChip (a) and dChip
(b), applied to probe set AFFX-Bio-C-3_at. The multiplicative model of dChip seems to explain
the variation in the data better.

of the probe effect and gene effect plus a stochastic component (measurement error). The fitted

values give estimates of the expression levels (probe effect plus gene effect for the additive model

and probe effect times gene effect for the multiplicative model). The residuals were calculated as

the observed values minus the fitted values. Figure 3.1 showsthe plots of the residuals vs. the fitted

intensity values for the statistical models used by Affymetrix’s GeneChip and dChip applied to the

data for the probe set AFFX-Bio-C-3_at. The GeneChip model (Figure 13.1) shows a strong, non-

linear dependence of the residuals on the intensity values.The residuals in the dChip model (Figure

3.1b) were smaller (note the different scale on the plots) with a more constant and symmetric spread

and far less dependence on the intensity values. This indicates that the multiplicative dChip model

explains more of the variation in the expression data and is abetter fit to the data.

3.2.2 Main Modes of Host Cell Expression Response to Herpes Infection

SVD analysis of gene expression data usually shows a decreasing singular value spectrum with

a leveling off after the first 2-3 modes. The ordering of the modes is determined by high-to-low

sorting of the corresponding singular values. The first few modes account for most of the patterns

(i.e. variance) in the data, while the rest typically represent noise, which can aid in identifying

the most prevalent signals in the data. The reduction of dimensionality provided by SVD analysis
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Figure 3.2: The variance captured by each SVD mode for the herpes data is shown in Fig (a). The
figure indicates that modes 1 and 2 capture 75% of the variancein the data. Figures (b) and (c)
show the expression profiles of modes 1 and 2.

facilitates data visualization, and clusters of genes withsimilar transcriptional responses might be

identified. Figure 3.2 shows the singular value spectrum andfirst two modes of the dChip modeled

herpes data. The expression data consists of 12 time points (12 arrays), representing 0.5, 1, 4, 6,

10, 12, 14, 16, 18, 20, 24 and 48 h after HCMV infection. The first two modes capture 75% of

the variance in the data. 3.2b shows the pattern of expression of the first mode over time. This

mode contains most of the variance in the data. At 1 h after HCMV infection, the expression

pattern of the first mode increases sharply, up to the level at24 h, and then decreases slightly over

the next 24 h. (Note that the decrease at 48 h was based on 1 datapoint; we didn’t have data

points between 24 and 48 h, so an artifact in the 48 h array could have affected the results). All

genes that are highly correlated with the first mode show a similar transcriptional response to the

pattern of mode 1. Orthogonal to the first mode, the second mode (Figure 3.2c) captures most of

the remaining variance in the data. The pattern comprising the second mode decreases until about

12 h after infection, then increases and is somewhat higher at 48 h than for the early time points.

Genes highly correlated with this mode show similar transcriptional response. Note that whereas

genes correlated with mode 1 are up-regulated initially after HCMV infection, genes correlated

with mode 2 are down-regulated. This suggests that genes correlated with mode 1 are activated by

the host’s immune response whereas genes correlated with mode 2 are down-regulated by the virus

proteins in an attempt to evade the hosts immune response. The third mode captures less than 10%

of the variance of the data (Fig. 3.2a) and only few genes werefound to be highly correlated with

this mode. We therefore ignore mode 3, as it probably contains mostly noise.
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3.2.3 Visualization of Gene Clusters in Two-dimensional Expression Sub-

space

Figure 3.3a shows a correlation plot of the gene transcriptional response vectors with modes 1

and 2. The closer the genes map to the periphery of the circle with radius 1, the more their

transcriptional response vectors are correlated with the first two modes. We identified two regions

where the genes cluster densely. Both regions are close to the perimeter of the plot. One cluster is

highly correlated with the first mode (right side of the plot in Figure 3.3a). We manually identified

a boundary for this cluster (see Fig 3.4a). This cluster 1 boundary contains 1747 genes and Fig 3.4b

shows the average transcriptional response of these genes.As cluster 1 genes are highly correlated

with mode 1, their average transcriptional response pattern is very similar to the expression profile

of mode 1 (Fig 3.2b). The second high density region of genes is highly correlated with the second

mode and somewhat (anti-)correlated with the first mode. Figure 3.5a shows the boundary we

selected for this cluster 2. Figure 3.5b shows the average transcriptional response pattern for the

462 genes in this cluster. The similarity of this cluster’s response to the profile of mode 2 (see Fig

3.2c) is apparent.

Comparison of Results to Previous Study by [Browne et al., 2001] The criterion used by

[Browne et al., 2001] for genes to be selected as significantly expressed requires a fold change

(ratio) of 3 in expression over a control measurement in two sequential time points3. The control

measurement was obtained from “mock infected” cells, i.e. cells that were infected without a

virus present. [Browne et al., 2001] used Affymetrix’s GeneChip software for the normalization

and determination of the probe set (i.e. gene) expression levels from the probe expression levels.

Figure 3.3b shows the projections of the genes identified as significantly expressed in the study

of [Browne et al., 2001] onto the first 2 modes. The center of Fig. 3.3b is sparsely populated and

most of the transcriptional response vectors are highly correlated (or anti-correlated) with modes

1 and 2. This indicates that modes 1 and 2 also explain most of the variance of the genes identified

as significantly expressed in the previous study by [Browne et al., 2001]. Many of the genes in this

group were highly correlated with mode 1 and somewhat fewer were anti-correlated with the first

mode. 377 (or 26%) of the genes selected by the fold change approach of [Browne et al., 2001]

were within our cluster 1. Genes in the second cluster, highly correlated with the second mode,

were not well represented by the group of previously identified genes. Only 15 genes (or 1%) in

the second cluster were selected by the original analysis.

3
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Figure 3.3: Visualization of the gene transcriptional response vectors in a correlation plot with the
expression profiles of modes 1 and 2 (a). Two high density regions, or clusters, one correlated with
mode 1 and the other with mode 2, are clearly visible. A correlation plot of the genes originally
analyzed by [Browne et al., 2001] with the same modes 1 and 2 isshown in (b). Most of the genes
identified by [Browne et al., 2001] are either highly correlated with mode 1 or anti-correlated. Few
genes from our cluster 2, highly correlated with mode 2, are among the Browne analyzed data.

Statistical Significance of Identified Clusters To assess the statistical significance of the iden-

tified clusters, we calculated the expected number of genes found in same sized cluster regions by

chance. The cluster boundaries were randomly rotated in the2-dimensional space of modes 1 and

2. If the rotated cluster-boundary did not overlap with the two identified clusters, the number of

genes inside the cluster boundary was counted. The mean and standard deviation of the number

of genes inside the boundary was calculated from 100 samples. For the cluster 1 boundary, the

mean number of genes found inside the boundary was 337 with a standard deviation of 98 genes.

The number of genes that we identified in cluster 1 (1747) was more than 5 times higher than the

mean number of genes obtained by chance. For the cluster 2 boundary, we found a mean of 76

genes with a standard deviation of 21; the number of genes identified in cluster 2 (462) was 6 times

higher.

3.2.4 Biological functions of genes in clusters 1 and 2

We manually analyzed the tab-delimited SourceSearch files,which contained the annotated genes

comprising each cluster, looking for genes that participate in biological processes relevant to the
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Figure 3.4: Identification of 1747 genes in cluster 1 (a) and their transcriptional response pattern
(b). The 1747 genes that were correlated with mode 1, that we termed cluster 1, were selected by
drawing a boundary around the region of increased density (green area in a). The transcriptional
response of the genes in this cluster shows a steady increasein expression starting at 6 hpi until 24
hpi. From 24 to 48 hpi, the expression level decreases but remains above the expression values at
the start of the experiment.
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Figure 3.5: Identification of the 462 genes in cluster 2 (a) and their transcriptional response pattern
(b). The 462 genes comprising this cluster were identified bydrawing a boundary around the
region of increased density (red area in a). The expression profile of the genes in cluster 2 shows
a decrease until about 12-16 hours post infection, followedby an increase beginning at about 18
hours post infection.

host cell response to HCMV infection. These processes included signal transduction, immune

system regulation, apoptosis, cell cycle regulation, oncogenesis, cell adhesion and transcription.

These categories were obtained from the Gene Ontology Consortium’s biological process ontology

[Ashburner et al., 2000, The Gene Ontology Consortium, 2004]. Details of the annotation results

can be found in [Challacombe et al., 2004]. Table 3.1 shows the distribution of the genes in the

2 clusters into the different functional categories. The annnotations of the 1747 genes in the first

cluster showed 82 genes involved in immune system regulation, 73 genes involved in apoptosis, 27

genes involved in cell adhesion, 277 genes involved in transcription regulation, 155 genes involved

in oncogenesis and cell cycle regulation, and 128 genes involved in signal transduction. Of the

462 genes in cluster 2, a search of the annotated gene list by biological process revealed 40 genes

involved in immune system regulation, 17 genes involved in apoptosis, 20 genes involved in cell

adhesion, 45 genes involved in transcription regulation, 20 genes involved in oncogenesis and cell

cycle regulation, and 61 genes involved in signal transduction. Some differences between the two

clusters can be seen by comparing the proportion of genes in each category to the total number of

biologically relevant genes in each cluster. Comparing these numbers between cluster 1 and cluster

2 revealed a noticeably greater percentage of genes in cluster 1 in the categories of transcription

(37.3%) and oncogenesis/cell cycle regulation (20.9%) than in cluster 2 (22.2% and 9.9%). Cluster
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Table 3.1: Proportion of Genes in each functional category for both clusters.

Category Cluster 14 Cluster 25

Immune system 82 (11.1%) 40 (19.7%)
Apoptosis 73 (9.8%) 17 (8.3%)

Cell adhesion 27 (3.6%) 20 (9.9%)
Transcription 277 (37.3%) 45 (22.2%)

Oncogenesis/Cell cycle155 (20.9%) 20 (9.9%)
Signal transduction 128 (17.3%) 61 (30.0%)

2 contained a higher percentage of genes involved in signal transduction (30.0%), immune system

regulation (19.7%), and cell adhesion (9.9%) compared to cluster 1 (17.3%, 11.1%, and 3.6%).

3.3 Summary: A new method of analysis leads to different in-

sights

The previous study by Browne et al. [Browne et al., 2001] using Affymetrix software to analyze

gene chip data found that the levels of 1425 cellular mRNAs changed by three-fold or greater

in at least two consecutive time points during HCMV infection. The classes of genes affected

included genes involved in immune system regulation, particularly interferon-responsive genes,

genes involved in cell cycle regulation and oncogenesis, and genes whose protein products promote

or inhibit apoptosis. Our dChip and SVD analysis of the same expression data resulted in two

separate clusters of co-expressed genes responding differently to HCMV infection. The original

analysis used GeneChip to preprocess and normalize the dataand obtain expression values for the

probe sets. In the analysis presented here, we used dChip to preprocess and normalize the data

and obtain expression values for the probe sets. We found that dChip’s multiplicative model for

calculation of expression values led to lower residuals andless dependence of the residuals on the

magnitude of the expression values. We then used SVD to analyze the data obtained with dChip.

The SVD analysis produced two significant modes with different expression responses. These two

modes captured over 75% of the variance in the data. A correlation plot of the gene expression

vectors with these two modes produced two statistically significant higher density regions (clusters)

of co-expressed genes that were highly correlated with mode1 and mode 2, respectively. 26% of

the genes selected by Browne et al.’s fold change filtering were present in the first cluster but only

1% were present in cluster 2. The transcriptional response pattern of cluster 2 was found to be very
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different from that of cluster 1. Cluster 2 genes showed a transient expression, first decreasing

and then increasing again. This suggests that cluster 2 genes might be affected by the immune

evasion strategies of the virus. Our results indicate that the choice of analysis methodology for

gene expression data is important. While one method may workwell for detecting one type of

pattern in the data, it may miss another pattern altogether.
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Chapter 4

New SVD based Algorithms for Gene

Expression Analysis1

Two new algorithms for time series gene expression analysisare presented in this chapter. To

motivate the algorithms, first a discussion of some clustering results of gene expression time series

data is given.

4.1 Clustering of Gene Expression Time Series Data

Here we discuss the clustering results of three different studies and time series gene expression

data sets [Spellman et al., 1998, Chu et al., 1998, Iyer et al., 1999]. The group of [Holter et al.,

2000] used SVD to visualize the clustering results of these three studies. The data sets were a

yeast cell-cycle data set [Spellman et al., 1998], a data setobtained during the yeast sporulation

process [Chu et al., 1998] and a data set obtained from serum treated human fibroblast cells [Iyer

et al., 1999]. The clusters of the study by Spellman et al. were obtained by first identifying

all gene expression vectors that indicate cyclical cell-cycle regulation. Spellman et al. calculate

for each gene a “cell-cycle score” that is supposed to capture the likelihood that a gene is cell-

cycle regulated. The score is composed of the maximum correlation coefficient of the respective

gene expression vector with a sine pattern of cell-cycle periodicity (the maximum is calculated

over varying phase shifts), and the maximum correlation of the gene’s expression vector with the

expression vectors of 104 previously known cell-cycle regulated genes. Spellman et al. identified

a threshold for this score at which 90% of the 104 previously known cell-cycle regulated genes

had a score larger than the threshold. An additional 700 genes of the ~6000 assayed had a score

above this threshold. The resulting 800 genes were then grouped into 5 clusters based on the time

1Part of this work was presented at the RECOMB 2003 conference[Rechtsteiner et al., 2003].
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point at which their expression peaked. . The expression peaks of these 5 clusters of genes were

correlated with temporal phases of the cell-cycle and labeled by these: M/G1, G1, S, G2 and M2.

Chu et al. [Chu et al., 1998] clustered gene expression vectors for a yeast sporulation data set

with 7 time points3. They first identified the 1100 genes, out of the 6200 yeast genes assayed on

the microarrays, that showed the largest fold change, at anyof the time points. 481 out of these

1100 genes showed induction during the sporulation processand the other ~620 genes showed

repression. 50 genes were previously studied and known to beinvolved at different stages of the

sporulation process. All of these 50 genes were induced genes, no genes that were repressed dur-

ing sporulation had been identified previously and studied in detail4. Chu et al. clustered these

50 known genes into 7 groups depending on where during the sporulation process their expression

peaked. The different groups were ’Rapid, transient induction (metabolic)’, ’Early (I) induction’,

’Early (II) induction, ’Early-middle induction’, ’Middleinduction’, ’Mid-late induction’ and ’Late

induction’. Each of the newly determined 481 induced genes were then grouped into the 7 clusters

based on their largest correlation with the average expression profiles of the clusters. The distribu-

tion of the induced genes into the 7 groups were 52, 62, 47, 95,158, 61, and 6 respectively. More

than half of the induced genes had not been functionally annotated previously, i.e. nothing about

their function was known. Through clustering these genes with known genes, Chu et al. were able

to make hypotheses about the unknown genes’ functions.

Iyer et al. [Iyer et al., 1999] in their study of serum treatedhuman fibroblast cells used cDNA

microarrays with probes for ~8600 human genes. 12 time points were assayed between 15 minutes

and 24 hours after serum addition to the cell culture. From the 8600 assayed genes the 517 genes

with most significant change in expression were identified. The criterion for significance was

that the genes either had to have a fold-change of at least 2.2at two time points over a baseline

measurement made before serum addition, or a standard deviation of thelog2(ratio) over the 12

time points of at least 0.7. The 517 genes were clustered into7 co-expression clusters with a

hierarchical clustering algorithm as described in [Eisen et al., 1998].

Figure 4.1 shows the eigengene profiles found for the three data sets. The first two SVD

modes captured 62% of the variance in the yeast cell-cycle data, 72% of the variance in the yeast

sporulation data and 69% of the variance in the human fibroblast data. Holter et al. projected

2The 4 phases of the mitotic cell-cycle are G1: growth and preparation of the chromosomes for replication, S:
synthesis of DNA, G2: preparation for M: mitosis, the phase in which the cell and nucleus divide.

3Yeast sporulation is the process of spore development, it can be induced by external signals, such as absence of
nitrogen.

4Chu et al. speculate that the previous, non-microarray studies that had focused on the expression of individual
genes and that identified these 50 genes, were biased towardsfinding genes that are induced. This bias could be due
to some assumptions made by the experimenters, for example that sporulation is a process that requires activation of
certain genes to start cellular processes and pathways related to sporulation. This illustrates how the inference (vs.
hypothesis) driven and data-rich microarray technology, which allows for monitoring of many genes, can produce new
insights that are difficult to make in a data-poor and hypothesis driven approach, partly due to incomplete knowledge.
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Figure 4.1: The eigengene profiles scaled by their respective singular values identified by SVD
for the three time series gene expression data sets: a) yeastcell-cycle, b) yeast sporulation and c)
human fibroblast cells. The eigengene profiles are ordered, the top one being the first eigengene,
i.e. capturing most of the variance in the data. It is striking that the patterns of the respective
first two eigengenes are rather simple, exhibiting periodicpatterns (for the cell-cycle data a)), or
patterns that are slowly changing with few maxima or minima (figure adapted from [Holter et al.,
2000].)

the co-expression clusters of the three previous studies into the two-dimensional subspaces of the

respective first two SVD eigengenes.

Holter et al. visualized the respective gene clusters by projecting their genes into the two

dimensional subspace of the respective first two SVD modes (see section 2.3.1 for a discussion of

scatter plot visualization of the SVD). Figure 4.2 illustrates these projections. Several observations

can be made from these projections:

1. Similarly to our clusters in the herpes data, the projections in Figure 4.2 illustrate that the

genes in the co-expression clusters group close to the perimeter of the two-dimensional sub-

space identified with SVD. This indicates that the respective first two SVD modes explain

most of the expression change of the genes identified as significantly expressed in the differ-

ent studies.

2. The different colors in Figures 4.2 indicate the different clusters of co-expressed genes.

Genes from the same co-expression cluster do group togetherin the SVD subspace, indi-

cating that proximity in the overall expression space is preserved in the respective SVD

subspaces.

3. The time ordering of the expression peaks of the co-expression clusters5 is captured and

5With expression profile of a cluster we usually refer to the average expression profile of the genes in that cluster.
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reflected in the ordering of the clusters around the perimeter of the SVD subspaces. For

example, in Figure 4.2 the clusters are ordered according tothe cell-cycle phase in which the

clusters’ genes peak. The clock-wise ordering of the clusters in the two dimensional SVD

subspace follows the temporal ordering of the phases of the cell-cycle. The cluster that peaks

in M/G1 follows the cluster that peaks in G1 then the cluster that peaks in S, G2 and again M
6. Similar temporal ordering can be observed for the sporulation and human fibroblast data

sets7. SVD does seem to pick with the first two modes the subspace of expression where

most of the expression change occurs. The subspace which captures most of the variance in

the data turns out to be the subspace also capturing the dynamic change of expression during

the respective biological processes.

4. The projection of the previously identified co-expression clusters allow another significant

observation: although the clusters group around the perimeter of the space and a grouping

(or clustering) of the genes is visible, in many cases the clusters are not very tight. At the

same time, many adjacent clusters merge at their boundaries. This suggests that these time

series gene expression data might not be partitioned into distinct and discrete co-expressed

groups as easily as has been assumed by the application of clustering algorithms.

The latter observation is also supported by results obtained by four different clustering studies

that used different algorithms to cluster the yeast cell-cycle data of [Cho et al., 1998]. All four

methods, manual/visual clustering [Cho et al., 1998], Self-Organizing Maps [Tamayo et al., 1999],

K-means [Tavazoie et al., 1999] and a clustering algorithm based on simulated annealing [Lukashin

and Fuchs, 2001], suggest different partitionings of that same data set. The original study of [Cho

et al., 1998] clustered the genes into 5 clusters, [Lukashinand Fuchs, 2001] clustered the genes

into 20 clusters and the studies of [Tamayo et al., 1999, Tavazoie et al., 1999] both suggested 30

clusters, but different ones. Inspection of the cluster profiles and the expression profiles of their

genes suggest that many of the smaller clusters in the studies of Lukashin et al., Tamayo et al.

and Tavazoie et al. are grouped together in the larger clusters of Cho et al. Further, many clusters

clearly overlap and show very similar expression profiles. Most clustering algorithms assume

and search for discrete and distinct partitions of the data.If such a partitioning is not present,

or the wrong number of clusters is chosen, the algorithms canimpose an artificial structure on

the data. The outcome then depends greatly on the specific algorithm, the parameters that were

6Such temporal ordering captured in a SVD subspace can also beeffectively demonstrated by projecting the assays
a j , the columns of the gene expression matrixX. Visualization of assays is also discussed in section 2.3.1.

7A few clusters don’t fit into the temporal order as perfectly.An example is the ’Early-middle’ cluster in the
sporulation data, whose genes project more towards the center of the subspace and at a polar angle close to the ’Middle’
genes instead onto the perimeter and at a polar angle betweenthe ’Early II’ and the ’Middle’ clusters. Inspection of the
average expression profiles of the different clusters in [Chu et al., 1998] suggest that the ’Early-Middle’ and ’Middle’
clusters have very similar expression profiles and might better be grouped together.
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Figure 4.2: Projection of clusters obtained with differentclustering techniques for different gene
expression data sets. Fig a) for yeast cell-cycle data [Spellman et al., 1998], b) the yeast sporulation
process [Chu et al., 1998] and c) for serum treated human fibroblast cells [Iyer et al., 1999]. The
different colors indicate the different clusters identified in the different data sets9 (figure adapted
from Holter et al. [Holter et al., 2000].)

chosen, and any other initial conditions that need to be set.This illustrates the need for methods

that allow for visualization of expression data and clustering results as well as other methods

that can help to validate such results, for example the identification of functional coherence of

genes from co-expression clusters (discussed later in chapter 5). SVD does allow for visualization

and interpretation of expression data in low-dimensional subspaces and we present here two new

algorithms for gene expression clustering based on projections of genes’ expression vectors into

subspaces spanned by two SVD modes10. Clustering of genes in such subspaces will allow for easy

visualization of the obtained clustering results. The firstalgorithm identifies genes that are highly

and significantly correlated with the two-dimensional expression subspace. It defines a circular

boundary between genes that are likely to be significantly expressed in that expression subspace

and genes that are not. The second algorithm groups the significantly expressed genes identified

by the first algorithm based on their similarity in expression in the respective two-dimensional

subspace.

10These two algorithms can be applied to the projection of genes into any two-dimensional subspace, they don’t
need to be subspaces identified by SVD.



48 CHAPTER 4: NEW SVD BASED ALGORITHMS FOR GENE EXPRESSION ANALYSIS

4.2 Clustering of Expression Data in 2-dimensional SVD Sub-

spaces

4.2.1 SVD allows for less aggressive “noise filtering”

All previously discussed clustering studies applied relative aggressive filtering criteria, removing

between 75% and 90% of the genes assayed. Such filtering is supposed to remove the expression

vectors that are noisy and non-significant. A reason for suchaggressive filtering are problems

of clustering algorithms with large amounts of noisy data. Noisy gene expression vectors can

obscure the partitioning of the data. In section 2.3.2 we discussed the power of SVD to detect

significant patterns in data even when the data is noisy. Thisrobustness of SVD to noise allows

our algorithm to work successfully with less aggressive filtering. In the applications presented

here only about 50% of the genes were filtered out. It is shown in the yeast cell-cycle analysis

below how known cell-cycle regulated genes that were identified in our study had been removed

by aggressive filtering in the analysis of [Cho et al., 1998] and could therefore not be identified in

that analysis.

4.2.2 Auto-Correlation Filter11 for removing Noisy Genes

Our analysis approach differs from typical clustering approaches also in the filtering algorithm

we developed and apply. The studies discussed above filteredgenes by a fold-change approach

or with a variance filter. The former requires gene expression vectors to have one (or more) ex-

pression values at least a certain factor, i.e. fold change,above the baseline expression value of

the respective gene. For the baseline often the expression before the start of the experiment (i.e.,

t=0) or the average of the respective expression vector overthe experiment is chosen. Here we

applied a filter based on the autocorrelation of the expression vectors. Only genes with highest

autocorrelation of their expression vectors are retained in the data set. The auto-correlation will

be highest for genes that exhibit steady and relatively smooth changes in expression. This new

filtering approach is motivated by the observation that in time series gene expression data, the

main patterns of expression are relatively smooth and “simple”. This is illustrated in the eigengene

patterns displayed in Figures 4.1 and 3.2. Besides the periodic patterns of the cell-cycle data, most

genes exhibit relative smooth and monotonic activation or repression with at most one reversal,

i.e. maximum or minimum in expression, during these experiments. The one-step auto-correlation

will be large for gene expression vectors exhibiting such patterns but will be small for genes that

vary fast, e.g. expression vectors that are very noisy. A potential problem with the fold-change

11Also referred to as “Serial Correlation Test” in the statistics literature [Kanji, 1993].



4.2: CLUSTERING OF EXPRESSION DATA IN 2-DIMENSIONAL SVD SUBSPACES 49

filter is that genes that exhibit only one large peak at one time-point in their expression profile will

not be filtered out, even though such expression peaks might be due to experimental artifacts. The

auto-correlation filter, however, is likely to filter such genes out, as it gives more weight to smooth

changing expression patterns than to the magnitude of independent gene expression values12.

It should be noted that this filter is only applicable if the sampling rate with respect to time

(or some other varying variable, for example some chemical concentration) is high enough for

the process under observance, otherwise the time points arenot expected to be correlated and no

smooth expression patterns can be expected. If the samplingrate is too low, the auto-correlation

filter we apply here is not appropriate.

Algorithm 1 Serial correlation test for filtering genes with noisy expression profiles.

1. Calculate the one-step auto-correlation for gene expression vectorgi which is a vector of
lengthn (time points):

si =
n

n−1

{

∑n−1
j=1

(

xi j − x̄i
)(

xi j+1− x̄i
)

∑n
j=1

(

xi j − x̄i
)2

}

(4.1)

If the gene expression vectors have been standardized to mean zero, this simplifies to:

si =
n

n−1

{

∑n
j=1xi j xi j+1

∑n
j=1x2

i j

}

(4.2)

2. If si is smaller than some critical valuesc, remove genei from the data set. Alternatively,
remove a certain fraction of genes with lowestsi.

In the gene expression analysis work here the auto-correlation filter outlined in Algorithm 1

was applied. For each genei, the auto correlation coefficientsi is calculated. Largesi indicate that

the sequential expression measurements of genei are correlated, and thus unlikely to be of random

nature. Either a thresholdsc can be determined below which genes withsi ≤ sc will be removed,

or a predetermined fraction of genes with lowestsi can be removed.

4.2.3 Boundary Identification in Two-dimensional Spaces (BITS)

It was shown that the significantly expressed genes in several time series expression data sets are

highly correlated with the first two SVD eigengenes, i.e. they project towards the perimeter of

the subspace spanned by the first two eigengenes. The algorithm presented here defines a circular

12Due to the outlined potential problems, the fold-change filter has sometimes been modified. For example [Browne
et al., 2001] required two expression values at consecutivetime points to be above a fold-change threshold.
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boundary in the two-dimensional subspace that separates the significantly expressed genes that are

highly correlated with the two eigengenes from the genes that project towards the center of the

subspace. Similarly to the synthetic data in Figure 4.3, or the “real” expression data in Figure 3.3,

gene expression vectors which are not highly correlated with the two eigengenes, and therefore

project towards the center of the correlation plot, are expected to be more uniformly distributed in

the two-dimensional subspace. Because they are weakly correlated with the eigengenes, their lo-

cation in the two-dimensional subspace is mostly influencedby noise. The significantly expressed

genes that are highly correlated with the subspace and whoseexpression is due to some underlying

biological process are expected to be less uniformly distributed in the subspace. This difference

in the distribution of the genes in the subspace is used to define a circular boundary separating the

significantly expressed genes from the non-significantly expressed genes.

The algorithm assesses the uniformity of the distribution of the genes by first calculating the

density estimate of the distribution of the polar angles of the genes in the subspace. Consider

again Fig. 4.3 or Fig. 3.3. Close to the center of the correlation plot the distribution of the

polar angles of the genes will be close to uniform, i.e. the density function of the genes over the

interval [0,2π] will be close to one-dimensional uniform density with value1/2π. Further away

from the origin and closer to the perimeter, the distribution of the genes will become less uniform,

as the significantly expressed genes involved in different biological processes are expected to be

differently regulated and expressed. There will in most cases be a less sharp boundary in real

gene expression data than there is found in Fig. 4.3. But variation in the density of genes highly

correlated with the first two SVD modes can definitely be observed in real data, as for example in

Figures 4.2 and 3.3. Note further that gene expression vectors projecting towards the center, though

not having significant expression in that specific subspace,might have significant expression in

another subspace orthogonal to the one being observed. Although we have shown previously that

the first two eigengenes seem most times to suffice to capture the significant change in expression,

the algorithm might be applied iteratively to different subspaces of SVD eigengenes.

Mathematical Details of the BITS algorithm

See Algorithm 2 for a detailed listing of the steps of the algorithm. Let us denote the orthonormal

vectors spanning the two-dimensional space byvk1 andvk2. In the application herevk1 andvk2

will be two SVD eigengenes of the expression data matrixX. The correlation vectorsck1 andck2

contain the correlation coefficientsr ik1 andr ik2 (see equation 2.13) of the gene expression vectors

gi with the eigengenesvk1 andvk2respectively.c(i)
k1

denotes the ith element ofck1 andc(i)
k1

= r ik1.

If vk1 andvk2 are SVD eigengenes and the gene expression vectorsgi have been centered to have

zero mean and are normalized to unit length, then the SVD provides the correlation coefficients

in the respective eigenassays scaled by the singular values, i.e. ck j = uk j sk j (see Eqn. 2.14).
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Figure 4.3: Correlation plot of synthetic data set introduced in section 2.3.1. Figure reproduced
from Fig. 2.5. The bottom right cluster (red) is composed of the sine wave genes, and the top right
cluster (green) is composed of the exponential decay genes.The cluster of genes around the origin
corresponds to the noise-only genes.

The correlation plot of the expression vectorsgi onto the 2-dimensional subspace ofvk1 andvk2is

obtained by plotting the coefficients inck1 against the coefficients inck2. Note thatc(i)2
k1

+c(i)2
k2

≤ 1,

i = 1, ..,m. Therefore the correlation plot will be a disk of radius one.

An initial radiusr0 (see step 2 in Alg. 2) is chosen and the densityf̂r of the polar angles of

the gene expression vectorsgi inside the circle with radiusr0 in the correlation plot is calculated.

The only requirement on the starting valuer0 is that the number of gene expression vectors inside

the circle with radiusr0 allow for a stable density estimation13. e(r), a measure of the distance of

f̂r from the uniform density 1/2π, is calculated (see step 3c in Alg. 2). According to our earlier

reasoning, for smallr, f̂r is expected to be close to the uniform density ande(r) therefore close

to zero. r is iteratively increased and̂fr ande(r) are recalculated. As the radiusr increases the

distribution of genes closer to the perimeter of the space becomes more structured and̂fr will

deviate more from the uniform distribution. A boundary is defined by determining the radius ˜r at

which the rate of change ofe(r) is largest.

It should be noted that no parameter value needs to be specified for this algorithm. The algo-

rithm will identify the boundary ˜r in a data driven way. For example, ˜r will depend on the level

of noise in the data. More noise in the data will make the region around the origin of uniformly

13A value ofro = 0.4 has been found to be appropriate for the data sets the algorithm was tested on.
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Algorithm 2 Estimate the separating boundary ˜r by finding the greatest rate of change in the
density function of the polar angles for the genes inside thecircle of radius ˜r.

1. Select two orthonormal directionsvk1andvk2 (in our case SVD eigengenes) and compute the
correlation vectorsck1andck2.

2. Chose an initial value for the radius:r0. Then assign:r ⇐ r0.

3. while r < 1 do

(a) Find the set of genes inside the circle with radiusr: Ir ⇐ {i : c(i)
k1

2
+ c(i)

k2

2
≤ r2, i =

1, ...n}.

(b) Compute the one-dimensional density,f̂r , of the polar angles of the genes inIr .

(c) Compute the value ofe(r) = medianj∈Ir{| f̂r(φ j)−
1
2π |}, which is a measure of the

deviation of the densitŷfr from the uniform density1
2π , over the support of the polar

angles[−π,π].

(d) Assign a new value tor for the next iteration:r ⇐ r +h.

4. end while

5. Find the boundary ˜r that maximizes the rate of change ofe(r), i.e. that maximizesde/dr.

distributed genes larger, the algorithm will therefore tend to determine a larger boundary ˜r than for

lower levels of noise.

4.2.4 Polar Angle Density Clustering (PAD Clustering)

A second algorithm was developed to define groups of similarly expressed genes around high

density regions in the band of genes identified by the BITS algorithm. The motivation for this

algorithm is the same as for clustering algorithms in general: co-expressed genes might be func-

tionally related. Once the boundary ˜r in the 2-dimensional expression subspace has been identified

by the BITS algorithm (Alg. 2), the distribution of the genesin the ring with radius ˜r ≤ r ≤ 1 can

be inspected visually. If the distribution of genes suggestthat there are regions with significantly

higher density of genes, these regions can be clustered intogroups of similarly expressed genes by

the Polar Angle Density Clustering algorithm outlined in Alg. 3.

First, all the local maxima in the density function of the distribution of the polar angles that

are greater than the uniform density 1/2π are identified. The algorithm then forms partitions by

grouping together all gene expression vectors with polar angles around a peak and with a density

value larger than the uniform density. For each peak in the density a group of similarly expressed

genes is obtained. Note that this partitioning algorithm isagain data driven. The number of groups
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Algorithm 3 Polar Angle Density (PAD) Clustering: Identify clusters ofco-regulated genes.

1. Apply Algorithm 2 and find ˜r.

2. Identify the set of genes outside ˜r: Ir̃ ⇐{i : c(i)
k1

2+c(i)
k2

2 ≥ r̃2, i = 1, ...,m}.

3. Compute the density,̂fr̃ , of the polar angles for the genes inIr̃ .

4. Identify the genes with maxima in their one dimensional density and with values above the
uniform density:Sc ⇐ { j : f̂r̃(φj) is a local maximum off̂r̃ and f̂r̃(φj ) > 1/2π, j ∈ Ir̃ , φ j ∈
[−π,π]}.

5. Lets( j) be the ordered values ofSc (φ-values at the peaks).

6. nbc ⇐ card(Sc) (the number of detected peaks)

7. h1 ⇐ 1/2π

8. for j = 1 tonbc do

(a) lwr ⇐ min{m : m< s( j), f̂ (m) > h j and f̂ (m) < f̂ (m+)}(left boundary)

(b) upr ⇐ max{m : m> s( j), f̂ (m) > h j and f̂ (m) > f̂ (m+)}(right boundary)

(c) clusterj ⇐ {k : lwr < θk < upr, whereθk is the polar angle for genek } (genes in the
cluster)

9. end for
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of similarly expressed genes identified by the algorithm is data dependent and does not need to be

specified, in contrast to some clustering algorithms like K-means and SOMs.

4.2.5 Extension to higher Dimensions

The algorithm outlined above works in a 2-dimensional subspace. To have a similar 3-dimensional

implementation of the algorithm, the genes inside a sphere would have to be projected onto the

2-dimensional surface of that sphere and the distribution of the genes for different sphere sizes

would have to be compared (similarly as outlined in Alg. 2 forone-dimensional projections for

varying sizes of circles). Studies of such a 3-dimensional version of the algorithm revealed that

too few data points, i.e. gene expression vectors, are available to populate the space sufficiently

to have stable estimates of the density of genes projected onto the 2-dimensional spheres. The

algorithm can, however, be applied iteratively. For example, if 3 significant eigengenes have been

identified for a gene expression data set, different 2-dimensional projections spanned by two of the

three eigengenes can be explored for structure in the projection.

4.3 Application of BITS and PAD Algorithms to Cell-Cycle Data

The above illustrated method and its algorithms were applied to the yeast cell-cycle data of [Cho

et al., 1998]14. The main goal of the study was to identify the cell-cycle regulated genes in

yeast. [Cho et al., 1998] used the Affy chip technology to measure 6200 yeast genes at 17 time

points taken at ten-minute intervals, spanning two cell-cycles. The data was first transformed by

taking the logarithm, and each gene expression vector was standardized to have zero mean and unit

standard deviation. The auto-correlation filter outlined in Alg. 1 was applied and the 50% genes

with the lowest auto-correlation coefficient were removed.SVD was applied to this filtered gene

expression data set. The singular value spectrum and the first three eigengenes are shown in Fig.

4.4. The first three SVD modes account for 31%, 19% and 14% of the total variance. The first

eigengene shows a pattern of steady decrease or, for genes which are anti-correlated to this pattern,

increase in expression. It has been observed that the first eigengene is often associated with some

large trend affecting all or many genes in the data set [Alteret al., 2000]15. The monotonic increase

or decrease in expression of eigengene 1 could be due to the effects of the artificial synchronization

of many yeast cells for the experiment. Cells are arrested ina certain phase of the cell-cycle and

all are released from this artificial arrest at time point zero. It is likely eigengene 1 captures the

large-scale ’relaxation’ of the cellular system back to a ’steady state’16. Eigengenes 2 and 3 show

14The data was already briefly introduced in section 2.3.1.
15If the data is not standardized to mean zero, the first mode usually represents the average expression of the genes.
16Similar observations and suggestions have been given in thedata set analyzed by [Alter et al., 2000].
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Figure 4.4: SVD of the Cho et al. [Cho et al., 1998] yeast cell-cycle gene expression data. Plots of
relative variance (a); and the first (b), second (c) and third(d) eigengenes are shown (same Figure
as Fig. 2.2).

the cyclic patterns we expect to find in cell-cycle expression data. The periodicity of the patterns is

close to the length of the cell-cycle and their phase difference is close toπ/2. Cell-cycle regulation

is associated with changes in the expression that is periodic with the cell-cycle. Identification of

cell-cycle regulated genes is therefore typically associated with identifying genes with expression

patterns that show a periodicity with the cell-cycle. Otherstudies [Spellman et al., 1998,Cho et al.,

1998, Tavazoie et al., 1999] have used the same association of periodic expression patterns with

cell-cycle regulation. To identify the most significant periodic gene expression vectors, the BITS 2

and PAD clustering algorithm 3 were therefore applied to theexpression data set with eigengenes

2 and 3 spanning the two-dimensional expression subspace. The algorithms are applied to identify

genes that are cell-cycle regulated.

Note that eigengene 2 and 3 are not perfect sine patterns. Forexample, their amplitudes decay

over time. Such features are likely to be real properties of the data, the individual gene expression

vectors. The decay in amplitude, for example, is probably due to the loss of cell-cycle synchro-

nization between the cells over time. Derivingvk1 andvk2 from the data with, for example, SVD
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Figure 4.5: a) Correlation plot of the yeast cell-cycle datawith eigengenes 2 and 3. b) Correlation
plot with the 3 high-density regions detected by algorithm 3.

instead of using some idealized pattern like a sine and cosine therefore promises in many cases to

be a better approach.

4.3.1 Application of the BITS algorithm

Figure 4.5 a) shows the correlation plot for the cell-cycle data with eigengenes 2 and 3 asvk1

and vk2. Algorithm 2 estimated the circular boundary at ˜r = 0.67. Algorithm 3 was used to

identify clusters of similarly expressed genes outside of ˜r. Figure 4.6 shows two plots of the

density estimates of the polar angle distributions for genes with radiusr ≤ 0.4, the starting value

r0, and for genes in the outer ring with radiusr ≥ 0.65. The change of the distributions from a

close to uniform distribution to a much less uniform distribution is apparent17.

Three higher-density regions in the distribution of the polar angles outside of ˜r are visible.

Figure 4.5 b) shows the correlation plot of the gene with the clusters detected by Algorithm 3.

Figure 4.7 shows the expression patterns of all the genes in the three detected clusters. Sub-figure

d) shows the average expression pattern for each cluster. Each cluster of genes shows a clearly

periodic expression pattern, but with different phases. The number of genes outside the circle

with radius 0.67, i.e. potentially cell-cycle regulated, is 895. The largest cluster (Figure 4.7 c))

contains 206 genes, the second largest (Figure 4.7 b)) contains 164, and the third one (Figure 4.7

a)) contains 152 genes.

17The number of genes is 1027 and 985 respectively, and the bandwidth for the kernel density estimator was set at
0.25. The difference in the densities is therefore not due toto unequal sample size or the bandwidth parameter.
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Figure 4.6: Density estimates of polar angle distributionsfor genes with radius a.)r ≤ 0.4 and b.)
r ≥ 0.65. The change in the distribution from a fairly uniform to a much less uniform distribution
is apparent.
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Figure 4.7: Three different clusters of similarly expressed genes identified by Algorithm 3 after
application of Algorithm 2. Figures a), b) and c) show all theexpression patterns of the genes in
the clusters. Figure d) shows the average expression patterns for the three clusters.
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4.3.2 Statistical Test of Significance of Results

Estimation of false positive rate.

One method to assess the quality and reliability of gene expression results is based on statistical

tests. For example, one can generate synthetic, random datawith similar statistical properties as

the real data and assess the likelihood of finding the same results by chance. Such a statistical

technique can be used to estimate a false positive rate associated with the obtained results. Here

we want to estimate the number of genes that would obtain a high correlation with the profiles

vk1 andvk2 by chance only, due to noise in the data. One method to estimate the false positive

rate is to generate ’control data’ by performing random permutations among the elements of each

gene expression vectorgi from the original data matrixX [Yeung et al., 2001b]. By permuting the

elements of the gene expression vectorsgi , the distribution of the expression values in the new data

matrix is maintained, the dependence between the time points is broken, however. The ’random

genes’ are simulated without making any assumption about the distribution of the noise in the

data. If the simulated random genes are projected into the space of original eigengenes 2 and 3

(the eigengenes used to obtain the above results), the average number of random genes that fall

outside the circle of radius ˜r = 0.67 is 42. The estimate of the false positive rate of this method is

then 42/895=0.046, which amounts to less than 5%.

4.3.3 Biological Significance of Results

The overall biological significance of each cluster in Figure 4.7 was investigated by first associating

the clusters with phases of the cell cycle. The association was made by plotting the time-dependent

average expression profile of each cluster in the context of cell-cycle phase information. Figure 4.7

d) shows that the expression of genes in cluster 1 (red) peaksin the late G1 phase of the cell-cycle,

genes in cluster 2 (green) peak in the M/G1 phase, and genes incluster 3 (blue) peak in the G2

phase. The biological significance of individual genes within each cluster was explored making

use of the KEGG database [Kanehisa Lab., 2005].

Two observations are reported. The first observation was found by searching the KEGG text

annotations of all of the yeast genes in the expression data set for instances of the text string

’transcr’ (to capture anything associated with ’transcription’) and further hand-selecting 184 genes

that were annotated as being involved in transcription. Of these 184 genes, 32 were found within

the set of genes that our analysis predicted as cell-cycle regulated. Of these 32, only one is found

within cluster 1 (peaking in late G1): SWI4, which is a known cell-cycle regulator (and also

reported by Cho et al. as a cell-cycle regulated gene). It therefore seems that transcription-related

genes are underrepresented in cluster 1.
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Figure 4.8: Expression profiles of the two genes coding for SWI6 and MBP1 respectively. Both
show clearly periodic expression profiles.

An important observation we are able to report is the inclusion of genes encoding SWI6 and

MBP1 among our predicted cell-cycle regulated genes. Thesegenes were not included among

cell-cycle genes identified by Cho et al., despite being known cell-cycle regulators and both genes

showing clearly cyclical expression profiles with a periodicity of the cell-cycle 4.8. This observa-

tion leads to the question why these obvious candidates for cell-cycle regulated genes were missed

by Cho et al., even more so considering that Cho et al. selected their cell-cycle candidate genes by

visual inspection. See the next section of a discussion of this.

4.3.4 Discussion of Results

Comparison of the results to the original study by Cho et al.

Cho et al. [Cho et al., 1998] reported 416 cell-cycle regulated genes of which 231 agree with our

895 genes. The differences in the number of cell-cycle regulated genes identified by both studies

can be explained by several differences in the studies. Cho et al. filtered the gene expression data

set with a fold-change approach and were left with only 1300 genes for further analysis. These

1300 genes were then inspected visually for periodic patterns by Cho et al. Among the 895 genes

that were detected as potentially cell-cycle regulated by our method about 600 were removed by

the fold change criteria used by Cho et al. Visual inspectionof these 600 genes showed that most

of them clearly had cyclic expression patterns. Among the 600 genes removed by Cho et al.’s fold-

change approach are the genes coding for SWI6 and MBP1, both known to be cell-cycle regulated.
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Figure 4.8 shows the expression profiles of the two genes, they clearly exhibit cyclic patterns with

a periodicity of the cell-cycle. These results suggest thatthe fold-change approach of Cho et al.

filtered out most of the 600 genes with cell-cycle related periodic expression patterns because their

amplitude was too low to pass the fold-change threshold. This illustrates one problem with the

fold-change filter. Gene expression patterns clearly significant for the specific experiment at hand

can be missed if the amplitude of the pattern is too low or the baseline expression of the gene is

high in general. On the other hand, because the fold-change filter, in general, treats the different

time-points as independent and does not consider the overall pattern of the gene expression time

series, it can pass genes with a single peak in expression. Such single peaks might be artifacts if

they are the only significant expression change during the whole experiment, however.

The (' 175) genes that Cho et al. declared cell-cycle regulated butwere not identified as such

in our study were also visually inspected. Many of these genes showed one significant peak in

their expression response. The experiment was conducted over two cell-cycles, however, and cell-

cycle regulated genes would be expected to peak at 2 time points separated by approximately one

cell-cycle period. How these genes were declared cell-cycle regulated by Cho et al., although they

exhibit only one peak in two periods, has not been resolved.

Biological findings.

Our analysis of yeast cell-cycle data has led to two biologically significant findings. The first

finding is based on the observation that transcription-related genes are relatively underrepresented

in cluster 1 (red). As cluster 1 is associated with late G1 phase of the cell cycle (Figure 4.5 b.), the

expression of transcription-related genes in the Cho et al.data set seems relatively repressed among

cell-cycle regulated genes in late G1 phase. The SWI4 mRNA transcript (part of the SWI4/SWI6

complex, which modulates Cln1, Cln2, Cln6 and Swe1 is the only one that was found to be rela-

tively abundant in late G1, perhaps to poise the cell for response upon upregulation of SWI6. This

finding leads to a hypothesis that cell-cycle genes that codefor transcription factors are relatively

silent in late G1 phase. One way to rationalize such a tendency is by noting that late G1 phase

corresponds to “stop” in budding yeast, a point where progression through the cell cycle can be ar-

rested if the proper environmental signals are not received. Here we suggest the possibility that late

G1 phase in part prepares the cell for the possibility of cell-cycle arrest by decreasing regulation

of cell-cycle related gene expression, a hypothesis that can be tested by further experiments. The

second finding gives evidence for cell-cycle regulation of SWI6 and MBP1 genes. The expression

profiles of SWI6 and MBP1 are shown in Figure 4.8, and clearly show periodicity characteristic of

cell-cycle genes. The SWI6 and MBP1 protein products are themolecular constituents of the SBF

complex, a known cell-cycle regulator that modulates expression of Cln1, Clb6, Clb5, Gin5 and

Swe1. The SWI6 and MBP1 genes were not identified by Cho et al. as cell-cycle genes.
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Chapter 5

Automated Mining and Analysis of

Functional Information for Gene

Expression Data1

5.1 Introduction

Gene expression data analysis has mostly focused on mining the numerical expression data for sig-

nificant expression patterns and gene co-expression clusters. But ultimately the biological meaning

of any numerical analysis results needs to be identified. Forexample, the biological function of

genes from a co-expression cluster in the context of the experiment needs to be found. Sources

of such information are annotations of genes and proteins indatabases and functional informa-

tion about them contained in the literature. Traditionally, biology experts have been mining these

sources of information manually. When experiments are designed to test a single hypothesis, and

few genes or proteins are involved, such an approach is manageable. However, with the advent

of high-throughput techniques like microarrays in Functional Genomics, where hundreds of genes

can make up a co-expression cluster, the development of automated algorithms that can assist in

knowledge discovery will become increasingly important.

Here such a method for automated knowledge discovery for groups of genes (or proteins) from

literature is presented. In short, we present a method that takes genes that cluster in expression

space and finds if these genes also cluster in afunctional space,derived from the literature. Where

genes project in expression space is independent from wherethey project in literature space2.

1Some of the work outlined here was presented at the RECOMB 2004 conference and the Rocky 1 Bioinformatics
workshop [Rechtsteiner and Rocha, 2004a,Rechtsteiner andRocha, 2004b], a publication is in preparation.

2Assuming that literature about expression experiments does not (yet) dominate the literature to an extent where
they actually are not independent anymore.
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Finding genes that cluster in expression space and also cluster in the functional literature space

will therefore 1.) support (or validate) the found expression clusters as significant and 2.) provide

functional information about the respective clusters.

The method presented here accepts a group of genes, e.g. genes that are co-expressed in an

expression experiment, and identifies what we termfunctional themeswith which these genes are

associated in the literature. Knowledge contained in the literature is represented by the Medical

Subject Heading (MeSH) terms [National Library of Medicine, 2004], an indexing vocabulary

of the biomedical literature database MEDLINE/PubMed3 [National Library of Medicine, 2005].

Literature for the genes is obtained from the curated protein sequence database SwissProt/UniProt

[SIB/EBI, 2004]. The algorithm used to mine the literature information for relevant knowledge

about the groups of genes is derived from thevector space modelof Information Retrieval (IR)

[Baeza-Yates et al., 1999,Rijsbergen, 1979].

In the original vector space model of IR, documents are represented as vectors in a so-called

keywordor term space,typically the terms contained in the whole set of documents or some vocab-

ulary that is used to index the documents (see also Fig. 5.1).Similarly to representing documents

in a term space, we represent genes in MeSH term space. Documents that are relevant for a

gene are obtained, then the MeSH terms that index these documents in the MEDLINE database

are retrieved. The documents that are obtained are publications referenced in the expert curated

protein sequence database SwissProt. Obtaining the literature from a curated database like Swis-

sProt insures that the quality of the publications and theirrelevance for the respective genes is

high. If genes have similar biological functions, the respective documents hopefully discuss these

functions, which will be reflected in the MeSH terms indexingthese documents. The vectors of

functionally related genes in MeSH term space is therefore expected to be similar. We explore

the gene-MeSH term space for significant groups of genes thatare functionally related, and the

MeSH terms associated with these genes expressing their functional themes, with Singular Value

Decomposition (SVD).

5.2 Data and Methods

5.2.1 The MeSH Vocabulary

MeSH is the National Library of Medicine’s controlled vocabulary thesaurus. It consists of sets of

terms and naming descriptors in a hierarchical structure that permits searching at various levels of

specificity. At the most general level of the hierarchical structure are very broad headings such as

Anatomyor Enzymes. More specific headings are found at more narrow levels of theeleven-level

3PubMed is the WWW gateway to MEDLINE.
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Figure 5.1: The document-term vector space model in Information Retrieval. Documents and the
query terms are represented as vectors in term space. As a similarity measure between document
vectors and document and query vectors the cosine of the angle between the vectors is typically
chosen. Documents can then be retrieved and ranked by their decreasing cosine similarity with the
query vector.

hierarchy, such asAnkleandLactose Synthase. Part of the MeSH subtree underAmino Acids,

Peptides, and Proteins [D12]is shown in Figure 5.2. The MeSH thesaurus is used by NLM for

indexing articles from 4,600 of the world’s leading biomedical journals for the MEDLINE/PubMed

database. Each bibliographic reference is associated witha set of MeSH terms, an average of about

a dozen, that describe the content of the item. Similarly, search queries sent to PubMed [National

Library of Medicine, 2005] use the MeSH vocabulary to find publications on a desired topic.

MeSH contains over 22,000 main headings, or terms, and over 100,000 synonyms to these

(also referred to as “entry terms”). The MeSH vocabulary is continually revised and updated.

Subject specialists are responsible for areas of the healthsciences in which they have knowledge

and expertise. In addition to receiving suggestions from indexers and others, these experts collect

new terms as they appear in the scientific literature or in emerging areas of research, they define

these terms within the context of existing vocabulary and they recommend their addition to MeSH.

MeSH has been used in some other studies as the vocabulary of choice for biomedical knowl-

edge discovery [Masys et al., 2001, Jenssen et al., 2001]. [Masys et al., 2001] chose two small

groups of 25 genes each that were differently expressed in two types of leukemia [Golub et al.,

1999]. They obtained gene identifiers for the 50 genes and searched PubMed and retrieved 70

publications related to the 50 genes. They showed that the MeSH terms occurring more frequently
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Figure 5.2: Part of a subtree of the MeSH concept hierarchy. Every ’+’ sign indicates there are
more entries below that entry. Only the subtreeMembrane Proteinsis shown underProteins. Note
that going down the hierarchy, the terms become more specific.
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with the publications of the two sets of genes were meaningful in the biomedical context of the

two types of leukemia. Our approach is different from [Masyset al., 2001] in several ways. We

apply our method to far larger groups of genes (hundreds to thousands) and with far larger sets of

literature (> 19,000 publications in the study presented here). Further, our algorithm will identify

functional themes that can be represented by many MeSH termsand from different regions in the

hierarchical tree (e.g. a theme containing “Enzymes” and associated “Diseases”). The resulting

functional themes can be used to group the genes from a co-expression cluster into different func-

tional groups and filter out genes that were not associated with any such themes and therefore more

likely to be in the co-expression cluster due to noise in the expression data. The 50 genes of [Masys

et al., 2001] were selected conservatively, with high confidence that they are differently expressed

in the different conditions. Our much larger gene clusters are expected to contain much more noise

and identification of significant MeSH terms and functional themes associated with the clusters is

more difficult4. [Jenssen et al., 2001] built a gene network from co-occurrences of gene identifiers

in abstracts of MEDLINE. They annotated the links among pairs of genes with the MeSH terms

that index the publications mentioning the respective genepairs in MEDLINE. Chapter 6 in this

work presents a large scale study that evaluates the clustering of functionally related groups of

proteins in MeSH space5.

5.2.2 The Vector Space Model and Latent Semantic Analysis

Figure 5.1 illustrates the vector space model of IR [Baeza-Yates et al., 1999] (see also [Deerwester

et al., 1990, Berry et al., 1995]). Given a set of documents, the words (or terms) are extracted

from the documents, or they are obtained from an indexing vocabulary that is used to index the

publications (i.e. here the MeSH vocabulary is used which indexes publications in MEDLINE).

If the terms are extracted from the documents directly, typically a so calledstop-listis applied to

remove frequent and general terms that are not informative about the contents of the documents.

Each document can then be assigned a term vector which contains as the vector coefficients the

number of times the respective term occurs in the document6. These so-calledterm frequencies(tf)

are also referred to as thelocal weightof the respective term for the document [Dumais, 1990]. A

so calledglobal weightfor each term is usually applied as well. This global weighting is supposed

to capture the information content of the respective term inthe respective body of documents.

4In [Masys et al., 2001] an Internet address to an online tool implementing their methodology is mentioned. I
wanted to apply the tool to the data presented here and compare the results but I have never been able to access the
tool and an e-mail inquiry to the authors was not answered.

5The study of chapter 6 partly grew out of the attempt to try to quantitatively and objectively validate MeSH as a
vocabulary for biochemical knowledge discovery, a question that arose from the work in this chapter.

6Alternatively, the coefficients can be the log of the number of times the term occurs in the document, which
reduces the weight of very frequently occurring words.
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The most commonly applied global weighting is the Inverse Document Frequency (IDF) [Dumais,

1990] weighting. Given a termtk, occurring innk documents, andN being the total number of

documents, the IDF weighting factor for termtk is defined asid fk = log( N
nk

). Considering the

extreme values ofid fk illustrates the effects of this weighting:id fk is maximal for terms that only

occur in one document (id fk = log(N)), these terms have much predictive power. Terms that occur

in all N documents, however, have no predictive power or information content about different

documents and their weighting factor isid fk = log(N
N) = 0. The document vectors in term space

can then be represented in a document-term matrix, e.g. the documents as columns and the terms

as rows. The coefficient of document vectordi at term dimensiontk is then given by the matrix

element

wki = t fki ∗ id fk (5.1)

wheret fki is the term frequency of termtk in documentdi and id fk the previously discussed

IDF for term tk. Similarly to representing documents in term space, a set ofquery terms can be

represented as a vector in term space. A common similarity measure between document vectors

(and between document and query vectors) is the cosine of theangle between the term vectors.

Given two document vectorsdi andd j in term space, the cosine similarity between the two vectors

is defined by the normalized dot product:

cos(di ,dj ) =
didj

|di ||dj |
(5.2)

where|di | and|d j | denote the Euclidean lengths of document vectorsdi anddj . Similarly document

vectors can be compared to a query term vector. Given a query vector, documents can then be

retrieved and ranked by decreasing cosine similarity with the query vector.

Here the vector space model of IR was adapted for the representation of gene vectors in MeSH

term space. First, relevant literature for all the genes on the microarray chip for which the analysis

was performed needed to be obtained. We obtained the publications referenced by the respective

genes in the SwissProt database (see details in next section). The MeSH terms for the publications

were obtained from MEDLINE. For each genegi and MeSH termmk, the number of publications

referenced by genegi and also indexed by MeSH termmk are counted, this number represents our

local weight, gene-MeSH term frequencym fgki. Each MeSH termmk was weighted by a global

weighting factor similar to IDF: given the number of all genes for which we have literature,Ng,

and the number of genes that reference publications that areindexed by MeSH termmk, ng
k, we
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define a global weighting called the Inverse Gene Frequency (IGF) for MeSH termmk:

ig fk = log(
Ng

ng
k

) (5.3)

Similar to IDF, if a MeSH term occurs with allNg genes, IGF for this MeSH term is zero, as this

MeSH term cannot be informative about different genes. If a MeSH term occurs with only one

gene, IGF is maximal,ig fk = log(Ng), as this MeSH term is potentially very informative about the

gene and its function. The gene vectors in MeSH term space canthen be represented in a gene-

MeSH term matrix. Similar to Eqn. 5.1, the coefficients of gene vectorgi (columns of matrix) in

MeSH term dimensionmk (rows) is given by the matrix value

wg
ki = m fgki ∗ ig fk (5.4)

Latent Semantic Analysis of MeSH Term Space

Given a cluster of co-expressed genes, we can project these genes into MeSH term space as outlined

above. We can now search for groups of genes that cluster in MeSH term space. Here we search and

identify these genes and their location in MeSH term space with Singular Value Decomposition. If

genes cluster in a certain location in MeSH space, we expect the variance of the gene-MeSH data

in that direction to be larger and SVD will be able to detect these higher variance directions. The

MeSH terms associated with these SVD modes will describe thefunctional themesthe groups of

genes are associated with.

SVD is frequently applied in combination with the vector space model in Information Re-

trieval, it is then typically referred to as Latent SemanticAnalysis (LSA) or Latent Semantic In-

dexing (LSI) [Deerwester et al., 1990, Berry et al., 1995]. Similarly to our application to genes in

MeSH term space, SVD can detect if documents cluster into different themes and subjects. SVD

modes have been found to be associated with such different themes and subjects, therefore the

term “Latent Semantic” (LS) space, which in our applicationwe can correspondingly call “Latent

Functional” space.

Besides identifying the dominant themes and subjects in a body of documents, it has been

found that the application of SVD to the vector space model can significantly improve retrieval

of documents. Using only the top SVD modes (typically a couple of hundred in a data set with

thousands of documents and thousands of terms [Berry et al.,1995]), LSA leads to a reduction

of the dimensionality of the document-term space. This reduction has often the beneficial effects

that 1.) unimportant and “noise introducing” terms are ignored, as they are typically captured by

the low variance singular vectors and 2.) that projection ofthe document vectors into the SVD

subspace reduces the negative effects of termsynonymyandpolysemyon IR with the vector space
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MeSH 1

MeSH 2

gene group 1

gene group 2

SV 1

SV 2

Figure 5.3: If groups of genes cluster in MeSH term space, SVDcan detect the directions of these
groups of genes. The illustration shows two groups of genes that cluster in MeSH term space. One
singular vector (SV 1) points in the direction of group 1 and the second singular vector points in
the direction of gene group 2. The grey genes in the center arenot strongly associated with either
MeSH term 1 or MeSH term 2.
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model. Multiple terms are synonyms of each other if they havethe same meaning (e.g. “car” and

“automobile”). They should therefore not be treated as independent terms and ideally “collapse”

to the same location in the reduced LSA space (e.g. “car” and “automobile” are expected to be

close in the reduced LSA space). Polysemy refers to one term having multiple meanings (e.g.

“Java” in the different contexts of programming language, coffee or as an island). The ambiguity

of polysemic terms can be reduced in LSA space. If “Java” occurs in a document projecting

close to documents about coffee in LSA space, it will most likely have a different meaning in that

document (i.e. meaning related to coffee) than if the document projects close to documents about

computers (i.e. probably refers here to the Java programming language). The meaning of the same

terms in different documents can therefore be disambiguated by LSA based on where in LSA space

the documents project to. In chapter 6 we predict protein sequence families for proteins based on

where in MeSH term space the proteins project. We also explored if the application of SVD/LSA

to the protein-MeSH term space could improve our predictionsuccess. We found that this is not the

case and that many (over one thousand) singular vectors are necessary to obtain comparable results

to predicting in the original MeSH term space (~5000 MeSH terms). This seems to indicate that

there is little synonymy or polysemy in the MeSH term vocabulary7. This might be expected from

a well designed vocabulary, as ambiguous indexing terms in MEDLINE would certainly pose a

problem for the database and retrieval of relevant documents. Although SVD/LSA in gene-MeSH

term space will not be needed for disambiguating MeSH terms,it will still identify any directions

in MeSH space in which genes cluster.

5.2.3 Obtaining the MeSH Term Frequenciesm fgki

The associations of genes with MeSH terms, the mesh term frequenciesm fgki in Eqn. 5.4, need

to be obtained to perform the above outlined analysis. To obtain the MeSH terms, we first need

to obtain documents that discuss the functions of the genes.One possibility is to obtain gene

names and symbols from gene databases and query MEDLINE titles and abstracts for these gene

identifiers. The gene names and symbols usually have high ambiguity, though. There can be

multiple identifiers for the same gene (synonymy of gene identifiers) or the same identifier can

refer to multiple genes or concepts (polysemy). [Jenssen etal., 2001] inferred gene networks from

co-occurrences of gene identifiers in abstracts and titles of MEDLINE publications. They found

that 30-40% of the inferred connections in the network were incorrect due to synonymy and pol-

ysemy of gene identifiers. Here we therefore chose a different approach and obtained what could

7In document retrieval applications significant improvements in document retrieval have been reported when re-
ducing the dimensionality from originally thousands to only several hundred dimensions. Most of the improvement
is due to the reduction of term synonymy in the reduced latentsemantic space [Deerwester et al., 1990, Berry et al.,
1995].
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be calledexpert literaturefor the genes. We obtained the literature from the expert curated protein

sequence database SwissProt/UniProt [SIB/EBI, 2004, Bairoch et al., 2005] from the European

Bioinformatics Institute (EBI). Each protein entry in SwissProt contains the sequence of the pro-

tein, protein and gene names and identifiers pooled from various other databases. SwissProt also

contains cross-references to to other databases, for example the gene sequence in GenBank or the

Pfam protein sequence family the respective protein belongs to. Each protein entry also has refer-

ences to relevant literature for the protein in MEDLINE. Because of expert curation, we can have

high confidence in the relevance of the literature referenced in SwissProt.

See Figure 5.4 for the steps involved in obtaining the gene-MeSH term data. To obtain literature

for the genes from an expression experiment, we needed to obtain a mapping of gene identifiers

from the respective mRNA chip to SwissProt proteins. In the data set analyzed below, the mRNA

chip was manufactured by Affymetrix [Affymetrix, 2005], and Affymetrix does provide a mapping

of the genes on their chips to SwissProt proteins8. SwissProt provides us with literature references

for the respective proteins (or genes). The MeSH terms for these literature references are obtained

from MEDLINE.

5.3 An Application of LSA to Gene-MeSH Space

5.3.1 Three Gene Expression Clusters in Herpes Virus Infected Human Cells

The above outlined automated functional analysis was performed on three co-expression clusters

from the herpes virus infected human fibroblast data set discussed in chapter 3. The expression

of 12,600 genes (probe sets) was measured with Affymetrix chips (HGU95A) at 12 time-points,

between 1/2 hrs and 48 hrs after infection with the herpes virus. To eliminate the genes with mostly

noisy expression profiles the one-step auto-correlation filter introduced in chapter 4 was applied

and half of the genes with lowest one-step autocorrelation were removed. Singular Value Decom-

position was applied to identify the dominant modes of expression for the remaining genes. Figure

5.5 shows the singular value spectrum and the first two eigengene profiles, the first exhibiting a

monotone increasing expression pattern and the second a transient pattern of initial decrease and

then increase in expression. 80% of the variance in the expression data was captured by these first

two expression modes.

Plotting the correlation of the gene expression vectors with eigengenes 1 and 2 showed strong

variation in the density of genes around the perimeter of that subspace. The boundary identification

(BITS) and polar angle density clustering (PAD) algorithmsintroduced in chapter 4 were applied

8Even without such a mapping, typically a gene to SwissProt protein entry mapping is not too difficult to obtain,
as SwissProt contains extensive cross-references to gene databases like GenBank.
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SwissProt
Protein 1 
     Pfam 1
     Pub  1
     Pub  2 

Protein 2 
    Pfam 2
    Pub  3
    Pub  4

....

MEDLINE/PubMed
Pub 1
   MeSH 1
   MeSH 2
   MeSH 3 
   ...
Pub 2
   MeSH 2
   MeSH 3
   MeSH 4
   ...
 ... 

G1

M1

Gene-MeSH document co-occurrences

M2    M3    ...

G2

...

.

1 2 2

...

Affy to SwissP
Gene ID 1 -> SP protein 1

Gene ID 2 -> SP protein 2

...

Figure 5.4: To obtain the gene-MeSH term association matrix, we obtained a mapping of
Affymetrix gene IDs for the chip used in the gene expression analysis (HGU95A) to SwissProt
proteins. The SwissProt database provided us with literature references for the proteins. MeSH
terms for these publications were obtained from MEDLINE. The gene-MeSH association matrix
then contains for each gene-MeSH term pair the number of documents referenced by the respective
gene and also indexed by the respective MeSH term in MEDLINE (i.e. the MeSH term frequencies
m fgki from Eqn. 5.4).
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Figure 5.5: Singular Value Decomposition of the herpes infected human fibroblast data set. Shown
is the singular value spectrum (the relative variance captured by the respective modes) and the first
two eigengenes. Over 80% of the variance is captured by the first two expression modes.
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Figure 5.6: Results of the application of the BITS and PAD algorithms to gene expression vectors
in the subspace of eigengenes 1 and 2. Three high density regions of genes were identified close
to the perimeter of the space (shown in plot a). The average expression profiles of the genes in the
respective clusters are shown in plot b).

to the gene expression vectors in the subspace of eigengenes1 and 2. Three high density regions,

or clusters, of similarly expressed genes were identified, see Figure 5.6 a). Two of the clusters

(red and green) were identified in the study presented in chapter 3. An additional region with a

higher density of genes (blue) was identified by the PAD algorithm. Figure 5.7 shows a bi-plot, a

projection of the genes and the assays onto SVD modes 1 and 2, i.e. the projection of the genes

onto the first two eigengenes and a projection of the assays onto the first two eigenassays9. For

easier interpretation, the sign of the projection of the assays onto eigenassay 2 has been flipped.

The red arrows corresponding to the assays are labeled by thetime points (hrs after infection). The

figure shows that the assays are time ordered in this two-dimensional projection, they are ordered

clock-wise. The assays also cluster in roughly 3 groups, andthese groups of assays project close

to the 3 clusters of co-expressed genes. Genes that project close to a certain assay vector in the

bi-plot have their expression induced at the correspondingtime point (relative to the baseline to

which expression is measured, here the mean expression overall time points). The blue cluster

9Possibly the easiest way to visualize this plot is to think ofthe genes plotted as points in the original 12 dimensional
space spanned by the 12 assays, i.e. time points of the experiment. These time point basis vectors are illustrated by
the red arrows. SVD performs a rotation of the space so that most of the variance is captured by the new basis
vector system (the singular vectors, linear combinations of the original basis vectors). Figure 5.7 shows the projection
(rotation) of the genes (black dots) and the original time point basis vectors (red arrows) onto the first two singular
vectors capturing most of the variance. This is achieved by projecting the genes onto the eigengenes (right singular
vectors) and projecting the assays onto the eigenassays (left singular vectors). (See also chapter 2.)
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of genes is associated with assays corresponding to the early time point (1/2, 1, 2 and 4 hrs after

infection). These genes’ expression is induced at these early time points, as can be seen in the

expression profiles in Figure 5.6 b). The assays at 10 and 12 hrs project close to the genes of

cluster 2. Because these assays project close to eigenassay2, and the sign of the projection with

eigenassay 2 has been flipped, genes of cluster 2 have a repressed expression at these intermediate

time points. Assays corresponding to medium to late time points, i.e. from 14 to 48 hrs after

infection, project close to gene expression vectors of the red cluster (where the last, 48 hr time

point, is somewhat outlying). These genes will have an induced expression at these medium to late

time points (as can again be seen in the average expression profile for the cluster of genes in Figure

5.6 b)).

In addition to the 12 time point assays after virus infection, Browne et al. [Browne et al., 2001],

who produced the study, also measured expression after a so-called “mock infection”. In mock

infection, the human fibroblast cells undergo the same experimental procedure as in infection with

the herpes virus except that no virus is present. Such mock infections are performed to control for

effects of the experimental procedure, and not the virus, ongene expression of the host cells. Two

assays, 16 and 24 hrs after mock infection, were obtained as controls. The projection of both of

those assays onto eigenassays 1 and 2 are shown in Figure 5.7 as green arrows, labeled m16 and

m24. Both mock infected assays project close to the assays corresponding to the earliest time points

of the virus infection experiment, e.g. the assays taken 1/2and 1 hr after virus infection. Compare

the mock infected assays also to the assays at 16 and 24 hrs after virus infection. The assays 16

and 24 hrs after virus infection are positively correlated with mode 1 whereas the mock infected

assays, corresponding to the same time points after mock infection, are negatively correlated with

mode 1. This suggests that, first, the mock infected cells arein a similar “state of expression” as

the cells right after infection. It suggests further that not many changes in gene expression have

occurred 1/2 and 1 hr after infection with the herpes virus. We can conclude further that the change

in expression we observe in the subspace of mode 1 and 2 are solely due to the virus and not any

experimental procedures during infection.

5.3.2 LSA in MeSH Term Space

For 11,348 Affymetrix IDs on the chip HGU95A mappings to SwissProt protein identifiers were

obtained10. 8036 of the Affymetrix IDs had mappings to 6074 SwissProt protein identifiers (mul-

tiple Affymetrix probe sets can be present for the same gene/protein; the maximum number of

Affymetrix probe sets for a protein were 10). The 6074 genes/proteins had 19644 publications

referenced in SwissProt. MeSH terms for these publicationswere retrieved from MEDLINE. The

10Downloaded from the Affymetrix website [Affymetrix, 2005], requires (free) registration.



76
CHAPTER 5: AUTOMATED MINING AND ANALYSIS OF FUNCTIONAL INFORMATION

FOR GENE EXPRESSION DATA

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

mode  1

m
od

e 
 2

0.51

4
6

10 12

14 16

18
20

24

48

m16m24

Figure 5.7: Projection of both the gene expression vectors (black dots) onto the eigengenes and
the assay expression profiles onto the eigenassays (red arrows). The assays are labeled by the hour
after infection they were sampled at. The assays seem to group roughly into 3 distinct groups
which project close to the three clusters of genes that were identified by the PAD algorithm. Also,
the assays are in temporal, clockwise order around the perimeter, suggesting that some temporal
process(es) is in progress causing the observed changes in expression. Also shown are two assays
16 and 24 hrs after a “mock infection” (green arrows). These two assays project close to the earliest
assays, 1/2 and 1 hr, after virus infection. This indicates that the observed expression change in the
12 assays after virus infection are due to the virus and not any experimental effects of the infection.
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Figure 5.8: The distribution of number of publications (PMIDs) and MeSH terms per gene (or
protein) in our data set. Many genes have only 1 or 2 publications referenced. The mean number of
publications per gene is 4.3, the median is 3. The mean numberof distinct MeSH terms associated
with a gene is 42, the median is 35.

19644 publications were found to be indexed by 6568 distinctMeSH terms. The 346 MeSH terms

that indexed publications of more than 100 different proteins were removed, as they are most likely

too general to be informative about a gene’s (or protein’s) function. The 1928 MeSH terms that

indexed publications of only one gene were removed as well, as such very unique terms often add

mostly noise to the data and do not link any proteins/genes inMeSH term space. It has been found

that typically the terms occurring with ’medium frequency’are the most important for successful

information retrieval with the vector space model [Deerwester et al., 1990].

We obtained a 6074 by 4294 gene-MeSH association matrix, with a matrix element for a gene-

MeSH pair indicating how many publications were found referenced by the respective gene/protein

in SwissProt and also indexed by the respective MeSH term in MEDLINE (the mesh term fre-

quencym fgki in Equation 5.4).

For the 4294 MeSH terms the inverse gene frequency (IGF) was calculated (see Eqn. 5.3)

and applied as global weighting factors to the MeSH term frequency matrix, see Eqn. 5.4. 1528

Affymetrix probe sets from cluster 1 mapped to 1343 distinctgenes in SwissProt. 210 probe sets

of cluster 2 mapped to 205 distinct genes in SwissProt and 383probe sets from cluster 3 mapped

to 339 distinct genes.
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Figure 5.9: The number of genes a MeSH term occurs with (linked through the publications ref-
erenced in SwissProt). Some MeSH terms occur with almost allgenes but many occur with only
one or few genes. The 5 most frequently occurring MeSH terms are Human, Molecular Sequence
Data, Amino Acid Sequence, Support - Non-US Govt and Base Sequence. Obviously the very
frequent MeSH terms are not informative about specific genes.

1. Dihydrotestosterone receptor; Androgen receptor)
2. Amyloid beta A4 protein precursor; ABPP; Alzheimer’s disease amyloid protein
3. Hemoglobin beta chain
4. A-28; Aw-68; HLA class I histocompatibility antigen, A-68 alpha chain precursor
5. Transthyretin precursor; Prealbumin; TBPA; TTR; ATTR
6. Collagen alpha 1(I) chain precursor
7. Cystic fibrosis transmembrane conductance regulator; CFTR; cAMP-dependent chloride chan-
nel
8. Serine-protein kinase ATM
9. vWF; Von Willebrand factor precursor
10. Thyroid stimulating hormone receptor; TSH-R

Table 5.1: Genes with most publication references. Synonymnames and symbols are separated by
semicolons.
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Iterative Algorithm for MeSH Outlier Removal

Before applying SVD to the resulting gene-MeSH associationmatrices for the three gene co-

expression clusters, random sets of genes with the same sizes as the clusters were generated to

identify and remove “outlier MeSH terms”. Outliers here refers to MeSH terms that alone can

determine a SVD mode of a random set of genes and therefore canbias the analysis. 15 random

sets of genes, 5 sets with the same size as cluster 1 (1343 randomly selected genes), 5 sets with

the same size as cluster 2 (205 randomly selected genes), and5 sets with the same size as cluster 3

(339 randomly selected genes) were created. SVD was performed on the resulting 15 gene-MeSH

association matrices and the outliers among the MeSH terms were identified. Outlier identification

and removal is rather typical in data analysis with PCA/SVD [Jolliffe, 1986] and often performed

by visual inspection of the data. Here we developed an algorithm that performs outlier detection

and removal in an automated way. The algorithm identifies fora random gene-MeSH data set the

MeSH terms that are most correlated (largest absolute valueof the coefficient) with each of the

first 10 SVD modes (of that respective gene-MeSH data set). Ifthe coefficient of a MeSH term for

one of the 10 SVD modes is larger than 0.7, the MeSH term is marked as outlier and for removal

before the next iteration of the algorithm11. All outlier MeSH terms for all 15 random sets and

for the first 10 singular vectors were marked and then removed. The algorithm was applied to the

resulting data set and the next set of MeSH term outliers weredetermined. After 10 iterations,

when fewer than 5 MeSH terms were identified per iteration, the threshold for the singular vector

coefficients was lowered to 0.6 (0.66 = 0.36). After 14 iterations, again less than 5 MeSH terms

were identified as outliers in the 15 random sets. It was also found that the singular value spectrum

for 15 different, independent random data sets, obtained ascontrols, stopped to vary significantly

between iterations. The algorithm to remove MeSH term outliers was therefore halted after 14

iterations and the removal of 158 MeSH term outliers. Most ofthe removed MeSH term outliers

are rather general and occurred with many genes, but below the initial cutoff of occurrence with

100 genes.

LSA in MeSH Term Space for 3 Gene Clusters

The SVD/LSA was performed on the resulting IGF weighted gene-MeSH term frequency matrices

for the three co-expression clusters. Figure 5.10 shows thevariance captured by the first 50 SVD

modes of the gene-MeSH term matrices for the three clusters.Cluster 1 corresponds to the red

cluster in Figure 5.6, cluster 2 to the green cluster and cluster 3 to the blue cluster in Fig. 5.6. Also

shown, by red lines, are the variances found by SVD in 5 randomgroups of genes of the same size

11The Euclidean length of the SVD singular vectors is normalized to one, and a MeSH term with a coefficient of
0.7 or more therefore determines half (0.72 = 0.49) or more of the length of that singular vector.
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Figure 5.10: The variance for the first 50 components of the SVD of the gene-MeSH association
matrices for the three co-expression clusters and for random groups of genes. The green point
plots show the variances for the respective gene cluster, the continuous red lines show the average
variance for 5 random groups of genes (with the same number ofgenes as the respective cluster).
The standard deviation from the mean for the 5 random groups is shown by the dashed lines.
Cluster 1 corresponds to the red cluster in Fig. 5.6. Cluster2 corresponds to the green cluster and
cluster 3 to the blue cluster in Fig. 5.6.

as the clusters (note, these 15 random sets of genes were independent of the sets used to remove

outliers). The variances for the co-expression clusters 1 and 3 show increased variances over the

random groups of genes. For cluster 2, however, the variances of the first few modes are not higher

than for same sized random groups of genes.

Figure 5.11 shows the projection of the genes (black circles) and MeSH terms (red triangles)

onto the respective singular vectors of modes 1 and 2 (left figure) and modes 3 and 4 (right figure).

Table 5.2 lists the 20 genes most correlated with mode 1 and anti-correlated with mode 2. The func-

tional theme of this group of genes could be called “small nuclear ribonucleoproteins and splicing

factors”. The MeSH terms most associated with these genes are “Spliceososmes”, “RNA, Small

Nuclear”, “ Ribonucleoprotein, U1 Small Nuclear” and “Ribonucleoprotein, U2 Small Nuclear”.

As small nuclear ribonucleoproteins are frequently part ofspliceosomes and splicing factors, the

MeSH terms and genes are clearly related. The genes most correlated with mode 1 and positively

correlated with mode 2 split into three distinct groups in the subspace of modes 3 and 4: genes

positively correlated with mode 4 and negatively with mode 3(Table 5.3), genes correlated neg-

atively with both modes 3 and 4 (Table 5.4), and genes positively correlated with mode 3 (and

mostly uncorrelated with mode 4) (Table 5.5). Genes of Table5.3 are mostly transcrpition factors,

some associated with regulating the cell-cycle. Genes of Table 5.4 are overwhelmingly associated

with Thyroid receptor proteins or proteins binding to the receptor. Table 5.5 contains a significant
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Figure 5.11: Projection of genes (black circles) and MeSH terms (red triangles) onto the first two
SVD components (left) and components 3 and 4 (right) for cluster 1.

number of transcription factors (different from Table 5.3)and Retinoblastoma binding proteins.

For cluster 2 genes, the same analysis was performed. Figure5.12 shows fewer genes were

found to be strongly correlated with the first 2 modes than forcluster 1 (as might be expected

from the singular value spectrum). Genes (anti-) correlated with mode 1 were grouped into genes

correlated with mode 2 and anti-correlated with mode 2. Bothgroups contain mainly immune

system regulating proteins: interferon response genes, signal transduction and apoptosis related

proteins in Table 5.6 and inflammatory cytokines, as well as cell adhesion and apoptosis related

proteins in Table 5.7.

Three groups of genes for cluster 3 were found correlated with the first two modes (Figure

5.12). Table 5.8 lists proteins correlated with mode 1. Manyextracellular and cell adhesion related

proteins are found in this group of genes. Genes negatively correlated with mode 2 (Table 5.9) list

extracellular matrix proteins, many of them related to Collagen. Several proteins in Table 5.10 are

related to membrane channel proteins and dehydrogensases.

5.4 Discussion

We compare the functional groups of genes we identified for the 3 co-expression clusters to hu-

man annotations in [Challacombe et al., 2004] (also see chapter 3) and [Browne et al., 2001]. The

functional annotations of genes in clusters 1 and 2 were manually inspected and results reported in

chapter 3 and [Challacombe et al., 2004]. [Challacombe et al., 2004] reports a “noticeably greater

percentage of genes in cluster 1 in the categories of transcription and oncogenesis/cell cycle regula-
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O75533 Splicing factor 3B subunit 1; Spliceosome associated protein 155

Q15459 Splicing factor 3 subunit 1; Spliceosome associated protein 114

Q15427 Pre-mRNA splicing factor SF3b 49 kDa subunit; Spliceosome associated protein 49

Q13435 Pre-mRNA splicing factor SF3b 145 kDa subunit; Spliceosomeassociated protein 145

P43331 Sm-D3; Small nuclear ribonucleoprotein Sm D3; snRNP core protein D3

P08579 U2 small nuclear ribonucleoprotein B

Q15356 Sm-F; Small nuclear ribonucleoprotein F

Q15357 Sm-G; Small nuclear ribonucleoprotein G

P14678 Sm-B/Sm-B”; Small nuclear ribonucleoprotein associated proteins B and B”

P09661 U2 small nuclear ribonucleoprotein A”; U2 snRNP-A”

Q14562 ATP-dependent helicase DDX8; RNA helicase HRH1; DEAH-box protein 8

Q07955 pre-mRNA splicing factor SF2, P33 subunit; Alternative splicing factor ASF-1

P08621 U1 small nuclear ribonucleoprotein 70 kDa; U1 snRNP 70 kDa

Q9Y4Y8 U6 snRNA-associated Sm-like protein LSm6

O43143 ATP-dependent RNA helicase #46; Putative pre-mRNA splicing factor RNA helicase; DEAH box protein 15

Q14498 RNA-binding region containing protein 2; Splicing factor HCC1

O14893 Survival of motor neuron protein-interacting protein 1; Gemin2

O00566 U3 small nucleolar ribonucleoprotein protein MPP10; M phase phosphoprotein 10

Q13487 snRNA activating protein complex 45 kDa subunit; Proximal sequence element-binding transcription factor
delta

Q16533 snRNA activating protein complex 43 kDa subunit; Proximal sequence element-binding transcription factor
gamma

Table 5.2: The SwissProt accessions and names for the genes in cluster 1 correlated positively
with mode 1 and negatively with mode 2 (see Figure 5.11; the genes are ordered by decreasing
correlation with mode 1; synonym names are separarted by a semicolon). Most genes are mRNA
splicing factors and ribonucleoproteins.
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Q16514 TAFII-20/TAFII-15; Transcription initiation factor TFIID 20/15 kDa subunits

O14981 TAF(II)170; TBP-associated factor 172

Q15544 TAFII-28; Transcription initiation factor TFIID 28 kDa subunit

Q15543 TAFII-18; Transcription initiation factor TFIID 18 kDa subunit

O43513 Cofactor required for Sp1 transcriptional activation subunit 9; Transcriptional co-activator CRSP33

O00268 TAFII-130

Q15545 TAFII-55

Q15542 TAFII-100; Transcription initiation factor TFIID 100 kDa subunit

P52657 TFIIA-12; Transcription initiation factor IIA gamma chain

P13984 TFIIF-beta; Transcription initiation factor RAP30

P20226 TATA box binding protein; Transcription initiation factorTFIID

Q00403 Transcription initiation factor IIB

P51948 CDK-activating kinase assembly factor MAT1; Cyclin G1 interacting protein

P52655 TFIIA-42; Transcription initiation factor IIA alpha and beta chains

P51946 Cyclin H; MO15-associated protein

P32780 TFIIH basal transcription factor complex p62 subunit

Table 5.3: Cluster 1: genes positively associated with mode2, negatively with mode 3 and posi-
tively with mode 4, ordered by decreasing correlation with mode 2. Most of the proteins belong to
the group of the so called “general transcription factors” that bind to RNA Polymerase II and that
are required to initiate transcription.
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Q15648 Peroxisome proliferator-activated receptor binding protein; Thyroid receptor interacting protein 2; p53 reg-
ulatory protein RB18A

Q9UHV7 Thyroid hormone receptor-associated protein complex 240 kDa component; Trap240

Q09472 E1A-associated protein p300

Q15649 TRIP-3; Thyroid receptor interacting protein 3

Q15643 TRIP-11; Thyroid receptor interacting protein 11

Q14669 TRIP-12; Thyroid receptor interacting protein 12

Q15650 TRIP-4; Activating signal cointegrator 1; Thyroid receptor interacting protein 4

P47210 26S protease regulatory subunit 8; Proteasome subunit p45;TRIP-1; Thyroid hormone receptor interacting
protein 1

Q15642 Cdc42-interacting protein 4; TRIP-10; Thyroid receptor interacting protein 10

P35790 CHETK-alpha; Choline kinase

Q14686 Nuclear receptor coactivator 6; Peroxisome proliferator-activated receptor-interacting protein; Cancer-
amplified transcriptional coactivator ASC-2; Thyroid hormone receptor-binding protein

P18583 Protein C21orf50; Negative regulatory element-binding protein

Q99963 EEN-B2; SH3-containing GRB2-like protein 3

Q9Y3I1 F-box only protein 7

O43504 HBV X interacting protein; Hepatitis B virus X interacting protein

P41002 G2/mitotic-specific cyclin F

Table 5.4: Cluster 1: genes positively associated with mode2, negatively with mode 3 and nega-
tively with mode 4, ordered by decreasing correlation with mode 2. The thyroid-hormone receptors
are hormone-dependent transcription factors that controlexpression of many target genes [Park
et al., 1993].
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O75461 Transcription factor E2F6

Q14186 Transcription factor DP-1; E2F dimerization partner 1

O75367 Core histone macro-H2A.1

Q13185 HECH; Chromobox protein homolog 3

Q14493 Histone RNA hairpin-binding protein

P17317 H2A/z; Histone H2A.z

Q09028 Chromatin assembly factor 1 subunit C; CAF-1 subunit C; Retinoblastoma binding protein 4

Q06587 Polycomb complex protein RING1; RNF1

O00716 Transcription factor E2F3

Q15291 Retinoblastoma-binding protein 5; RBBP-5

P29374 Retinoblastoma-binding protein 1; RBBP-1

P29375 Retinoblastoma-binding protein 2; RBBP-2

Q01094 Retinoblastoma binding protein 3; RBAP-1

O96020 G1/S-Specific cyclin E2

P24864 G1/S-specific cyclin E1

P06400 Retinoblastoma-associated protein; RB

Q15329 Transcription factor E2F5; E2F-5

Q08999 Retinoblastoma-like protein 2; RBR-2

P32519 ETS-related transcription factor Elf-1

Table 5.5: Cluster 1: genes positively associated with mode2 and mode 3, ordered by decreasing
correlation with mode 2. Many genes in this cluster are transcription factors and transcriptional
regulators involved in oncogenesis and cell cycle regulation some are involved in apoptosis [Chal-
lacombe et al., 2004].
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Figure 5.12: Projection of genes (black circles) and MeSH terms (red triangles) onto the first two
SVD components for cluster 2 cluster 3. Fewer genes than for cluster 1 are found associated with
the respective LSA modes.

Q13651 IL-10R1; Interleukin-10 receptor alpha chain precursor

Q08334 IL-10R2; Interleukin-10 receptor beta chain precursor

P01579 Interferon gamma precursor; IFN-gamma; Immune interferon

P42701 IL-12RB1; Interleukin-12 receptor beta

P80217 Interferon-induced 35 kDa protein; IFP 35

P51692 Signal transducer and activator of transcription 5B

P52198 Rnd2; Rho-related GTP-binding protein RhoN

P25446 Tumor necrosis factor receptor superfamily member 6 precursor; FASL receptor; Apoptosis-mediating sur-
face antigen FAS; CD95

P20290 RNA polymerase B transcription factor 3; Transcription factor BTF3

P19075 Tumor-associated antigen CO-029

Table 5.6: Cluster 2: genes anti-correlated with mode 1 and mode 2. Interferon response genes
(immune system regulation), signal transduction, apoptosis related proteins.
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P10147 Small inducible cytokine A3 precursor; Macrophage inflammatory protein 1-alpha; G0/G1 switch regulatory
protein 19-1; PAT 464.1

P13236 Small inducible cytokine A4 precursor; Macrophage inflammatory protein 1-beta; T-cell activation protein 2

P25024 IL-8R A; High affinity interleukin-8 receptor A; IL-8 receptor type 1

P51685 CC-chemokine receptor CHEMR1

P80098 Small inducible cytokine A7 precursor; Monocyte chemotactic protein 3

P32302 C-X-C chemokine receptor type 5; MDR15; Monocyte-derived receptor 15

P30740 EI; Monocyte/neutrophil elastase inhibitor

Q9NRI5 Disrupted in schizophrenia 1 protein

Q14289 Related adhesion focal tyrosine kinase; Cell adhesion kinase beta

Q14790 Caspase-8 precursor; Apoptotic protease Mch-5

Table 5.7: Cluster 2 : genes anti-correlated with mode 1 and positively correlated with mode 2.
Mostly inflammatory cytokines, also cell adhesion and apoptosis related proteins.

tion than in cluster 2”. Our analysis revealed three groups of transcription factors that are strongly

associated with the first few LSA modes in cluster 1, including cell-cycle and oncogenesis regula-

tors in Table 5.5. Analysis in chapter 3 also lead to the conclusion that “cluster 2 contained a higher

percentage of genes involved in signal transduction, immune system regulation, and cell adhesion

compared to cluster 1”. The two first LSA modes of cluster 2 genes mainly contained immune sys-

tem regulating and signal transduction proteins (many interferon response genes and inflammatory

cytokines), as well as some apoptosis and cell adhesion related proteins. This corresponds also

very well to the finding of [Browne et al., 2001], who report a decrease in expression in the first 8

hrs post infection for interferon response genes and inflammatory cytokines (genes in our cluster

2 show a decrease in expression between 4 and 20 hours post infection). All functional groups of

genes that are reported for cluster 1 and 2 in [Challacombe etal., 2004], as well as in [Browne

et al., 2001], are found among the first few LSA modes in our analysis for the respective clusters

(e.g. cell-cycle and oncogenesis transcription factors, immune system regulators, apoptosis and

cell adhesion related proteins). Interestingly, we also found some functional groups of genes in

clusters 1 that were not reported in [Challacombe et al., 2004] nor in [Browne et al., 2001]. The

largest not reported group of genes are small ribonucleoproteins and splicing factors in cluster 1

(Table 5.2). This group of genes is important for the processing of the host messenger RNA before

transport to the cytoplasm and translation to proteins. A survey of the literature revealed that the

herpes virus can severely impact the host cell’s protein production by interfering with the splicing

of the host mRNA. The literature typically reported a directinteraction of the virus proteins with
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P07942 Laminin beta-1 chain precursor

P11047 Laminin gamma-1 chain precursor

Q16363 Laminin alpha-4 chain precursor

P98160 PLC; Basement membrane-specific heparan sulfate proteoglycan core protein precursor

P02545 70 kDa lamin; Lamin A/C

P31431 Ryudocan core protein; Amphiglycan; Syndecan-4 precursor

P18827 CD138 antigen; Syndecan-1 precursor

P47914 60S ribosomal protein L29; Cell surface heparin binding protein HIP

P13611 Versican core protein precursor; Large fibroblast proteoglycan; Chondroitin sulfate proteoglycan core protein
2

O94766 GlcUAT-I; Glucuronosyltransferase-I

P16070 CDw44; Heparan sulfate proteoglycan; GP90 lymphocyte homing/adhesion receptor; Extracellular matrix
receptor-III; CD44 antigen precursor

P27544 LAG1 protein; Embryonic growth/differentiation factor 1 precursor; Longevity assurance homolog 1

P29279 Hypertrophic chondrocyte-specific protein 24; Connectivetissue growth factor precursor

P36956 Sterol regulatory element binding protein-1

Q12772 Sterol regulatory element binding protein-2

Q16394 Putative tumor suppressor protein EXT1

Table 5.8: Cluster 3: genes positively correlated with mode1. Many extracellular and cell adhesion
related proteins. Laminin is a large, noncollagenous glycoprotein with antigenic properties. It
functions to bind epithelial cells to the basement membrane(MeSH annotation [National Library
of Medicine, 2004]).
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P05997 Collagen alpha 2(V) chain precursor

P20849 Collagen alpha 1(IX) chain precursor

P02461 Collagen alpha 1(III) chain precursor

Q07092 Collagen alpha 1(XVI) chain precursor

P12109 Collagen alpha 1(VI) chain precursor

P08123 Collagen alpha 2(I) chain precursor

O94833 Dystonia musculorum protein

P29279 Connective tissue growth factor precursor; Hypertrophic chondrocyte-specific protein 24

P07996 Thrombospondin 1 precursor

P35555 Fibrillin 1 precursor

P13611 Versican core protein precursor; Large fibroblast proteoglycan

Q14192 Skeletal muscle LIM-protein 3

P22003 Bone morphogenetic protein 5 precursor

P35442 Thrombospondin 2 precursor

P35556 Fibrillin 2 precursor

Table 5.9: Cluster 3: genes negatively correlated with mode2. Extracellular matrix proteins.
Collagen is the main constituent of skin, connective tissueand the organic substance of bones and
teeth.
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O75783 Rhomboid-like protein 1

O75154 Eferin

P29372 N-methylpurine-DNA glycosirase

O95180 Voltage-dependent T-type calcium channel alpha-1H subunit

P50550 P18; Ubiquitin-conjugating enzyme UbcE2A; SUMO-1-protein ligase

P98161 Polycystin 1 precursor

P22674 Uracil-DNA glycosylase 2

P34969 5-hydroxytryptamine 7 receptor; Serotonin receptor

P15382 Potassium voltage-gated channel subfamily E member 1

Q9BYH1 Seizure 6-like protein precursor

Q03135 Caveolin-1

Q92952 SK1; Small conductance calcium-activated potassium channel protein 1

Q12809 eag homolog; Potassium voltage-gated channel subfamily H member 2

Q8TDN2 Potassium voltage-gated channel subfamily V member 2

P00325 Alcohol dehydrogenase beta chain

P00326 Alcohol dehydrogenase gamma chain

P11766 FDH; Alcohol dehydrogenase class III chi chain (EC 1.1.1.1)

Q01959 Sodium-dependent dopamine transporter

O75828 Carbonyl reductase [NADPH] 3

Table 5.10: Cluster 3: genes positively correlated with mode 2.
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splicing factors [Hardy and RM., 1994], but our analysis suggests that the transcription of many

splicing factors of the host cell is affected as well. In fact, cluster 1 genes are up-regulated genes.

The host cell might respond to the interference of the virus proteins with host mRNA processing

by increasing the production of ribonucleoproteins and splicing factors, to improve host mRNA

processing. This reasoning might also explain the finding that the “general transcription factors”

in Table 5.3 are upregulated. One reason why this group of genes was not identified in cluster 1

by the human expert (chapter 3 and [Challacombe et al., 2004]) might be because the expression

of this functional group of genes was not expected to be affected. The human annotator states that

she focused on functional classes of genes whose transcription is known to be influenced by the

virus: signal transduction, immune system regulation, apoptosis, cell cycle regulation, oncogen-

esis, cell adhesion and transcription. Ribonucleoproteins and splicing factors do not fall within

these functional classes, therefore they were missed in theanalysis. This illustrates the potential

value of the exploratory, inference driven functional datamining approach applied here. Another

functional group of genes not explicitly mentioned in [Challacombe et al., 2004] or [Browne et al.,

2001] are the Thyroid hormone receptor transcription factors in Table 5.4. Research of [Park et al.,

1993] suggests that regulating thyroid hormone receptor expression may play an important role

in regulating the life cycle of the herpes simplex virus in the host cell. Cluster 3 genes were not

annotated by the human expert in [Challacombe et al., 2004] and no comparison to our findings

could be made. The singular value spectrum for this cluster in MeSH term space was above that

of random groups of genes for the first few modes. A significantnumber of genes in cluster 3

are cell adhesion molecules and extracellular proteins, e.g. laminin, cell surface glycoproteins and

collagen. [Challacombe et al., 2004] reports that cell adhesion molecules are key to several func-

tions of the immune response, including T cell-antigen-presenting cell interactions, T cell-B cell

interactions, and cytotoxic T cell/NK cell interactions with the infected target cells. All of these are

essential components for the generation of effective inflammatory responses and the development

of rapid immune responses. Genes in cluster 3 are repressed in their expression in the later time

points. It is therefore likely that the virus inhibits the expression of these cell adhesion molecules

to inhibit the host’s immune response. Potassium, Sodium and Calcium levels have been reported

to be affected by HCMV and other herpes virus infections [Hackstadt and Mallavia, 1982,Browne

et al., 2001], which could explain the group of channel proteins we identified in cluster 3 and listed

in Table 5.10.

In conclusion, we demonstrated the potential value of literature mining, here specifically the

mining with MeSH terms, for functional information. We wereable to validate our findings with

what had been found previously by experts and their manual evaluation of annotation data. In ad-

dition, we identified new functional groups of genes in the co-expression clusters that had not been

reported in these expert studies, probably because the focus of the manual evaluation of annotation
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data was on different functional groups. We do not claim thatour approach can replace expert

inspection of the data. The functional information reported in [Browne et al., 2001, Challacombe

et al., 2004] was more detailed than our automated analysis could provide. What our analysis can

provide, though, are “functional themes” for groups of genes and proteins that can guide the ex-

pert annotator and focus his or her work. In addition, our methodology might point to functional

themes and groups of genes that are not expected and might be missed in the large amounts of data

when dealing with hundreds or even thousands of genes.



Chapter 6

Pfam Protein Family Prediction in MeSH

Space1

6.1 Introduction

Mining of biological information from databases and literature gains increasing importance as

both the amount of data from high-throughput experiments and the amount of biological knowl-

edge stored in databases and literature increases. Different techniques for information mining in

Bioinformatics have been presented but usually in very specific and different contexts, gene net-

work inference from literature data, functional annotation of proteins, and improvement of remote

homolog detection for proteins [Masys et al., 2001, Jenssenet al., 2001, Andrade and Valencia,

1998, MacCallum et al., 2000]. What has been missing in the field are large-scale studies that al-

low for quantitative validation and a gold standards defining an effective basis for method compar-

ison. Here we propose such a large-scale, quantitative approach for evaluation and comparison of

methods for information retrieval for Bioinformatics fromliterature. The large scale test set against

which we test our literature mining approach is the Pfam protein sequence classification [Sonnham-

mer et al., 1997, Bateman et al., 2004]. Pfam is a manually curated collection of protein families,

currently encompassing several thousands of families. Genome projects, including both the human

and fly, have used Pfam for large scale functional annotationof genomic data. The proteins of a

Pfam family are functionally very similar due to their similarity in sequence. It is this congruence

of Pfam with protein functional classes, as well as its classification based on a physical property of

proteins, their sequence, that makes it an ideal test set forobjective evaluation and comparison of

information retrieval and knowledge discovery mining algorithms in Bioinformatics.

The specific knowledge discovery approach we test here is thevector space model [Manning

1Submitted to ISMB/BioLink 2005[Rechtsteiner et al., 2005].
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and Schütze, 1999] of Information Retrieval in combinationwith the biomedical indexing vocab-

ulary MeSH (Medical Subject Heading Vocabulary). The National Library of Medicine (NLM)

uses MeSH to index all the biomedical publications in its literature database MEDLINE2. MeSH

is a controlled, hierarchically organized vocabulary thathas been developed and adapted to new

knowledge domains by NLM for decades. MeSH contains over 22,000 terms and 100,000 syn-

onyms (so-called entry terms). The algorithm we use here to represent and discover knowledge in

the MeSH vocabulary is the vector space model. Each protein will be represented by a MeSH term

vector, obtained from the literature about that protein. A similarity measure can then be defined for

proteins in that MeSH term space. If two proteins are functionally related, and the literature and

MeSH indexing terms capture the functional information about the proteins, we expect the MeSH

term vectors for the proteins to be similar. For functionally very different proteins, we expect the

MeSH term vectors to be different. As Pfam families are functionally congruent, i.e. proteins in a

family are functionally closely related, we expect Pfam families to cluster in MeSH term space. To

test this hypothesis, we take a protein’s Pfam family to be unknown and classify it into a Pfam fam-

ily based on its neighbor proteins in MeSH term space and their Pfam families. If our hypothesis is

correct, and publications about proteins and the corresponding MeSH indexing terms capture func-

tional information about proteins, this classification should be successful in most cases. Further,

we can assess how well the corresponding MeSH vectors describe proteins and their functions.

Our study contains 15,217 proteins from 1611 Pfam families.If knowledge discovery tech-

niques are supposed to be useful for the increasingly large-scale studies and data sets in Bioin-

formatics, they need to be able to perform well on such large data sets and need to be tested

and compared on such. A technique that works for few functional classes (e.g. see the stud-

ies by [Masys et al., 2001, Andrade and Valencia, 1998]), forexample for the separation of two

groups of proteins with very different functions, might notwork for the separation of many func-

tional groups when the resolution of functional differences needs to be at a more detailed level.

But exactly this is the challenge for the future of information mining and knowledge discovery

in Bioinformatics. We also needed for our study a body of publications that are associated with

and are about the proteins from the 1611 Pfam families. We obtained these publications from the

SwissProt/UniProt [SIB/EBI, 2004] protein sequence database. SwissProt is a manually curated

database and the information it contains, e.g. literature references for the respective protein se-

quences, is therefore very reliable. For the 15,217 proteins we obtained 26,411 publications from

SwissProt. From the literature database MEDLINE the MeSH indexing terms for these publica-

tions were obtained.

2In fact, unless specified otherwise, any query text string that is entered in PubMed (the WWW gateway of MED-
LINE [National Library of Medicine, 2005]) is first mapped toMeSH terms and the respective documents indexed by
these terms are then retrieved, ordered by some significancescore.
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SwissProt
Protein 1 
     Pfam 1
     Pub  1
     Pub  2 

Protein 2 
    Pfam 2
    Pub  3
    Pub  4

....

MEDLINE/PubMed
Pub 1
   MeSH 1
   MeSH 2
   MeSH 3 
   ...
Pub 2
   MeSH 2
   MeSH 3
   MeSH 4
   ...
 ... 

P1
M1

Protein-MeSH co-occurrences

M2    M3    ...

P2
...

.

1 2 2

...

Figure 6.1: Our data was obtained from the SwissProt proteinsequence database and the MED-
LINE/PubMed literature database. SwissProt is a protein sequence database curated by experts.
Besides the amino acid sequence of a protein it also lists different types of annotations, cross-
references to other databases, e.g. the Pfam family of a protein, and references to relevant publi-
cations for the protein. The publication references were mapped to the respective publications in
the biomedical literature database MEDLINE. From there we obtained the MeSH indexing terms
for the publications of each protein. This information can then be represented in a protein-MeSH
co-occurrence table, where the entry for a given protein-MeSH term pair indicates the number of
publications referenced by the protein and indexed by the MeSH term. The proteins, represented
by the rows of this co-occurrence table, can be interpreted as vectors in MeSH term space (some
weighting factor is typically applied to the term dimensions, as discussed in section 6.2).



96 CHAPTER 6: PFAM PROTEIN FAMILY PREDICTION IN MESH SPACE

For successful separation and prediction of Pfam families,NLM’s manual indexing of publi-

cations with MeSH needs to be performed well and consistently. If different indexers chose vastly

different indexing terms for proteins from the same Pfam family, prediction of the correct Pfam

family for a protein will be difficult. Our study indirectly sheds some light on this question of

MeSH indexing consistency. The study of Funk et al. [Funk andReid, 1983] reported a 40-60%

overlap of MeSH terms assigned by different indexers to the same publication. Our study will

illuminate if such overlap is sufficient to separate and predict Pfam families.

Another question we explored is the one of synonymy and polysemy in the MeSH term vocab-

ulary. It has been shown that the performance of the vector space model in information retrieval

can be improved significantly by identifying with Singular Value Decomposition (SVD) the sub-

spaces in the term-document space with highest variances. This technique is referred to as Latent

Semantic Indexing (LSI) or Latent Semantic Analysis (LSA) [Deerwester et al., 1990,Berry et al.,

1995]. LSI detects correlations among terms in the set of documents and therefore can weaken

negative effects of term synonymy (multiple terms have the same meaning) and term polysemy

(terms that have multiple meanings). We applied LSA to our protein-MeSH co-occurrence matrix

and predicted Pfam families in the resulting reduced SVD spaces. This technique provided very

little improvement over predicting in the original protein-MeSH term space, and only with a thou-

sand or more dimensions (singular vectors). This indicatesthat there is little synonym or polysemy

in the MeSH vocabulary, which can be expected from a well-designed, controlled vocabulary.

Related work to ours was presented by Andrade et al. [Andradeand Valencia, 1998]. They

took 71 functional groups of proteins and extracted keywords from abstracts (versus using MeSH

terms) from publications referenced in SwissProt. The distribution of this “bag of keywords” over

the families served as a background distribution against which they compared keywords from a

new protein or protein family. Given a new protein or family and its literature, keywords are

identified that occur significantly more often in the literature of this new protein or family than in

the background distribution. The presented technique was validated with anecdotal evidence and

only with a few example proteins. The number of protein families and body of literature was small,

our data set is significantly larger (1611 families). As mentioned before, an approach that works

for few, very different functional groups, might not work for many families where the “function

space” is more “crowded”, i.e. there is overlap in the functions of the families. But if a literature

mining approach is supposed to be of value for the increasinglarge scale tasks in Bioinformatics,

it needs to scale well to such larger scopes.

An application of information mining for gene co-expression clusters using MeSH terms has

been presented by Masys et al. [Masys et al., 2001]. Their study has taken a small set of publica-

tions associated with two groups of differently expressed genes in two different medical conditions

(two different blood leukemia). They then identified the MeSH terms that occurred significantly
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more often with the respective groups of genes. They showed that the identified MeSH terms

were informative about the gene groups and the two medical conditions with which their increased

expression was associated. The study again focused on only few (two) groups of functionally

different entities and the validation was again heuristic for these two groups.

Much of the current information mining work in Bioinformatics is still performed for very spe-

cific tasks with often rather small scopes. The results are often validated with anecdotal evidence

relating to the task at hand, e.g. the specific medical conditions a gene expression data set was

obtained for. We test our method, literature set and MeSH against a large test data set, the Pfam

family classification, which is based on an objective, physical property of proteins, their sequence

similarity. We are testing if the large set of Pfam families and the literature MeSH term space are

mutually coherent. As Pfam is often congruent with functional classes, our study and its results

suggest how well our method should perform in tasks other than Pfam classification, for example

the prediction of function for groups of proteins or genes.

6.2 Methods and Data

6.2.1 Data

The literature data set for this study were the publicationsreferenced by proteins in SwissProt and

the MeSH terms for the publications were obtained from MEDLINE (see Figure 6.1). SwissProt

is manually curated by experts and this set of publications can therefore be considered anexpert

literature set (see also [Shatkay et al., 2000]). In the work here SwissProt version 41.0 was used,

which contains 122,564 protein sequence entries. 89,143 ofthese had Pfam family references

(3938 different Pfam families) as well as 75,649 distinct publication references. As we wanted to

establish a baseline in this study, we performed several filtering steps to eliminate any “artificial

links” between proteins and Pfam families as well as to remove “noise” from the data set.

First, the 15% of proteins were removed that had more than onePfam family referenced. These

proteins would have linked the respective Pfam families3. Next we filtered out all publications that

were referenced by multiple proteins from more than one Pfamfamily. Many of these publications

are about sequencing, e.g. of chromosomes or whole genomes and therefore can be referenced

by many proteins. Such publications will not contain specific information about proteins and their

families and therefore will add noise to the literature data. 47,368 MEDLINE publications, or 63%,

were referenced by proteins from only one Pfam family and they were retained in the literature

data set. The number of proteins for which we still had literature references after this filtering

3Such links might be desirable, as Pfam families occurring together in proteins might often be functionally related.
But in this baseline study we wanted to detect any functionalrelationships of proteins and Pfam families purely from
independent literature.
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step decreased however to 32,922 (43% of the proteins that had one Pfam family reference). This

suggests that many of the protein sequences in SwissProt have, to this date, literature references

that are not specific to the protein or its family and their functions but are of a more general type.

Two more filtering steps were applied to the data. First, all proteins that had exactly identical

literature references were filtered out except for one representative (selected at random). This

step removed mainly proteins that were identical or closelyrelated but, for example, from different

organisms. The next filtering step removed literature references to the same publication by multiple

proteins (of the same Pfam family) except for the reference by one of the proteins (we chose the

protein that had the fewest literature references). Both ofthe last two filtering steps insure that any

similarity in MeSH term space (e.g. similar MeSH term vectors) of proteins from the same Pfam

family are due to independent and not shared publications.

The above filtering steps are conservative and control for any possible artificial link of proteins

in MeSH space. The publications for each protein (and therefore the respective MeSH terms) are

independent from each other. Any relationships detected inour study among proteins and Pfam

families are due to independent literature and therefore are due to the related information contained

in the publications of the respective proteins and Pfam families.

After filtering, the data set contained 27,682 proteins, referencing 47,368 MEDLINE publi-

cations (each publication only referenced once, by a singleprotein) and 2503 Pfam families. On

average, each protein references 1.7 publications and eachPfam family has 13 protein members.

892 or 36% of all Pfam families have only 1 or 2 proteins, 1611 or 64% have 3 or more proteins.

296 Pfam families, or 12%, have 20 or more proteins4. Due to the nature of our classification

algorithm (discussed in detail later) we predicted Pfam families only for the proteins of the 1611

Pfam families with 3 or more protein members5. To limit the bias of our classification algorithm

towards larger families (see also discussion later), we limited the size of Pfam families to 20 pro-

tein members. For Pfam families with more than 20 protein members, 20 were selected at random.

This lead to a data set with 15,217 proteins, from 1611 Pfam families with 26,411 publications and

5,639 different MeSH terms6.

4The 5 largest families are the 7 transmembrane receptor rhodopsin family PF00001 (Pfam id) with 810 proteins,
the Immunoglobulin domain PF00047 with 525 proteins, the Globin family PF00042 with 499 proteins, the Protein
kinase domain PF00069 with 494 proteins and the Homeobox domain PF00046 with 372 proteins.

5In principle our nearest neighbor classification algorithmcould also have predicted families with 2 protein mem-
bers. However, the performance for small families decreases fast and we selected a cutoff of 3.

6~2000 MeSH terms that occurred with only one protein were removed. These MeSH terms do not link any
proteins.
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Figure 6.2: Distribution of the 27,682 proteins over the 2503 Pfam families. 892 Pfam families
(36%) have only 1 or 2 proteins, 1611 have 3 or more proteins. 296 Pfam families, or 12%, have
20 or more proteins.

1 2 5 10 20 50

1
10

10
0

10
00

10
00

0

# Pubs per Protein

# 
P

ro
te

in
s

Figure 6.3: Distribution of 26,411 publications over the 15,217 proteins from 1611 Pfam families
(with size 3 or more protein members). The average number of different publications referenced
per protein is 1.7. But 67% of the proteins (10,220) have only1 document. An additional 18%
have 2 documents. 97% (14,741) have 5 or less documents. One protein has 64 documents8.
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6.2.2 The Vector Space Model in Information Retrieval

The vector space model in Information Retrieval (IR) represents documents in (typically high-

dimensional) keyword space [Manning and Schütze, 1999, Baeza-Yates et al., 1999]. Here we

have adapted that model to represent proteins in MeSH keyword space (see also Fig. 6.4 for an

illustration). Each coefficient of the protein vector in MeSH space is made up of what is called a

local weightwhich is then multiplied by aglobal weight. The local weight is typically referred to as

the term frequencyt fik. Heret fik is the number of publications cited for proteini in SwissProt that

are also indexed by MeSH termk in MEDLINE. The global weight, here denotedid fk represents

a weighting of the MeSH term dimensionk, which is supposed to reflect the information content

of MeSH termk. The global weighting applied in this study is discussed in the next subsection.

The coefficient of protein vectori in MeSH term dimensionk is then given bywik = t fik ∗ id fk.

wik is thekth coefficient of the protein vectorpi . We used as the similarity measure between protein

vectors in MeSH space the cosine measure (a common distance measure for the vector space model

in IR [Baeza-Yates et al., 1999, Manning and Schütze, 1999, Deerwester et al., 1990, Berry et al.,

1995]): given protein vectorspi andp j in n-dimensional term space, the cosine between these

protein vectors is given by the normalized dot product:

cos(pi ,pj ) =
pipj

|pi ||pj |
(6.1)

6.2.2.1 Global MeSH term weighting

The most popular weight in IR is the Inverse Document Frequency (IDF) [Dumais, 1990,Manning

and Schütze, 1999]. The weighting factorid fk for a termk is defined asid fk = log( N
nk

) whereN

is the total number of documents in the collection andnk is the number of documents indexed by

term k. Note that if termk indexes every document it will have no information to discriminate

among the documents. This is reflected in the IDF weighting:nk = N and thereforeid fk = 0. If on

the other hand termk indexes only 1 document, then its ability to discriminate among documents

(this document from all others) is very high. These terms will receive the maximum weight:

nk = 1 and thereforeid fk = log(N). We have applied this standard IDF weighting to the MeSH

term dimensions and a modified IPFF (Inverse Pfam Frequency)weighting. Here each MeSH

term is weighted by the log of the inverse number of Pfam families that contain proteins with

referenced documents indexed by MeSH termk: ip f fk = log(NPF

nPF
k

) whereNPF is the total number

of Pfam families in the data set andnPF
k is the number of Pfam families that contain a protein which

reference a document indexed by MeSH termk. Both weightings improved recall by 20-40% for a

given cosine similarity. IPFF weighting performed slightly better than IDF and all results reported
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were obtained with IPFF9.

6.2.3 Algorithm for Pfam prediction in MeSH vector space

The classification algorithm employed here is closely related to the k-nearest neighbor algorithm

[Duda et al., 2000]. Instead of considering the k nearest protein neighbors of a proteini to make a

Pfam family prediction, our algorithm makes its predictionbased on the proteins found in a fixed

neighborhood of proteini. The neighborhood is defined by the cosine (see Eqn. 6.1). Fora given

proteini and neighborhood cosinecos(α), the neighborhood of proteini is delimited by a hyper-

cone with an opening angleα and centered around the protein vectorpi . For each Pfam family

the number of protein members within the hyper-cone neighborhood are counted. Our algorithm

returns a ranking of Pfam families based on this number of proteins in the neighborhood, i.e. the

family with most proteins in the neighborhood is ranked first. Note that not all Pfam families

have the same number of protein members and our algorithm is biased towards predicting larger

families, as they have more protein members. To weaken this effect, we limited the maximum

family size to 20 protein members10. See Fig. 6.4 for an illustration.

6.3 Results

6.3.1 Pfam Predictions for Proteins

Figure 6.5 shows the prediction success of our algorithm in terms of proteinsrecalled, i.e. the

number of proteins for which the Pfam family was predicted correctly. The x-axis indicates the

cosine of the neighborhood angle. The y-axis on the left shows the number of proteins and the y-

axis on the right the percentage of total proteins. Note thatour algorithm does not necessarily make

a prediction for a protein. The red, dashed curve shows for how many proteins predictions could be

made at the respective neighborhood size. For small cosines(i.e. large angelsα) predictions for all

proteins can be made. But atcos(α) = 0.6 (α ∼ 53o), for example, only 47% of the proteins have

a Pfam family prediction (only proteins can be predicted that have other proteins in the respective

neighborhood).

9Besides IDF, IPF and IPFF weightings, we also applied entropy based weighting measures for MeSH term oc-
currences with proteins and Pfam families. Such entropy based measures take not only into account if a MeSH term
occur rs with a protein or Pfam family, but also the frequencyof co-occurrence (i.e. the number of documents indexed
by the MeSH term and also referenced by the protein or Pfam family). No significant improvement in the results over
IPF and IPFF was found.

10We also ranked Pfam families based on the number of protein members in the neighborhood normalized by Pfam
family size. This biased the prediction towards smaller families. As there are many more small families in the data
set, the overall prediction success of the algorithm was lower.
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MeSH 1

MeSH 2

Protein i

alpha

Protein 1 (Pfam 1)

Protein 2 (Pfam 2)

Protein 4 

Neighborhood boundary

Protein 3 (Pfam 2)

Protein 5 

Protein 6 

Figure 6.4: Illustration of classification algorithm and protein vectors in (reduced, two-
dimensional) MeSH space. If protein i’s Pfam family is to be predicted, the protein members
of each Pfam family in the cosine neighborhood of proteini are counted. The Pfam families are
then ranked by the number of members they have in the neighborhood. In the illustrated case,
proteini has two protein members of Pfam family 2 and one from Pfam family 1 in its designated
cos(α) neighborhood.
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Figure 6.5: Prediction success for 15,217 proteins from 1611 Pfam families. Atcos(α) = 0.3 47%
of the proteins have their Pfam family predicted correctly by the first predicted family. For 70% of
the proteins the correct Pfam family is ranked among the first5 families. For 77% (an additional
7%) among the first 10 families.

The green curve in Fig. 6.5 shows the number of proteins for which the first ranked Pfam

family was the correct family. Atcos(α) = 0.3 (α ∼ 73o), for 47% (7115) of the proteins the first

ranked family was the correct family. Note that the prediction is made into 1611 Pfam families.

Disregarding knowledge of the family sizes, we would expecta success rate of 1/1611= 0.06%

when predicting Pfam families by chance. Our prediction result represents a> 750 fold increase

over such a Pfam prediction by chance. Of further interest isthat for an additional 12% of the

proteins the Pfam family ranked second is the correct family. For 70% of the proteins (an additional

11%) the correct Pfam family is among the Pfam families ranked first to fifth, and for 77% the

correct family is ranked first to tenth.

6.3.2 “Misclassifications” into related families

These results raised the question if the top ranked Pfam families are very different and, in cases

where the correct Pfam family is not ranked top, choosing thetop ranked family would be a com-

pletely wrong classification, or, if the top ranked familiesare closely related, and therefore clas-

sification into the top ranked family would still provide thecorrect functional annotation of the

protein in most cases. We identified the kinds of misclassifications between Pfam families that

were most frequently made by our algorithm. The graph in Figure 6.6 shows the most frequent
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Figure 6.6: Misclassifications among Pfam families. The nodes in this directed graph are the
Pfam families. The size of each node indicates the number of correctly predicted proteins for the
respective family. The numbers 1-6 indicate the cliques of Pfam families discussed in more detail
below. The graph was created with the Fruchterman-Reingoldalgorithm in Pajek [Batgelj and
Mrvar, 2004].

misclassifications between Pfam families for the proteins that had their correct Pfam family ranked

between second and tenth11. The cosine neighborhood was set atcos(α) = 0.4 (α = 66o). The

graph shows a directed link between two Pfam families if 3 or more proteins from the Pfam family

where the link originates had the Pfam family where the link ends ranked higher than the correct

Pfam family (i.e. the Pfam family where the link originated). Fig. 6.6 only shows the 473 Pfam

families with such links among them12. The graph clearly indicates that Pfam families cluster into

cliques in MeSH space. Many of the cliques are small, and there are fewer, more highly connected

cliques that are larger.

We found three major types of Pfam families that were connected in cliques and we present

11Note that there are no mispredictions for the 47% of proteinsthat have their family ranked first.
12Many of the smaller families were filtered out by the cutoff of3 proteins. We have observed, however, that the

cliques shown are robust to parameter variations, such as protein cutoff or cosine neighborhood size.
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PF00979: Reovirus outer capsid protein, Sigma 3

PF01518: Sigma NS protein

PF03084: Reoviral Sigma1/Sigma2 family

PF01616: Orbivirus NS3

PF01718: Orbivirus non-structural protein NS1, or hydrophobic

tubular protein

PF01700: Orbivirus VP3 (T2) protein

PF01516: Orbivirus helicase VP6

PF00897: Orbivirus inner capsid protein VP7

PF00898: Orbivirus outer capsid protein VP2

PF00901: Orbivirus outer capsid protein VP5

Table 6.1: This clique contains 7 orbivirus protein families (5 structural and 2 non-structural) that
are all linked to each other. In addition there are 3 Reovirusprotein families. Orbiviruses are a
genus under the RNA virus family Reoviridae, so they are related. See also the lower plot in Fig.
6.7, showing that MeSH terms Bluetongue virus and Reoviridae link the families in this clique.
The Bluetongue virus is a species of the Orbivirus genus. It seems the Bluetongue virus is the
most studied species of the Orbivirus genus.

2 examples for each type: (i) Pfam families related to different viruses, examples being the Or-

biviruses of clique 1 and Rotaviruses in clique 2 in Fig. 6.6 and in Tables 6.1 and 6.2, (ii) Pfam

families that are linked due to related enzymatic functions, examples being Hydrolases in clique 3

and Dehydrogenases in clique 4 in Fig. 6.6 and in Tables 6.3 and 6.4 and (iii) Pfam families that

are subunits of proteins or protein complexes, examples being the ATP Synthase subunits in clique

5 and Cytochrome C Oxidase subunits in clique 6 in Fig. 6.6 andin Tables 6.5 and 6.613. The

different cliques of Pfam families are listed and discussedin the Tables 6.1 - 6.6 and their captions.

Plots of the protein-MeSH tf*ipff association matrix are shown in Figures 6.7. The upper plot

shows that only a few MeSH terms are highly associated and specific to a clique and its Pfam

families. The lower plot shows the 20 MeSH terms most associated with the proteins from the

6 cliques of Pfam families. These MeSH terms are very specificto the respective Pfam families.

The indexing of the publications in MEDLINE must be very consistent and specific to achieve

such high prediction success with such few, very specific MeSH terms. Considering that 85% of

proteins only cite one publication, almost all the literature cited by correctly predicted proteins of

a family needs to be indexed by this few, specific MeSH terms for the family.

13Note that especially the distinction between cliques basedon enzymatic function and being a protein subunit is
not always clearcut.
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PF00426: Outer Capsid protein VP4 (Hemagglutinin)

PF00434: Glycoprotein VP7

PF00989: Rotavirus major capsid protein VP6

PF00981: Rotavirus RNA-binding Protein 53 (NS53)

PF01452: Rotavirus non structural protein

PF01525: Rotavirus NS26

PF02509: Rotavirus non-structural protein 35

Table 6.2: The Pfam database lists all these 7 families as belonging to the Rotavirus genus, which
like the Orbivirus genus in Table 6.1 belongs to the family ofReoviridae. The MeSH vocabulary
and the indexing process of the respective literature were specific enough to separate these 2 cliques
of protein families. They do share MeSH terms, for example ones related to the capsid proteins
(see lower plot in Fig. 6.7).

PF02289: Cyclohydrolase (MCH)

PF00795: Carbon-nitrogen hydrolase

PF01425: Amidase

PF00561: alpha/beta hydrolase fold

PF01546: Peptidase family M20/M25/M40

PF00557: metallopeptidase family M24

PF01244: Membrane dipeptidase (Peptidase family M19)

PF03575: Peptidase family S51

Table 6.3: A clique of pfam families that are hydrolases. Therelationship of these families is again
captured by the MeSH terms. The three most associate MeSH terms with this clique are all located
under D08.811.277-Hydrolases (see plot in Fig. 6.7). Note that there is not one MeSH term linking
all Pfam families in this clique. The clique is also less highly connected and more chain-like than
the highly connected cliques of virus families and protein subunits. This is a property we found
for other enzyme related cliques as well.

PF00106: short chain dehydrogenase

PF00107: Zinc-binding dehydrogenase

PF00465: Iron-containing alcohol dehydrogenase

PF00180: Isocitrate/isopropylmalate dehydrogenase

Table 6.4: Four Pfam families of different dehydrogenases.
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PF01991: ATP synthase (E/31 kDa) subunit

PF00231: ATP synthase

PF00213: ATP synthase delta (OSCP) subunit

PF04627: Mitochondrial ATP synthase epsilon chain

PF00119: ATP synthase A chain

PF00137: ATP synthase subunit C

PF01990: ATP synthase (F/14-kDa) subunit

PF01496: V-type ATPase 116kDa subunit family

Table 6.5: All families in this highly connected clique are ATP Synthase related. The main MeSH
terms associated and linking the proteins of these Pfam families are Proton Translocating ATPases
and Adenosinetriphosphatase. MeSH terms that proteins in this clique share with the proteins in the
clique of Cytochrome C Oxidase in Table 6.6 are related to mitochondria. Both protein complexes
are essential components of the cellular respiration pathway in mitochondria. Both cliques link up
and form one larger clique when weaker links are shown in Figure 6.6.

PF00510: Cytochrome c oxidase subunit III

PF00015: Cytochrome C and Quinol oxidase polypeptide I

PF02936: Cytochrome c oxidase subunit IV

PF02285: Cytochrome oxidase c subunit VIII

PF02284: Cytochrome c oxidase subunit Va

PF01215: Cytochrome c oxidase subunit Vb

PF02238: Cytochrome c oxidase subunit VIIa

PF02046: Cytochrome c oxidase subunit VIa

Table 6.6: Clique of Cytochrome C Oxidase subunits. Like ATPSynthase (Tab 6.5), Cytochrome
C Oxidase is an essential complex in the respiratory pathwayof mitochondria. MeSH terms Cy-
tochrome C Oxidase and Electron Transport Complex IV are clearly highly relevant and specific
to these families (see lower plot in Fig. 6.7).
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Figure 6.7: Image plots of the protein-MeSH tf*ipff association matrix for the 6 cliques of 45 Pfam
families and a total of 477 proteins. The proteins of the respective Pfam families and cliques are
the columns of the matrix and the MeSH terms are the rows. The upper image shows the 160 most
significant MeSH terms, with at least one tf*ipff value of 10 or more with a protein. Colors indicate
the magnitude of the matrix values, darker red indicating larger values, lighter yellow indicating
smaller values. Category D MeSH terms, containing most of the protein and enzyme related MeSH
terms, are indicated by the dashed horizontal lines. The lower image plot only shows the 20 most
significant MeSH terms and what they are.
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6.3.3 Factors influencing prediction success

We identified two factors that influence prediction success:(i) the number of protein members a

Pfam family has (we also refer to this asfamily size) and (ii) the number of publications that a

protein references. As mentioned previously, our classification algorithm is expected to perform

better for larger families. Larger families close to smaller families can lead to misclassifications of

the proteins from the smaller families. The top figure in Fig.6.8 shows the correlation of prediction

success with family size14. As family size increases, so does prediction success. The first ranked

Pfam family is the correct Pfam family for 70% of proteins from families of size 15 and close to

80% from families with sizes of 20 proteins. Proteins from families with size 3 or 4 are predicted

with a success rate of only 25%, however. The bottom figure shows how the prediction success is

correlated with the number of publications that a protein references. For proteins with only one

publication reference (85% of the proteins), at best 58% of the proteins can be predicted correctly

by the first ranked Pfam family. For proteins with 5 publication references recall increases to 76%

and for 10 publication references recall reaches 83%. 4 proteins had 40 or more publications, all

of these were predicted correctly.

6.4 Discussion and Conclusions

Our study shows that Pfam families do indeed cluster in MeSH space. We have shown this for a

large data set of 1611 Pfam families, whereas previous studies mostly have shown the separation of

few sets of functionally distinct groups of genes or proteins in some keyword space (e.g. [Andrade

and Valencia, 1998,Masys et al., 2001]). It should be noted that this clustering of sequence families

in MeSH is achieved through the literature, not in some keyword space that is associated with the

proteins directly. Such keywords, like the SwissProt keywords used in the study of MacCallum

et al. [MacCallum et al., 2000], might be assigned with the physical properties of proteins, like

sequence similarity, in mind. Clustering of Pfam families in such a keyword space would be less

surprising.

It should also be noted again that we filtered the literature aggressively, that we allowed each

document to be referenced by only one protein. Therefore, our results were not obtained by having

proteins and Pfam families somehow linked “artificially” byshared publications.

Also, our algorithm performed an unsupervised classification, the algorithm did not “learn” to

classify the Pfam families by fitting some parameters15. The classification results of our algorithm

14For both plots in Fig. 6.8, the neighborhood angle was not fixed but the best prediction for each protein was
selected. These prediction rates are the best that could be achieved with our algorithm if the neighborhood size would
be allowed to vary, for example with location of protein in MeSH space.

15We therefore did not perform a cross-validation study.
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Figure 6.8: The dependence of Pfam prediction success on family size (top) and number of publi-
cations referenced per protein (bottom). Both factors are correlated with prediction success. Note
that we found no correlation between family size and number of referenced publications, both
factors influence prediction success independently of eachother.
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might, however, be improved by allowing the neighborhood cosine size to vary, for example with

Pfam family size and/or location in MeSH space. This will require further study.

We have shown that Pfam families that are close in MeSH space,e.g. families that have many

mispredictions of proteins among them, are related. Such “confusions” of functionally related

Pfam families is for many Bioinformatics tasks actually desirable, as in many tasks, it is the func-

tional class of a group of genes or proteins that is sought, not the specific Pfam family.

Our study showed that a few MeSH terms seem to determine and specify a Pfam family or

a clique of related Pfam families. As mentioned before, successful prediction of proteins with

few literature citations per protein requires highly consistent and specific indexing of publications

by NLM in MEDLINE. It is surprising to us how well the indexingprocess must be performed

to achieve our results. That only few, very specific MeSH terms specify a Pfam family probably

explains why techniques like Latent Semantic Analysis (LSA) [Deerwester et al., 1990,Berry et al.,

1995], which exploit synonymy and polysemy in a vocabulary,and which we tested for this task

as well, did not improve our results significantly. Basically, Pfam families, or related cliques of

Pfam families, are already orthogonal to each other in MeSH space, and there is little synonymy

or polysemy in the vocabulary and indexing process.

We have shown that two factors greatly influence the ability to predict the Pfam families of

proteins: the amount of literature that they have and the size of their family. The latter is partly an

artifact of our classification algorithm. We want to exploreadding more literature, first by filtering

less aggressively and adding back some literature that is cited by proteins from more than one

Pfam family. Such literature could be added with some weights, similar to the IPFF weighting

of the MeSH terms. A second way to add literature would be by mining all of MEDLINE for

the respective protein names and symbols. We have discussedsome of the challenges that such

an approach poses. However, we don’t know of a study comparing a body of literature and the

specificity of its information when obtained from experts, like SwissProt citations, or when mined

by entity identification. It would be interesting and informative to repeat our study with a body of

literature obtained in the latter form, and compare it to theresults obtained here.
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Chapter 7

Summary and Possible Future Work

Work in two main areas of Bioinformatics was presented in this dissertation: gene expression

analysis and automated mining of functional information from literature. SVD was presented as

a well suited method for time series expression analysis, partly due to its robustness to noise in

expression data and its ability to allow for easy visualization of the data. Two algorithms based

on SVD were presented that identify significantly expressedgenes and group the genes into co-

expression clusters. In the second part of the work, a methodto mine functional information from

literature was presented. The usefulness of the developed method to the analysis of expression

data was illustrated. A large scale validation study of the method was performed: the classification

of proteins into sequence families based on literature was compared to the known, true sequence

classification.

There are several ways in which the presented methods could be extended. Our expression

analysis work focused on SVD, where the identified modes are linear combinations of the gene

expression vectors. As expression data become more complex(e.g. longer time courses and more

complicated processes that are observed) methods that can detect non-linear relationships among

expression patterns might become more valuable1. Methods that might be useful are Non-linear

PCA [Jolliffe, 1986, Schölkopf et al., 1996] or Kernel methods [Schölkopf and Smola, 2002], for

example.

The literature mining method that was presented can be extended as well. We focused in the

presented work on the MeSH vocabulary. The presented vectorspace model could be implemented

with different vocabularies. Terms could, for example, be extracted from the literature directly2.

We found in our work that publications in MEDLINE are indexedwith very specific MeSH terms,

e.g. the precise enzymatic function (EC class) an enzyme performs. This can cause two enzymes

1As was shown, for the current data sets, most times two linearmodes suffice to “explain” the data.
2One problem with that approach is that most publications arenot available as free text. MEDLINE only provides

the abstract for publications.

113
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that have related function, but not exactly the same function and therefore not exactly the same

MeSH terms, to appear unrelated in MeSH term space (i.e. the protein vectors are orthogonal to

each other in MeSH term space). The hierarchical organization of the MeSH vocabulary might

be used to eliminate this problem. For example, if a publication, referenced by a protein or gene,

is indexed with some MeSH term in MEDLINE, all MeSH terms above this MeSH term in the

hierarchy could be added to the term vector of the document (or protein/gene). This approach

is somewhat related to what is know as “spreading activation” [Salton and Buckley, 1988] (e.g.

“spreading” the “indexing activation” up the term hierarchy). We explored this approach when

classifying proteins into Pfam sequence families. Our classification results did not improve and

worsened if we propagated the indexing activation to the toplevel of the MeSH hierarchy. We

suspect that because many MeSH terms have multiple parent terms in the hierarchy, the activation

spreads too fast and information is lost. If the propagationup the hierarchy could be constrained,

maybe to a select set of branches in the MeSH tree, the approach might still be valuable. Further

research might be done in this area.
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Glossary3

C

cDNA stands for ’complementary DNA’, a single stranded DNA molecule that is complementary

to a full-length mRNA. Such strands are typically 500-5000 bases long.

cDNA microarrays microarray technology for transcript level measurements that use cDNA strands

as probes on the chip.

cell-cycle the temporal cycle of cellular processes that leads to the division of a cell. Typically

this cycle is divided into (i) G1 phase, growth and preparation of the chromosomes for repli-

cation, then (ii) S phase, synthesis of DNA (and centrosomes), then (iii) G2 phase, which is

preparation for (iv) M phase, mitosis, when the actual division of the cell and nucleus occur.

central dogma (of molecular biology) the coding of genes in DNA which are transcribed into

mRNA which in turn are translated into proteins.

co-expressiongenes that have similar expression values across differentconditions or experi-

ments are calledco-expressed(’similar’ needs to be defined and measured with a similar-

ity or distance measure). Clustering algorithms attempt toidentify groups (or clusters) of

co-expressed genes. Co-expressed genes are assumed to be co-regulated and functionally

related.

complementary (sequences)are nucleic acid sequences that can form a double-stranded structure

with another nucleic acid sequence by following base-pairing rules (adenine (A) pairs with

thymine (T) and cytosine (C) with guanine (G)). The complementary sequence to GTAC for

example, is CATG.

comparative hybridization (see ’competitive hybridization’)

3This is a still incomplete glossary.
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competitive hybridization in cDNA microarrays the ’competitive’ hybridization process of re-

verse transcribed and fluorescently labeled cDNA strands from test and control mRNA sam-

ples. Competitive hybridization is supposed to take care ofartificial ’spot-effects’ on mi-

croarray chips.

D

DNA (nucleotides) a nucleotide is an organic compound with a molecular structure that contains

a nitrogen-containing unit (base) linked to a sugar and a phosphate group. Four different

nucleotides (cytosine, thymine, adenine and guanine), differing only in their base, comprise

the DNA.

E

eigengenewe denote as eigengenes the right-singular vectors (row vectors ofVT) of a SVD of a

gene expression matrix X. The eigengenes are linear combinations of the gene expression

vectors (rows) of agene expression matrix X. The first few eigengenes typically capture the

dominant patterns of expression change contained in agene expression matrix.

eigenassaywe denote as eigenassays the left-singular vectors (columnvectors of matrixU ) of a

SVD of agene expression matrix X. The eigenassays are linear combinations of the expres-

sion profiles (columns) of agene expression matrix X.

expression signature(or ’finger-print’) a characteristic state of the Transcriptome that distin-

guishes different cell, tissue or phenotypes. Such ’signatures’ could be very beneficial for

early detection of diseases, for example.

expression vectora gene’s expression values across different samples/time points. Typically a

row in agene expression matrix Xwhere the rows refer to the genes and the columns to the

samples/time points.

expression profile the measured expression values of a all genes on a microarray. Typically a

column in agene expression matrix Xwhere the rows refer to the genes and the columns to

the samples/time points.

F

fold change an approach often chosen to identify genes significantly changing in expression be-

tween two experiments or to filter genes before further processing. A threshold on the ratio
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of a gene’s expression over some control expression value isapplied. Typical values for such

fold-change thresholds range between 2 and 3 (genes with lower ratio than the threshold be-

ing filtered out).

functional theme we use this term to denote significant association of a group of genes with

some biological function, e.g. a group of co-expressed genes that can be associated with

some cellular process.

G

gene expression matrixa matrix of gene expression values obtained from microarrayexperi-

ments. Typically a row refers to a gene’s expression vector across the measured assays

and a column represents the expression values of all the genes measured with a single as-

say/microarray.

genotype the genetic constitution of an individual, either overall or at a specificlocus in the

genome (seephenotype).

H

homolog (or homologous gene) - two or more genes whose sequences are significantly related

because of close evolutionary relationship, either between species (orthologs) or within a

species (paralogs).

high-throughput experiments/technologies

hybridization process in which two complementary nucleic acids strands interact through hydro-

gen bonds so that double stranded DNA-DNA or DNA-RNA structures are formed. Between

DNA strands adenine (A) pairs with thymine (T) and cytosine (C) with guanine (G). For ex-

ample, the complementary sequence to GTAC is CATG. The tendency of complementary

nucleic acid strands to hybridize is the basis of microarraytechnology.

I

induction genes that increase in expression in time, or whose expression level is observed to

be above their normal baseline level in a certain condition,are calledinduced (see also

repression).
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L

locus a unique chromosomal location defining the position of an individual gene or DNA se-

quence.

M

MeSH Medical Subject Heading nomenclature used by the National Library of Medicine to index

all publications in MEDLINE. MeSH is a hierarchical nomenclature of 22,000 key terms

organized under main headings like Organisms, Diseases, Chemicals and Drugs, etc. The

MeSH key term hierarchy can be linked to genes (or other biological entities like proteins)

through publications in MEDLINE that mention the respective genes.

N

Nucleotide is an organic compound with a molecular structure that contains a nitrogen-containing

unit (base) linked to a sugar and a phosphate group. Four different nucleotides (cytosine [C],

thymine [T], adenine [A] and guanine [G]), differing only intheir base, encode the DNA

sequence of genes.

O

oligo-nucleotides relatively short sequence of nucleotides, in the oligo-nucleotide chip technology

on the order of 25 nucleotides.

P

phenotype the observable characteristics of a cell or organism (seegenotype).

polysemy discussed in the context of Latent Semantic Analysis. Polysemy refers to the phe-

nomenon that one keyword can refer to several concepts. (seealsosynonymy)

principal component score vectors(also just calledscores) the column vectors of the orthogonal

matrix T of the principal component decomposition of a matrixX:X = 1āT + TPT . The

scores are the coordinates of the row objects ofX in the space of theprincipal component

loading vectors.
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principal component loading vectors (also just calledprincipal components)the row vectors of

the orthogonal matrixPTof the principal component decomposition of a matrixX:X = 1āT +

TPT . The principal components are the eigenvectors of the covariance matrix ofX.

R

repression genes that decrease in expression in time, or whose expression level is observed to

be below their normal baseline level in a certain condition,are called repressed (see also

induction).

S

scree plot term introduced by Cattell [Cattell, 1966] to denote the plot of the singular values (or

singular values squared) identified by SVD. Cattell proposed to use the scree plot to identify

the significant components in a SVD analysis. The scree plot tends to decrease sharply

initially, for the components that are associated with signals in the data, and then levels off

for the components that are mostly associated with noise.

scores seeprincipal component score vectors

spot effects artifical effects on measured expression values due to artifacts of the spotted probes on

a cDNA microarray. Competitive hybridization of a reference and the test sample mRNA and

subsequent normalization of the two measured fluorescent signals is supposed to eliminate

spot effects.

synonymy discussed in the context of Latent Semantic Analysis. Synonymy refers to the phe-

nomenon that several keywords can refer to the same concept.(see alsopolysemy)

T

transcriptional response seeexpression vector.

Transcriptome all the transcripts of an organism (similar to ’Genome’ and ’Proteome’)
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V

vector space modelin Information Retrieval, a model that represents documents as vectors in

keyword or term space (the terms contained in the documents). A similarity measure be-

tween documents can be defined (typically the cosine of the angle between the document

vectors), and documents are retrieved based on their similarity with the query term vector.

See [Baeza-Yates et al., 1999,Deerwester et al., 1990,Berry et al., 1995].



Appendix A

Biology Background

A.1 The Central Dogma of Molecular Biology

Thecentral dogmaof molecular biology (see also Fig. A.1) states that the information for a pro-

tein’s sequence which is encoded in deoxyribonucleic acid (DNA) by sequences of four different

nucleotides, is firsttranscribedinto messenger RNA(mRNA) and thentranslatedinto proteins.

The number of genes in humans was originally thought to be around 100,000 but has been revised

to between 25,000 and 30,000 [Consortium, 2001,Venter et al., 2001]1. Proteins are sometimes re-

ferred to as themolecular machinesof a living cell, they are involved in one way or another in most

of the biological processes in a cell. The control of proteinabundance in the cell is an important

mechanism by which the cell controls its internal state and responds to external stimuli. Protein

abundance is in large part controlled by regulation of transcription. It is this process, the regula-

tion of transcription, that microarrays are aimed at measuring for whole genomes. Sometimes the

complete set of transcripts in a cell is referred to asTranscriptome,similarly to theGenomefor the

set of all genes of an organism, or theProteome,the set of all proteins. Microarrays allow us to

measure the Transcriptome of a cell, or a set of cells.

Physicists could regard the mRNA transcript levels as a subset of the state variables describing

the molecular state of a cell. Being able to determine and eventually model the internal states

of a cell, versus only being able to observe external, phenotypical properties of a cell, promises,

among other things, greater success in earlier and more specific diagnosis of diseases and a better

understanding of life on the cellular and molecular level.

1The actual number of different proteins in a cell is actuallyhigher. Due toalternative splicingof the mRNA
transcripts before translation into proteins, more than one protein can be encoded by a single gene.Post-translational
modificationsfurther diversify the protein population of a cell.
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Figure A.1: The central Dogma of molecular biology. Figure adapted from
http://www.accessexcellence.org.



Appendix B

Gene Expression Data Analysis

A gene expression data set usually contains data from more than one experiment, i.e. microarray,

as multiple samples or time points are assayed for comparison. The data is therefore multidimen-

sional and commonly organized in matrix form, with each row corresponding to a gene or mRNA

transcript and each column to a sample or a time point. A specific valuexi j in the matrix corre-

sponds to the measured expression value for a specific genei for assayj, where the assay typically

corresponds to a certain sample or time point. The rowi in a gene expression matrix represents

genei’ s expression values across the samples and is referred to as theexpression vectoror tran-

scriptional responseof genei. Alternatively, the elements of columnj of the expression matrix is

referred to as theexpression profileof the corresponding assay (see also section??and specifically

section 2.1 for more detailed definitions).

B.1 Transformation, Normalization and Filtering

The purpose of transformation and normalization of data is to identify and remove artificial sources

of variation. A frequently performed transformation on microarray gene expression data is to take

the logarithm of the data. For data from cDNA microarrays experiments, upregulation and down-

regulation by a certain factor have the same absolute value after log transformation, just opposite

signs. Further, it has been shown that log transformed data have a more normal distribution than

raw intensities or ratios alone [Terry Speed’s Group, 2003], which can simplify further statistical

analysis. Another observation that has been made is that thevariance of the expression values is

less dependent on their mean after log transformation, indicating that the error causing processes

are multiplicative rather than additive [Terry Speed’s Group, 2003]. After log transformation the

error processes become additive and their effects are independent of the absolute magnitude of

expression.

A so-calledglobal normalizationof all data on a chip is performed to account for differences in
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labeling efficiency between the two fluorescent dyes in cDNA microarrays. A constant adjustment

is used to force the distribution of the log-expression values to have a median of zero on each

slide1. After suchglobal normalization, or global scaling,of the data, often times a form of

local standardizationof the individual gene expression vectors is performed. Themost frequent

standardizations are centering of the gene expression vectors, so the means are zero, and scaling

so the standard deviation or variance is one.

Filtering involves reducing the data by removing uninformative genes whose expression levels

did not change or were below a user-defined threshold. Filtering of genes is most often performed

by removing genes based on afold-changecriterion or based on the variance across samples or

time points. The fold-change filter removes genes whose expression change across the samples is

lower than a pre-specified fold-change with respect to a reference expression value (which could

be the average expression value of a gene across the samples or an expression measurement taken

before the start of an experiment, e.g. before virus infection). Such filters have to be applied before

the standardization of variance.

B.2 Distance Measures

To be able to explore the similarity of gene transcriptionalprofiles in expression space, first asim-

ilarity or distance measureneeds to be defined. The kind of distance measure used can impact the

output of further analysis and is therefore important to consider. The measures that have mostly

been used to analyze gene expression data have been the Euclidean Distance and the Pearson

correlation2. For time series data the Pearson correlation has been suggested as the often more ap-

propriate measure [Knudsen, 2002] as a similar pattern of expression change among genes is more

indicative of similarity than similar amplitude, or magnitude of expression. However, if the com-

mon standardizations of mean centering and unit variance are applied to the gene transcriptional

profiles, the two measures are closely related. The Pearson Correlation between two variables or

vectorsx = {x1, ...,xn} andy = {y1, ...,yn} is defined as

rxy =
1
n

n

∑
i=1

(
xi −x

σx
)(

yi −y
σy

) (B.2.1)

With the meansx = y = 0 and the standard deviationsσx = σy = 1, it follows that

1More complicated normalization techniques have been suggested for cases where dye biases can depend on spot
overall intensity and location on the array (print-tip effects) [Yang et al., 2001].

2Note that the Pearson correlation is actually a similarity measure, withrxy = −1 indicating largest dissimilarity
between vectorsx andy andrxy = 1 indicating largest similarity. Any similarity measure can be transformed into a
distance measure, for example a Pearson distance can be defined asdP

xy = 1− rxy.
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rxy =
1
n

n

∑
i=1

xiyi

The square of the Euclidean Distance for the two vectors is defined as

dxy =
n

∑
i=1

(xi −yi)
2

=
n

∑
i=1

(x2
i +y2

i −2xiyi) (B.2.2)

and usingσ2
x = 1

n ∑n
i=1x2

i = σ2
y = 1

n ∑n
i=1y2

i = 1 it follows that

dxy = 2n(1−
1
n

n

∑
i=1

xiyi)

= 2n(1− rxy) (B.2.3)

More complex measures, for example based on Information Theoretic measures likeMutual

Information[Cover and Thomas, 1991], might detect more complex causal relationships than the

linear Euclidean distance and Pearson correlation.

In the analyses presented in the dissertation, the gene expression data have been log trans-

formed, mean centered and standardized to unit variance.

B.3 Levels of Analysis of Gene Expression Data

Gene expression data analysis can be organized into three levels of increasing complexity:

1. The “simplest” analysis is on the level of single genes, where one seeks to find if a single

gene in isolation is differently expressed in different conditions.

2. The second level is a multi-variate analysis of gene expression data from multiple conditions

or time points. The goal of such an analysis can be to group samples that have been assayed

based on their gene expression profiles or to identify groupsof genes responding in a similar

way in a time series expression experiment. The most frequently applied methods for this

kind of analysis are clustering algorithms.
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3. At the third level the goal is to infer the underlying gene (and protein) networks that are

ultimately responsible for the patterns observed. Most of the work here attempts to re-

engineer the gene regulatory networks from the expression data.

The work here is mostly concerned with level 2. For completeness we give a brief overview of the

other levels of analysis as well.

B.3.1 Level 1: Detecting Differentially Expressed Genes

To identify genes that are differently expressed in two samples of mRNA one approach commonly

used is a simplefold changeapproach. A gene is declared to have significantly changed ifthe

absolute factor of change between the expression levels in the two samples is larger than a certain

threshold. Typical threshold values range from 2 to 3 [Szallasi, 2001, Cho et al., 1998, Browne

et al., 2001]. It has been argued, however, that such a simplefold change criterion is unlikely to

yield optimal results [Szallasi, 2001]. First, because thevariance in measured expression levels

depends on the mean expression level, a specific fold-changecan have different significance in

different regions of the spectrum of expression levels (though the log-transform can take care of

some of that effect [Terry Speed’s Group, 2003,Szallasi, 2001]). Second, artificial random effects,

like stochasticity in reverse transcription, especially for rare transcripts, can cause fluctuations in

measurements of transcript abundance that do not reflect real differences [Szallasi, 2001]. It has

been reported that a 1.5 - 2 fold ’pseudo-change’ in 1% of the quantified gene population can be

expected by chance in microarray experiments [Szallasi, 2001]. If one notes first the compound

effect of usually evaluating multiple experiments, secondly, that thousands of genes are assayed

on a single chip, and thirdly, that for most experiments one doesn’t expect a biologically caused

change in expression for more than 10% of the genes, this is a significantly large number of genes.

If replicate measurements are available, a more sophisticated approach to the question of dif-

ferential expression is the use of at-test[Baldi and Long, 2001]. In a t-test, the empirical means

and variances of the replicates of two conditionsi and j are used to compute a normalized distance

between the two populations in the form

t = (mi −mj)/

√

σ2
i

ni
−

σ2
j

n j
(B.3.4)

where, for each population,m andσ are the estimates for the mean and standard deviation andn

is the number of replicates in the two conditions.t follows approximately a student distribution.

Whent exceeds a certain threshold depending on the confidence level selected, the two populations

of replicate measurements are considered to be different. Because in the t-test the distance between

the population means is normalized by the empirical standard deviations, this has the potential for



B.3: LEVELS OF ANALYSIS OF GENE EXPRESSION DATA 139

addressing some of the shortcomings of the fold-change criterion. There is a fundamental problem

with the t-test for microarray data, however. For many experiments there are no replicates, or that

number is small because experiments remain costly and tedious to repeat.

B.3.2 Level 2: Multivariate Analysis of Gene Expression Data

Multi-variate analysis of gene expression data has typically focused on the application of clustering

techniques. Genes can be clustered based on their transcriptional response vectors (the vector of

expression values across conditions). Such genes are referred to as co-expressed and the assump-

tion is that these genes also might be co-regulated and therefore functionally related. Samples can

also be clustered based on their expression profiles. The goal here often is to find a grouping of

the samples based on their expression profiles, for example into samples that are from healthy and

samples that are from non-healthy tissue.

Clustering is a fundamental technique in exploratory data analysis and pattern discovery. The

application of clustering algorithms to some data assumes the preexistence of groupings of the ob-

jects to be clustered. Random noise and artifacts may have obscured these groupings. The objective

of the clustering algorithm is to recover the original grouping of the data. Sometimes clustering al-

gorithms are divided intosupervisedandunsupervisedalgorithms. Most often though, supervised

clustering algorithms are referred to asclassificationalgorithms. In classification tasks information

about the groupings of some of the data needs to be present. Typically a set of reference vectors or

classes is given and at least some of the objects (thetraining data) are assigned to one (or multi-

ple) of these. (Unsupervised) Clustering typically tries to infer groupings from the structure of the

data directly, when no predefined set of vectors or classes are known. Gene expression analysis

so far has mostly been exploratory. The functions of many genes under different conditions are

still unknown and therefore (unsupervised) clustering methods are more commonly used for gene

expression analysis3. Clustering can also be seen as providing a reduction of the dimensionality of

the expression data. If a few clusters of co-expressed genescan be identified in a gene expression

data set and these clusters can be associated with cellular functions or processes, then the data set

with potentially thousands of assayed genes has been “reduced” to a few significant underlying

cellular processes that generated the data.

3Some attempts with classification methods, such as support vector machines, have been made [Brown et al., 2000].
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B.3.3 Level 3: Gene Regulatory Model Inferences from Gene Expression

Data

A goal in Functional Genomics is to be able to build detailed gene regulatory models. Attempts

have been made to use gene expression data to infer and reverse engineer gene regulatory networks.

However, the task of reverse engineering of gene regulationnetworks from time series data has

proven difficult at the current stage of gene expression assaying. The number of time points assayed

is typically in the lower teens, the number of genes involvedare in the thousands and the data is

noisy. Some examples and reviews on the sate of gene regulation inference from expression data

are given in [D’haeseleer et al., 2000,D’haeseleer, 2000,?,Szallasi, 2001].

B.4 Clustering Algorithms applied to Gene Expression Data

Hierarchical Clustering Eisen et al. [Eisen et al., 1998] popularized the application of theag-

glomerative hierarchical clustering algorithmto gene expression data. The Pearson Cor-

relation was used as a similarity metric. The algorithm starts with N clusters containing a

single gene each. At each step in the iteration the two closest clusters are merged into a

larger cluster. In the average-linkage version of the algorithm, distance between two clus-

ters is defined as the distance between the averages of the clusters’ gene expression vectors.

After N-1 steps, all the genes have been organized into one hierarchy of clusters and this

hierarchy can be visualized in a tree where the branch lengthcorresponds to the measured

distance of the corresponding nodes (i.e. clusters).

Two variants of the average-linkage algorithm are single-linkage and complete-linkage algo-

rithms. The iterative agglomeration of the two closest clusters remains the same, but distance

between clusters is defined differently. For single-linkage, the distance between two clusters

is defined as the distance of the closest pair of elements fromthe two clusters. Complete

linkage defines the distance of two clusters as the distance of the pair of elements from the

two clusters with the largest distance.

These three clustering techniques will in many cases produce different partitionings of data,

as each favors, or is biased towards, a different cluster topology. Complete linkage favors

spherical clusters, whereas single-linkage is able to detect lower-dimensional clusters which

can be extended in only some dimensions of the space. Averagelinkage is placed somewhere

between the two but in general also favors spherical clusters. The bias towards spherical clus-

ters can be a problem for data where the different dimensions, i.e. assays, are correlated, as

is usually the case for time series data and other expressiondata where several samples come
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from the same categories, i.e. healthy and diseased samples.

K-means Tavazoie et al. [Tavazoie et al., 1999] applied a K-means clustering algorithm [Mac-

Queen, 1967] to a yeast cellcycle gene expression data set [Cho et al., 1998]. Tavazoie et al.

chose the Euclidean distance as the distance measure. The K-means algorithm partitions the

N genes into K clusters, where K has to be pre-set by the user. Kinitial cluster centroidsare

chosen - usually at random - and each gene is then assigned to the cluster with the nearest

centroid. Next, the centroid for each cluster is recalculated by averaging all gene expression

vectors belonging to the respective cluster. This process is iterated until no more changes

occur in the partitioning, or the amount of change falls below a pre-defined threshold. K-

means clustering minimizes the sum of the squared distancesof all genes to their respective

cluster centroids. Different random initial seeds can be tried to assess the robustness of the

clustering results.

Downsides to K-means clustering are that the number of clusters to be detected is an input

to the algorithm and needs to be known. For example, Tavazoiechose K=30 clusters for the

yeast cellcycle data. The same data has been clustered into 5coexpression clusters by visual

inspection by Cho et al. [Cho et al., 1998]. Further, like theaverage-linkage and complete-

linkage hierarchical clustering methods, K-means favors spherical cluster topologies. As

argued previously, such an assumption can in general not be made for gene expression data.

Multi-Variate Gaussians Mixture Models Yeung et al. [Yeung et al., 2001a] introduced an algo-

rithm that fits multi-variate Gaussian distributions to gene expression data4. An Expectation-

Maximization (EM) algorithm is used to maximize the likelihood and fit the multi-variate

Gaussian mixture models. Rather than classifying each geneinto one specific cluster, mem-

bership is indicated by the distributions’ values for each of the Gaussian distributions. This

can be interpreted as allowing each gene to have afuzzy membership degreein more than

one cluster, i.e. distribution. Such a feature might be valuable for gene expression data as

genes can participate in more than one biological process.

Because the models can be flexible, allowing for many different covariance matrices for the

Gaussian distributions, these models encompass other clustering schemes, like the Fuzzy K-

means algorithm (as the name suggests, the fuzzy version of the ’crisp’ K-means algorithm

discussed above). However, more complex implementations of the algorithm can also fit

unique and quite varying covariance matrices for each cluster. Different covariance matrices

that allow for clusters with different sizes, (elliptical)shapes and orientations in expression

space can be fit. Therefore, unlike K-means or hierarchical clustering, they are less biased

towards specific cluster topologies. All of this comes at a cost, of course, of having to fit

4This algorithm is also known as a variant of the Fuzzy K-Means, or Z-means algorithm.
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increasing numbers of parameters the more complex the models become. For the most com-

plex model, allowing size, shape and orientation to vary, there aren+n(n+1)/2 parameters

to estimate for each cluster, wheren is the dimensionality of the data [Yeung et al., 2001a].

Yeung et al. [Yeung et al., 2001a] propose to also use the probabilistic nature of the mod-

els to estimate the correct number of clusters, i.e. number of Gaussian distributions. They

provide an implementation of the algorithm that uses the Bayesian Information Criterion

(BIC) to help select appropriate number of clusters as well as model classes, i.e. covariance

matrices [Fraley and Raftery, 1998].

Self-Organizing Map The Self-Organized Map (SOM) [Kohonen, 1995] algorithm belongs to the

class of Artificial Neural Networks (ANN). It has been applied to microarray gene expression

data of the yeast cell cycle as well as a study of hematopoietic differentiation of four human

cell lines [Tamayo et al., 1999]. The cluster centers in a SOMare typically located on a grid.

A SOM performs a neighbor-preserving projection of the datafrom their higher dimensional

space onto the grid-space, which typically is 1, 2 or 3-dimensional. At each iteration, a

randomly selected gene expression vector is chosen and it then ’attracts’ the nearest cluster

center, plus some of its neighbors in the grid. Over time, fewer cluster centers are updated at

each iteration, until finally only the nearest cluster is drawn towards each gene, placing the

cluster centers in the center of gravity of the surrounding gene expression vectors.

Like in K-means, the user has to specify the number of clusters and therefore have some

a priori knowledge about the number of clusters to expect. Inaddition, the grid topology,

including the dimensions of the grid and the number of nodes in each dimension need to be

specified. For example, 8 clusters could be mapped to a 2x4 2D grid or a 2x2x2 3D cube.

The different geometries will impose different structureson the data.

Of benefit of the grid structure is that it helps to visualize the results. Nearby nodes in the grid

will correspond to clusters with more similar expression patterns than clusters corresponding

to nodes further away in the grid.

The following general statement about clustering in [Jain and Dubes, 1988] also has to be consid-

ered for clustering of gene expression data:

There is no single best criterion for obtaining a partition [clustering] because no precise

and workable definition ofclusterexists. Clusters can be of any arbitrary shapes and

sizes in a multidimensional pattern space. Each clusteringcriterion imposes a certain

structure on the data, and if the data happens to conform to the requirements of a

particular criterion, the true clusters are recovered.


