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Chapter 1

Introduction

1.1 Overview and Motivation of Work

This dissertation is comprised of several manuscriptany PhD work on developing new algo-
rithms for gene expression analysis and automated minifugafional information from literature
for Bioinformatics. Here in the introduction | will give adgt level overview of the work, present
its motivation, some of the necessary technical backgramachow the different parts of the work
relate to each other.

1.1.1 Gene Expression Analysis Work

Biology used to be a mainly hypothesis driven science in ieixperiments were carefully de-
signed to answer one or few very specific questions, like timetfon of a specific protein in
a specific context. The development and success of molebidkrgy and genetics, combined
with computer technology, has lead to the emergence of igabs that draw on inferences from
large amounts of data derived from so-calkegh-throughput experimenfsander, 1996, Lander,
1999, Zweiger, 1999, D’haeseleer, 2000]. These expersradlnw for the analysis and monitoring
of many cellular components, e.g. genes and proteins, allparThe genome sequencing projects
marked the first step into this new, data-rich and inferemised era, i.e. the new high-throughput
sequencing technologies allowed the focus of sequencisyifofrom individual genes of inter-
est to the whole genome of an organism. New high-througlgmiinologies, many of which are
based on the sequencing results, are being develdpgeske technologies enable the monitoring
of many genes or proteins and their interactions in partdlebtain a system level perspective

1Some already published or in part presented at conferesoese in preparation for publication [Wall et al.,
2003, Challacombe et al., 2004, Rechtsteiner et al., 208&hRteiner and Rocha, 2004a, Rechtsteiner and Rocha,
2004b, Rechtsteiner et al., 2005].
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of cellular processes. The terrRanctional Genomicand Systems Biologglescribe research at-

tempting such global characterization and understandingltular behavior [Kitano, 2001, Ideker

et al., 2001, Kanehisa, 2000]. The development of algostbomine the large amounts of data
from high-throughput experiments for biological inforneet is the main area of research within
the field ofBioinformatics.

The first part of this dissertation is concerned with aldons for analysis of data frommi-
croarray experiments to measure mRNA or gene transcript levels [Feidal., 1993, Schena et al.,
1995] (see appendix A.1 for some background on the biologyeok expression). Microarrays
allow for the simultaneous measurement of the expressi@midef tens of thousands of genes,
sometimes the whole genome, of an organism. One of the fuadi@iways in which a cell regu-
lates its biological processes and responds to changindjtamms is by regulating the expression
of its genes. Large scale gene expression measuremente caedbfor determining the functions
of newly identified genes, for obtainirggnetic fingerprint$or diseases and for getting a broader,
system-level understanding of life on the cellular levelijider, 1999,ldeker et al., 2001]. Two time
series data sets that will be discussed specifically in ibsedtation are gene expression data from
human fibroblast cells that were infected with a herpes iBuswne et al., 2001, Challacombe
et al., 2004] and expression data obtained during the geleof yeast [Cho et al., 1998]For the
herpes data, the goal of the study is to identify the genese/bapression responds significantly
to the virus infection, what their expression responseepadtare and what their functions in the
context of the virus infection are. For the yeast cell-cyatledy the goal is to identify the genes
that are significantly cell-cycle regulated, i.e. identiBnes that have periodic expression patterns
in synchrony with the cell-cycle, and identify which genes enduced (increased expression) in
which phase of the cell-cycle.

To answer such questions, much of the multi-variate datlysisaf gene expression data has
focused on clustering techniques. Examples are hieracbiagstering [Eisen et al., 1998], K-
means [Tavazoie et al., 1999], Self-Organizing Maps (SOM)rjayo et al., 1999] and the fitting
of Multi-Variate Gaussian Mixture Models (Mclust algonith) [Yeung et al., 2001a] (see appendix
B.4 for brief discussions of these algorithms and some af #ygplications). The assumption
underlying the use of clustering techniques is that a grdgenes participating in the same bio-
logical process is similarly expressed because their poteill be in similar demand. In chapter
4 concerns with the application of clustering algorithmginoe series gene expression data will
be discussed. It has been shown that clusters obtained Wféledt clustering algorithms for time
series expression data are not as distinct and discret@ression space as one might expect and
might be desirable when applying clustering algorithmsra@btem for some clustering algorithms

2The herpes data is analyzed in more detail, the cell-cydiz idaised to illustrate the developed clustering algo-
rithm.
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is also that they require the number of clusters in the dabeetknown. Examples of algorithms
needing such parameters are K-means, SOM and the Mclusttaigo Both problems might be
helped with proper visualization of the expression datarelee present Singular Value Decom-
position (SVD) [Press et al., 1992, Golub and Van Loan, 1386&n algorithm that can help in
such visualization. SVD is discussed in detail in chapten@ examples of different applications
of SVD are given. Chapter 3 presents the analysis of a germessipn data set of herpes virus
infected human fibroblast cells [Browne et al., 2001] withC5\ he study identified two clusters
of genes with very different response patterns. The bicklgignificance of the genes in the two
clusters was assessed manually, by a biologist. This assessalidated the derived clusters.

The findings of this study and insights we gained from othEidter et al., 2000, Alter et al.,
2000, Raychaudhuri et al., 2000, Cho et al., 1998, Tavazaik,e999, Tamayo et al., 1999] moti-
vated work on two new algorithms for gene expression armlyased on SVD and the subspaces
in expression space it can identify. The motivations andaterithms are presented in chapter 4.
The first algorithm uses the distribution of the polar angliegenes projected into two-dimensional
SVD subspaces to identify genes that are significantly esggid The second algorithm clusters
these significantly expressed genes based on the densltg aigtribution of their polar angles.
The application of the algorithms to a well studied exprassiata set is presented, the yeast cell-
cycle data set of [Cho et al., 1998]. Chapter 5 presents thicapion of the algorithms to the
herpes data set from chapter 3.

1.1.2 Automated Information Retrieval from Literature for Computational
Biology

In chapter 5 and 6 work on automated mining of biologicalinfation from literature is presented.
This work was motivated by the gene expression analysis wa&ented in the earlier chapters.
Although gene expression analysis provides useful insighbiologists, the biological meaning
of numerical gene expression analysis results is often beibas. Co-expression clusters can
contain hundreds of genes, as do the clusters presente@tech! for the yeast cell-cycle data
and in chapter 5 for the herpes virus infected human fibrolels. Although databases like
GenBank [Benson et al., 2004,NCBI, 2004] and SwissProftati[Bairoch et al., 2005, SIB/EBI,
2004] exist which contain functional annotations for indival genes and proteins, it is difficult to
identify the significant biological function, what we fregnutly term afunctional themefor large
numbers of genes in the context of an experiment. Furthelinfinsuch functional themes from
individual protein or gene annotations manually, ofteruress expert knowledge. Whereas much
of the annotations in databases is free text, progressng bbeade in standardizing annotations, for
example by the Gene Ontology (GO) consortium [The Gene ©gyoConsortium, 2004, Harris
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et al., 2004] which is developing a hierarchical ontologydnonotation of genes and proteins. But
as the annotation of the clusters in chapter 3 with GO by abioal expert showed, identifying
functional themes for large groups of genes and proteitipsives difficult.

In chapter 5 a algorithm is presented that will assist infifigng functional themes for groups
of genes or proteins (e.g. genes from co-expression c)stean automated fashion. Thector
space moddirom Information Retrieva(IR) [Baeza-Yates et al., 1999] was adapted to represent
and mine knowledge in the bio-medical literature databaB®MNE for information about clus-
ters of genes. The vector space model is used in IR for indeaia retrieval of documents based
on keyword queries. Here the Medical Subject Headings (MeBélused as the keyword vocabu-
lary. The presented technique identifies functional thetma&tsare associated with groups of genes
in the literature. An application to the gene expressiostelts of the herpes data is presented.

Although our results in chapter 5 show the validity of the @leped method, we present a
more quantitative validation in chapter 6. Here a largdesstudy on how well the developed
method can classify proteins into known protein sequenoditss (the Pfam family classification)
is presented. Over 15,000 proteins are classified into 1&@reht families based on 26,000
publications.

In section 1.2 a short description of the different arrayhtextogies used to measure gene
expression is presented. In appendix B an overview of dafysis techniques typically applied
to gene expression data is given.

1.2 Microarrays for Transcript Level Measurements on a Ge-
nomic Scalé

Microarrays are extensionslybridization(see Glossary) based methods like Southern and North-
ern blots that have been used for decades to identify andifuidividual nucleic acid sequences

in biological samples [Knudsen, 2002]. Hybridization ie firocess by which two complementary
nucleic acid sequences, like DNA or RNA strands, interadhat double-stranded structures are
formed. Complementary sequences are nucleic acid sequratean form such double-stranded
structures with each other by following base-pairing r@ie©®NA adenine (A) pairs with thymine

(T) and cytosine (C) with guanine (G) so that the complenrgrsaquence of GTAC would be
CATG). The main novelty of microarray technology is the @&pito measure the abundance of
transcripts of thousands of genes in a single experimehtavitingle chip. Several developments
in biology have made it possible to perform these measuremeisuch a highly parallel fashion.

3The termgranscript levels expression levelandmRNA levelsvill be used interchangeably. Similarly will the
termsmicroarrayandchip, or DNA chip,be used interchangably.
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Large-scale genome sequencing projects have made it ssiassemble collections of DNAs
that correspond to all, or a large fraction of, the genes inyneganisms from bacteria to humans.
Second, technical advances have made it possible to gerserays with very high densities of
DNA probes, allowing for tens of thousands of genes to beasgted on standard glass micro-
scope slides or similar sized chips. Finally, advances ordéiscent labeling of nucleic acids and
fluorescent detection have made the use of these arraysesiamu more accurate.

Two main microarray technologies have emerged, oligomticle arrays [Fodor et al., 1993]
and cDNA microarrays [Schena et al., 1995, Duggan et al 9, 19€Risi et al., 2000]. All microar-
rays have DNA nucleotide strands from genes to be assayiel] tae probes fixated at known
positions on the chip. The preparation of the pool of mRNAleotde strands to be assayed,
the target strands as well as the process of measuring the abundance of individBRNAs, are
similar for all microarrays as well. The target mMRNAs areerse transcribed to cDNA and are
fluorescently labeled in the process. After hybridizatiothie probe strands, the abundance of the
different mMRNAs is measured by the intensity of the fluorassgynal at the known probe strand
locations. Some of the details and differences between cBfNRoligonucleotide microarrays are
discussed in the next two sections.

1.2.1 cDNA Microarrays

One of the differences between cDNA microarrays and oligteutide arrays is that for the for-
mer the fixated probes are cDNA strands. cDNA standsdanplementary DNAa single stranded
DNA molecule that is complementary to a full-length mRNApigally 500-5000 bases long.
cDNA probes are placed on a coated glass microscope slidg ascomputer-controlled robot.
Besides the difference in the probes, another main diftereén oligonucleotide array technology
is that for cDNA microarrays, the cDNA target pool is a mixwf differently labeled cDNA from
samples to be tested and from some control or reference sdsgd also Fig. 1.1). The mRNA
from both the test and reference sample have been revenseritzed to cDNA and in the process
fluorescently labeled with two different dyes (usually Cy3d Cy-5-dUTP). Both fluorescent
cDNA samples are mixed and allowed to hybridize to the cDNgbess on the arrayComparative
hybridizatiorf of the test and reference cDNA target samples is supposekéocare of differ-
ences among the probe spots, like varying density of prafaaads, which could bias intensity
measurements and introduce so-calpdt effects The test and reference mRNA target samples
should be affected equally by such spot effects and the o&fiioorescent signal intensity of the
test to reference sample should then be free of spot effasebi

4Sometimes also referred to esmpetitive hybridizatiorhecause test sample cDNA and reference sample cDNA
‘compete’ for hybridization to the probes.
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To measure mMRNA abundance of the test and reference sarheléybridized, fluorescent
targets are excited with a laser and the spectra for the tves dye measured using a scanner.
Usually monochrome images from the scanner are importedsoftware in which the images are
pseudo-colored and merged (Fig. 1.1 #5 and #6). The datadrbgbridization experiment is
then reported as an intensity ratio (Cy-3/Cy-5) in whicmgigant deviations from 1 (no change)
are indicative of increased (>1) or decreased (<1) levedent expression relative to the reference
sample.

An advantage of cDNA microarrays over oligonucleotide ysris that the technology is non-
proprietary and less expensive. An online guide on how tadland arrayer from scratch can be
found at the Brown lab at Stanford University [DeRisi et @000]. More details on microarray
technology can be found in [DeRisi Lab, 2005, Leming, 20@2eha et al., 1995, Duggan et al.,
1999, Eisen and Brown, 1999].

1.2.2 Oligonucleotide arrays

The most used oligonucleotide arrays are commerciallyyred and distributed by Affymetrix
[Affymetrix, 2005, Fodor et al., 1993]. The discussion h&yeuses on the technology of these
often calledAffymetrixor justAffy chips Oligonucleotide arrays [Fodor et al., 1993] udigonu-
cleotides,relatively short sequences of 20 to 25 nucleotides, as pstraads on the chips. In
Affy chips these probes are synthesized directly onto thp shrface using a combination of
semiconductor-based photolithography and light-di:cteemical synthesis The main differ-
ence of the Affy chip technology to cDNA microarray techrgpjas that a gene’s expression level
is not measured with one kind of nucleotide probe strand, @ng type of cDNA probe strand at
each spot as for cONA microarrays. A set of typically aboutd#@rent oligonucleotide probe
pairs of length 20 to 25 are used to assay the expressiondéaedingle gene. Affymetrix there-
fore introduced a slightly different terminology than hasb used for cDNA microarrays. The 20
different oligonucleotide pairs used to assay a gene’sesgion level are referred to ppbesor
probe pairs the 20 different probe pairs for a specific gene are reféoes gorobe setOne of the
oligonucleotides of each probe pair iparfect matchio a gene’s sequence, the other is a so-called
mismatchsequence where the center nucleotide has been altered. i$imatth sequence serves
as a control and is supposed to detect background or nois&l sige to non-specific hybridization
of sequences that are not from the gene to be assayed but mawilae in sequence. Affymetrix’s
analysis software GeneChip calculates an expressionfil@vebch probe pair by subtracting the
mismatch value from the perfect match value. An expressaénevfor each gene, or probe set,

SOther technologies for producing oligonucleotide chims, éxample based on ink-jet printer technology, have
been developed [Stekel, 2003]
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Figure 1.1: A typical cDNA microarray experiment: 1.) olntaest and control cell populations.
2.) mRNA extraction. 3.) reverse transcription to cDNA anebfescent labeling. 4.) hybridization
of both samples to cDNA microarray. 5.) scanning of the idikdd array. 6.) the resulting image.
Figure adapted from http://www.cs.wustl.edu/~jbuhlkeséarch/array/
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is calculated by simple averaging the 20 probe pair diffeesnwith extreme value, or outlier,
removal.



Chapter 2

Singular Value Decomposition for Gene
Expression Analysis

As outlined above, one of the challenges in current biomfatics is to develop effective ways to
analyze global gene expression data. In addition to beirgwbader utility in analysis methods,
Singular Value Decomposition (SVD) and Principal Compdrfemalysis (PCA) can be valuable
tools for characterizing the structure of the data. SVD a@é Rre common techniques for anal-
ysis of multivariate data, and gene expression data areswigédld to analysis using SVD/PCA. A
single microarray experiment can generate measuremaritsoiesands of genes. Present experi-
ments typically consist of around a dozen assays, but casistari hundreds [Hughes et al., 2000].
Gene expression data are currently rather noisy, and SVdetaat and extract small signals from
noisy data. The goal of this chapter is to provide preciséaggtions of the use of SVD and PCA
for gene expression analysis, illustrating methods usimgle examples. Our aims are 1) to pro-
vide specific examples of the application of SVD methods atetpretation of their results; 2) to
establish a foundation for understanding previous apgpioa of SVD to gene expression analysis;
and 3) to provide interpretations and references to relate#t that may inspire new advances.

In section 2.1, the SVD is defined, with comparisons to othethmds described. A summary
of previous applications is presented in order to suggesttions for SVD analysis of gene ex-
pression data. In section 2.3 we discuss applications of ®\J2ne expression analysis, including
specific methods for SVD-based visualization of gene exiwasiata, and use of SVD in detection
of weak expression patterns. Some examples are given abpeeapplications of SVD to analysis
of gene expression data. The discussion in section 2.4 giva® general advice on the use of
SVD analysis on gene expression data, and includes refssa@acspecific published SVD-based
methods for gene expression analysis. Finally, in sectidrm@ provide information on some

1This chapter has been adapted from [Wall et al., 2003].

9



CHAPTER 2: SINGULAR VALUE DECOMPOSITION FOR GENE EXPRESSNO
10 ANALYSIS

available resources and further reading.

2.1 Mathematical definition of the SVD

Let X denote arm x n matrix of real-valued data with rank where without loss of generality
m > n, and therefore < n. In the case of microarray datg; is the expression level of the ith gene
in the jth assay. The elements of the ith rowXoform the n-dimensional vecta, which we refer
to as theexpression vectoor transcriptional responsef the ith gene. Alternatively, the elements
of the jth column of X form the m-dimensional vectay, which we refer to as thexpression
profile of the jth assay. The equation for the singular value decaitipa of X is the following:

X =USV' (2.1)

whereU is anm x n matrix, Sis ann x n diagonal matrix, an& " is also ann x n matrix.
The columns otJ are called thdeft singular vectors{uy}, and form an orthonormal basis for
the assay expression profiles, so thatj = 1 fori = j, andujuj = O otherwise. The rows of T
contain the elements of tmght singular vectors{ vy}, and form an orthonormal basis for the gene
expression vectors. The elementsSare zero everywhere except on the diagonal. The elements
on the diagonal are called tlsengular values Thus,S= diag(sy, ...,S). Furthermoreg > 0 for
1<k<r,ands, =0 for (r +1) < k <n. By convention, the ordering of the singular vectors is
determined by high-to-low sorting of singular values, wvitile highest singular value in the upper
left index of the S matrix.

Closest Rank-I Approximation. One important result of the SVD f is that the matrix(!)
in Eqn. 2.2 is the closest rank-I approximation6fn the sense that it minimizes the sum of the
squares of the residuals of the matrix elements.

|
X = Y UkskVi (2.2)
=]

Calculation of SVD. One way to calculate the SVD is to first calculsté andSby diagonal-
izing XTX:
XTX =vVvT (2.3)

and then to calculatd as follows:
U=xvst (2.4)

where the null space of spanned by thé&+1),...,n columns ofV is ignored in the matrix multi-
plication. Choices for the remainingr singular vectors in V or U (which have singular values of
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exactly zero) may be calculated using the Gram-Schmidbgadhalization process or some other
extension method. Note that Eqgn. 2.3 also illustrates ti@singular values squared correspond
to the eigenvalues of matriX' X. In practice there are several methods for calculating ¥ S
that are of higher accuracy and speed. A linear algebra amxtatmputation book like [Golub
and Van Loan, 1996] can be consulted for such algorithms.

2.1.1 Relation to Principal Component Analysis

There is a direct relation between PCA and SVD in the case evpgncipal components are
calculated from the covariance matrix. In this case, PCAlmformulated for a matriX with
dimensionsn x nand rankr the following way:

X=1a" +TP' (2.5)

where the first term is an outer vector product betwgencolumn vector of all 1's and length
m, anda’, a row-vector of lengttn containing the means of the column vectors of maXixT
is an orthogonain x n matrix with the column vectors being called thencipal component score
vectors andPT being an orthogonal x n matrix with its row vectors being the eigenvectors of the
covariance matrix of the column vectorsXf

V=(XX-1a")T(X-1a") (2.6)

. These row vectors dP' are called therincipal component loading vectors just principal
component vectorslypically the principal component vectors are normalizednit length. The
eigenvalue®f the covariance matrix indicate the amount of varianceéwap or modeled by the
corresponding eigenvectors. PCA and SVD can be directlypewed if matrixX is conditioned so
that its column vectors have mean zero, @e- 0. From equations 2.1 and 2.5 it follows that

usvi =TPT (2.7)

We know further that the row vectors of bott! andP' are the eigenvectors of the covariance
matrix XTX. Therefore
vT —pT

and it follows
us=T

Therefore, the principal component loading vector®bfcorrespond to the right-singular vectors
of VTand the score vectors df correspond to the left-singular vectors of mattx scaled by
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the corresponding singular values®fThe Euclidean length of each score vector is equal to the
corresponding singular value squared, equal the variaaygteied by the corresponding principal
component vector:

titi = suisu; = Siz

Most PCA implementations return for a matithe principal component vectors and the
corresponding variances (the corresponding eigenvaluine @ovariance matrix). The principal
component scores then have to be calculated by projectitheadbject vectors (rows of column
centered matrix) onto the principal component vectors:

T=(X-a")pP

In contrast, SVD algorithms in general provide all this mmf@tion without further calculations
in matricesU andV' plus the respective variances or square roots of variamctisingular
value matrixS,

2.2 lllustrative Applications of SVD and PCA

SVD and PCA have found wide-ranging applications. Here wsxilee several that also might
suggest potential applications to gene expression asalysi

Image processing and compressionThe property of SVD to provide the closest rank-| ap-
proximation for a matrixX (Eqn. 2.2) is used in image processing for compression argeno
reduction, a common application of SVD also in other fieldg.sBtting the small singular values
to zero, we can obtain matrix approximations whose rankledbha number of remaining singular
values (see Egn. 2.2). Each teumv{ is called aprincipal image Very good approximations
can often be obtained using only a small number of terms g 1993]. SVD is applied in
similar ways to signal processing problems [Deprette, 1.988

Immunology. One way to capture global prototypical immune respongepet is to use PCA
on data obtained from measuring antigen-specific IgM (damtirantibody in primary immune
responses) and IgC (dominant antibody in secondary immesmonses) immunoglobulins using
ELISA assays. Fesel and Coutinho [Fesel and Coutinho, 1®@8kured IgM and IgC responses
in Lewis and Fischer rats before and at three time points aftenunization with myelin basic
protein (MBP) in complete Freud’s adjuvant (CFA), which rokvn to provoke experimental al-
lergic encephalomeyelitis (EAE). They discovered digtared mutually independent components
of IgM reaction repertoires, and identified a small numbestadin-specific prototypical regulatory
responses.
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Molecular dynamics. PCA and SVD analysis methods have been developed for ¢barac
izing protein molecular dynamics trajectories [Garcia92,9Romo et al., 1995]. In a study of
myoglobin, Romo et al. [Romo et al., 1995] used molecularagyics methods to obtain atomic
positions of all atoms sampled during the course of a sinaaf he higher principal components
of the dynamics were found to correspond to large-scaleanstof the protein. Visualization of
the first three principal components revealed an intergsyipe of trajectory that was described as
resembling beads on a string, and revealed a visibly sparspleg of the configuration space.

Small-angle scattering.SVD has been used to detect and characterize structurahietkates
in biomolecular small-angle scattering experiments [Cheal., 1996]. This study provides a
good illustration of how SVD can be used to extract biolotjyoameaningful signals from the data.
Small-angle scattering data were obtained from partiatifplded solutions of lysozyme, each
consisting of a different mix of folded, collapsed and udéd states. The data for each sample was
in the form of intensity values sampled at around 100 difieseattering angles. UV spectroscopy
was used to determine the relative amounts of folded, cadld@mnd unfolded lysozyme in each
sample. SVD was used in combination with the spectroscag b extract a scattering curve for
the collapsed state of the lysozyme, a structural interatedhat was not observed in isolation.

Information Retrieval. SVD became very useful in Information Retrieval (IR) to dedth
linguistic ambiguity issues. IR works by producing the doemts most associated with a set of
keywords in a query. Keywords, however, necessarily cantaich synonymy (several keywords
refer to the same concept) and polysemy (the same keywordefanto several concepts). For
instance, if the query keyword is "feline", traditional IRethods will not retrieve documents using
the word "cat" - a problem of synonymy. Likewise, if the quémyword is "java", documents
on the topic of Java as a computer language, Java as an Isldndanesia, and Java as a cof-
fee bean will all be retrieved - a problem of polysemy. A tege known as Latent Semantic
Indexing (LSI) [Berry et al., 1995] addresses these problbyncalculating the best rank-l approx-
imation of the keyword-document matrix using its SVD. Thisguces a lower dimensional space
of eigen-keywordandeigen-documentsingular vectors). Each eigen-keyword can be associated
with several keywords as well as particular senses of kegsvdn the synonymy example above,
"cat" and "feline" would therefore be strongly correlateihvwhe same eigen-keyterm. Similarly,
documents using "Java" as a computer language tend to useahtre same keywords, but not
many of the keywords used by documents describing "Javabfésecor Indonesia. Thus, in the
space of singular vectors, each of these senses of "javasieted with distinct eigen-keywords.
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2.3 SVD analysis of gene expression data

In this section examples of SVD-based analysis methods @lgeddo gene expression data are
provided. Before illustrating specific techniques, we wicuss ways of interpreting the SVD in
the context of gene expression data. This interpretatidntia® accompanying nomenclature will
serve as a foundation for understanding the methods desddaker. A natural question a biologist
might ask is, "What is the biological significance of the SVD'here is no general answer to this
guestion, as it depends on the specific application. Clasfsesperiments can be provided as a
guide for individual cases, however. Two broad classes pliegtions under which most studies
will fall are defined:systems biology applicationanddiagnostic applicationsin both cases, the
n columns of the gene expression data maXizorrespond to assays, and the&ows correspond
to the genes. The SVD of produces two orthonormal bases, one defined by right singetdors
and the other by left singular vectors. Referring to the da&dims in section 2.1, the right singular
vectors span the space of the gene expression ve@graind the left singular vectors span the
space of the assay expression profflag}. Following the convention of Alter et al. [Alter et al.,
2000], we refer to the left singular vectofsy} aseigenassayand to the right singular vectors
{vk} aseigengenesWe sometimes refer to an eigengene or eigenassay gehesdsal singular
vector, or, by analogy with PCA, aamponentWe refer to a triplet of corresponding eigenassay,
singular value and eigengene as a SVD mode. Eigengenesasggy/s and other definitions and
nomenclature in this section are depicted in Figure 2.1pplieations related to systems biology,
we generally wish to understand relationships among gehas.signal of interest in this case is
the gene expression vectgr By Equation 2.1, a gene expression vegjotan be expressed as a
linear combination of the eigengengs}:

)
Gi = > UikSVi (2.8)
Feus

The ith row of U,g/ (see Fig. 2.1), contains the coordinates of the ith genesssjon vector in
the basis of the scaled eigengersgsy. Note that becausé is orthonormal (as ib) it follows

XV=US (2.9)

and that the new basis is a rotation of the original basisovect

If r <n, theg are lower dimesnional than thg, although they capture all the information of
theg;. Note that due to noise in the datas n in any real gene expression data set. Similar to
other applications of SVD like in image processing or Latemantic Analysis (see discussions
above), the last 'few’ (depending on the problem and din@radity n of the data) singular values
in Sare often found to be close to zero and considered as onlyragtoise in the data. The
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Figure 2.1: Graphical depiction of SVD of a matdxwith notations adopted in this section.

corresponding dimensions are therefore usually negleotéte analysis (i.e. thesg are set to
zero). Use of the SVD in such a way is usually referred tdiagensionality reductionf the data
(see for example aldonage Processingn section 2.2).

In diagnostic applications, we may wish to classify tissamgles from individuals with and
without a disease. Referring to the definitions in sectidn the signal of interest in this case is
the assay expression profég. By Equation 2.1a; can be expressed as a linear combination of
the eigenassayi}:

;
aj = Z VijkSkUk (2.10)
k=1

The jth column oV T, a’j (see Fig. 2.1), contains the coordinates of the jth assayarco-
ordinate system (basis) of the scaled eigenassayg, The a’j capture the expression profiles
of the assays im < n dimensions, which is always fewer than tmedimensions of the original
expression profilea;. So, in contrast to gene expression vectors, SVD can géyeedluce the
dimensionality of the assay expression profiles withoutewtng dimensions with small singular
values.

As hinted on above, analysis of the spectrum formed by thgutan valuess, can lead to the
determination that fewer thamcomponents capture the essential features in the dataicadisp
cussed in more detail below in the section on the visuabradif the SVD (section 2.3.1). In the
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literature the number of components that results from suchralysis is sometimes associated
with the number of underlying biological processes thaegige to the patterns in the data. It is
then of interest to ascribe biological meaning to the sigaift eigenassays (in the case of diag-
nostic applications), or eigengenes (in the case of systeohsgy applications). For example, in
diagnostic applications one eigenassay might correspmadcharacteristic expression profile of
healthy tissue whereas a second eigenassay might corcegparcharacteristic expression profile
of diseased tissue. In a systems biology application witle tseries expression data, two eigen-
genes might correspond to (roughly) average expressidilgsrof two different groups of genes
involved in two different biological processes. And eveaugh individual components (eigenas-
says/eigengenes) may not necessarily be biologically megfu on their own, biologically mean-
ingful signals might be found in two or higher dimensionall3%ubspaces (see, e.gmall-angle
scatteringin section 2.2). In the context of describing scatter plotsdction 2.3.1, we discuss the
application of SVD to the problem of grouping genes by exgi@svector, and grouping assays
by expression profile. This discussion will also touch ontthi@c of searching for biologically
meaningful signals. Sometimes it might not be possible solwe gene groups, either because
there really is no such structure in expression space, @usedt has been 'washed out’ by noise
in the data. In such cases it might still be of interest to idgnhe underlying gene expression
patterns through the eigengenes, and the expression seb$gse patterns span. This is a case
where the utility of the SVD distinguishes itself from th@igally used clustering techniques (see
also section 2.3.2). Finally we discuss some published plesf gene expression analysis using
SVD, and a couple of SVD-based gene grouping methods (se2io3).

2.3.1 Visualization of the SVD and the MatricesS,VT and U

Visualization is central to understanding the results gfligation of SVD to gene expression
data. For example, Figure 2.2 illustrates plots that arevel@rfrom applying SVD to Cho et
al.'s budding yeast cell-cycle data set [Cho et al., 1998]thke experiment, roughly 6200 yeast
genes were monitored for 17 time points taken at ten-mimitervals. To perform the SVD,
the data were pre-processed by replacing each measurentleritswogarithm, and normalizing
each gene’s expression vector to have zero mean and urdesthtieviation. In addition, an auto-
correlation filter was applied (see chapter 4) to filter ol26{Bgenes that showed primarily random
fluctuations in their expression profiles. The plots in Fig i2veal interesting patterns in the data
that we may wish to investigate further: plot a) shows a legebff of the relative variance after
the first few components; b) shows a pattern in the first eigeagrimarily resembling a steady
decrease, or decay; plots ¢) and d) show patterns with cgtilictures in the second and third
eigengenes.



2.3: SVD ANALYSIS OF GENE EXPRESSION DATA

17

a) b)
o
O S < P
§ ° - o O \O
g 8] N \
cg o } © O\
[} O~
% 3' o\o
N -
2 g O 3 o0,
= I . . o0
o
50 100 150
component time (min)
c) d)
<
g T O\O =}
g N \O O-0 _0
\ / \ A Q
e 0-0-0 ©
o
o O
] / -
N R :
S 4 OwQq-0~
] T T T T T T
50 100 150 50 100 150
time (min) time (min)

Figure 2.2: Visualization of the SVD of the Cho et al. [Cho ki 4998] yeast cell-cycle gene
expression data. Plots of relative variance (a); and thig(fifjssecond (c) and third (d) eigengenes
are shown. The methods of visualization employed in eaclel@e described in section 2.3.1.
These data inspired our choice of the sine and exponentiapa for the synthetic data of section
2.3.1.
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Figure 2.3: Gene expression vectors from the synthetic sketta Overlays of a) five noisy sine
wave genes and b) five noisy exponential genes.

A Synthetically Generated Example Data Set

To aid our discussion of visualization, we use a synthetnetseries data set with 14 sequential
expression level assays (columnsXyfof 2000 genes (rows oX). Use of a synthetic data set
enables us to provide simple illustrations that can serva mindation for understanding the
more complex patterns that arise in real gene expressi@n Gxnes in our data set have one of
three kinds of expression vector, inspired by experimgntadserved patterns in the Cho et al.
cell-cycle data: 1) noise (1600 genes); 2) noisy sine pa(2®0 genes); or 3) noisy exponential
pattern (200 genes). Noise for all three groups of genes veaelad by sampling from a normal
distribution with zero mean and standard deviation 0.5. Jihe pattern has the functional form
asin(2rt /140), and the exponential pattern the fone /190, a was sampled from the uniform
distribution over the interval (1.5,3) and b was samplednftbe uniform distribution over (4,8).

t contains 14 time points covering one period of the sine waweanalogy with the cell-cycle
data, the time points can be thought of as samples taken atrilihtarvals starting at t=0. Each
(synthetic) gene expression vector was centered to haven ofeero. Figure 2.3 depicts genes
of type 2) and 3).

2.3.1.1 Singular value spectrum

The diagonal values of S (i.es) make up the singular value spectrum, which is easily vizadl

by simply plotting the values. A singular value indicates iimportance of a SVD mode in terms
of the amount of variance in the data it explains. More spadlfi, the square of each singular
value denotes the variance in the data explained by thespwneling singular vector. The relative
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varianceﬁ/ yi s|2 are often plotted (see Fig. 2.4 a) and Fig. 2.2 a)). Cattallrberred to these
kinds of plots asscree plots[Cattell, 1966] and proposed to use them as a graphical rddtho
decide on the significant components. If the original vdeslare linear combinations of a smaller
number of underlying variables, combined with some lowelewise, the plot will tend to drop
sharply for first few singular values associated with theaurlyihg variables and then much more
slowly for the remaining singular values, causing an 'elbiovthe plot. Components (eigenassays
and eigengenes) whose singular values plot to the right cf sum elbow are ignored because
they are assumed to be mainly due to noise. In Figure 2.4 &) au@lbow is clearly visible at
component 3, as one might expect because only two lineadgp@ndent signals (except for the
noise genes), the sine and exponential patterns, are piegka data.

Other heuristic approaches for deciding on the significaid 8omponents for a data set have
been proposed. One approach is to require the cumulatatvesl/ariance of the selected compo-
nents to be larger than a certain threshold which is usuaipeddent upon the dimensionality of
the data. For gene expression time series data with aroundendissays it has been found that
the first 2 or 3 components usually capture 70% of the variantiee data [Holter et al., 2000]. In
the cell-cycle data of Cho et al., for example (see Fig. 2)2thg first three components capture
close to 70% of the variance. For our synthetic example datatlse first two components cap-
ture about 64% of the total variance in the data (Fig. 2.2fajelre-construct the data matrk
for the synthetic example data by using the first two comptmeme would obtaiX (2 (the best
rank-2 approximation oK), which would account for 64% of the variance in the data. Rera
native approach for component selection was proposed byitEaed Dunn [Everitt and Dunn,
2001]. They suggest a threshold for the variance capturddéindividual components. In their
approach, a component is selected as significant if itsvelaariance is larger than®/r, where
r is again the rank of matriX [Everitt and Dunn, 2001]. For our example data set this tiwkes
isth=0.7/14= 0.05, which again selects the first two components as signtfidaor the yeast
cell-cycle data set, with a threshold on the variancéhef 0.7/17 ~ 0.04, this approach would
select the first 5 components, illustrating that these Bgarapproaches for component selection
can lead to different results and can not be taken as labstrut

2.3.1.2 Eigengenes

When assays correspond to samplings of an ordinal or caniswvariable (e.g., time; radiation
dose; toxin concentration), a plot of the elements of therigneq vk} may reveal recognizable
patterns. In our synthetic data set, the first two eigengehew an obvious cyclic structure (Figs.
2.4 b, c; see also eigenvectors 2 and 3 in Fig. 2.2 for the ype#istycle data). Neither eigengene

2Also note that for a real data set, as the yeast cell cyclesata Figure 2.2 a), such a clear 'elbow’ is not visible
in the singular value spectrum.
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Figure 2.4: Visualization of the SVD of the synthetic datatmxa a) Singular value spectrum
(relative variance plot). The first two singular values agtddor 64% of the variance. The first
(b), second (c), and third (d) eigengenes are plotted v& fassays) in the remaining panels. The
first two eigengenes capture the signals of the sin and expi@hpatterns completely. There is no
signal in the third eigengene and it only represents noise.
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is exactly like the underlying sine or exponential patters the two patterns are not orthogonal.
However, each original pattern in the data is closely apipnated by a linear combination of the
first two eigengenes. When assays correspond to discredeiggntal conditions (e.g., mutational
varieties; tissue types; distinct individuals), visuation schemes are similar to those described
below for eigenassays. When the jth element of eigengésef large-magnitude, the jth assay is
understood to contribute relatively strongly to the overatiance of eigenassay a property that
may be used for associating a group of assays.

2.3.1.3 Eigenassays

Alter et al. [Alter et al., 2000] have visualized eigenassfy} resulting from SVD analysis of
cell-cycle data by adapting a previously developed cotatitng scheme for visualization of gene
expression data matrices [Eisen et al., 1998]. For visa@din, individual elements of) are
displayed as rectangular pixels in an image, and colordodéeng green for negative values, and
red for positive values, the intensity being correlatechviite magnitude. The rows of matrix

can be sorted using correlation with the eigengenes. Irr Attal.’s study, this scheme sorted the
genes by the phase of their periodic pattern. The informat@nmunicated in such visualization
bears some similarity to visualization using scatter platth the advantage that the table-like
display enables gene labels to be displayed along with tlenassays, and the disadvantage that
differences among the genes can only be visualized in onerdiion.

2.3.1.4 Visualization of Genes and Assays with Scatter Pkt

Visualization of structure in high-dimensional data regsidisplay of the data in a one, two, or
three-dimensional subspace. SVD identifies the subspaedsich the data varies the most. Even
though our discussion here is about visualization in sutepabtained by SVD, the illustrated
visualization techniques are general and can in most casepfied for visualization in other
subspaces (see section further reading and resourceslimidaes that use other criteria for sub-
space selection). For gene expression analysis apphsatwee may want to classify samples in
a diagnostic study, or classify genes in a systems biologgyst Projection of data into SVD
subspaces and visualization with scatter plots can reweaitsres in the data that may be used
for classification. Here we discuss the visualization ofdess that may help to distinguish gene
groups by their expression vectors. Analogous methodssae to distinguish groups of assays by
expression profile. We discuss two different sources of geoerdinates” for scatter plots: pro-
jections of the expression vector onto eigengenes, anélations of the expression vector with
eigengenes.
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Projection and correlation scatter plots for gene expressin vectors Projection scatter plot
coordinates) for expression vectay; projected on eigengeng are calculated as

Qik = QiVk (2.11)

The SVD ofX readily allows computation of these coordinates using theagonXV = US so
that
dik = (US)ik (2.12)

As we noted before, the projection of tgeonto the eigengenes in V represents a rotation of
theg; from the original basis.

The projection of gene expression vectors from our examgtie dnto the first two eigengenes
reveals the a priori known structure of the data (Fig. 2.5E)g groups of the 200 sine wave genes
(bottom right cluster), and the 200 exponential decay géoesight cluster) are clearly separated
from each other and from the 1600 pure noise genes, whicteclalout the origin.

Correlation scatter plots may be obtained by calculatirgRbarson correlation coefficient of
each gene’s expression vector with the eigengenes:

80i OV
Mk = ==
0G| [Svi]
whererj, denotes the correlation coefficient of the expression vegteith eigengeneyy, og;
the mean-centereg|, anddvy is the mean-centereg,. The normalization by the lengths of the
vectors|dg;| and|dv| leads to—1 < ry < 1. Note that if eachy; is pre-processed to have zero
mean and unit norm,

(2.13)

rik = dik = (US)ik (2.14)

and it follows that the correlation scatter plot is equival® the projection scatter plogi(= dg;
implies vk = dv; and |dg;| = |dvk| = 1). In the projection scatter plot, genes with a relatively
high-magnitude coordinate on the k-axis contribute reddyi strongly to the variance of the kth
eigengene in the data set. The farther a gene lies away fr@orithin, the stronger the contribution
of that gene is to the overall variance accounted for by thesace. In the correlation scatter plot,
genes with a relatively high-magnitude coordinate on tlexils-have expression vectors that are
relatively highly correlated with the kth eigengene.

Due to the normalization in correlation scatter plots, gewéh similar patterns in their ex-
pression vectors, but with different amplitudes, can appealuster more tightly in a correlation
scatter plot than in a projection scatter plot. Genes thaietade well with the eigengenes lie near
the perimeter, a property that can be used in algorithmsstel to identify genes that are highly

3Which are equal the sample standard deviations of the régpacean centered vectors.
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Figure 2.5: SVD scatter plots. Genes from our synthetic gtardata set are displayed in a) a
projection scatter plot; and b) a correlation scatter pibe bottom right cluster (red) corresponds
to sine wave genes, and the top right cluster (green) carneispto exponential decay genes. The
cluster of genes around the origin corresponds to the rangegenes.

associated with a subspace. At the same time, low-amplitad® genes can appear to be magni-
fied in a correlation scatter plot. For our example data, ithewave and exponential gene clusters
are relatively tightened, the scatter of the noise genesappo be increased, and the separation
between signal and noise genes is decreased for the cmmelat the projection scatter plot (Fig.
2.5). The projection scatter plot (Fig. 2.5 a) illustratesvt5VD may be used to aid in detection
of biologically meaningful signals. In this case, the piosit(q‘ii , qg) of any cluster;’s center may

be used to construct the cluster’'s expression vegtdrom the right singular vectors:

g% =qfvi+a;ve (2.15)

If the first and second singular vectors are biologically niegful in and of themselves, the cluster
centers will lie directly on the axes of the plot. This regsithat the average expression patterns of
the cluster genes are uncorrelated. For our synthetictih@tariginal sine and exponential patterns
have a correlation larger than zero, therefore they have tefwresented as linear combinations of
two uncorrelated singular vectors (eigengenes).

SVD and related methods are particularly valuable analysthods when the distribution
of genes is more complicated than the simple cluster-likgributions in our example data: for
instance, SVD can be used to characterize ring-like diginbs of genes such as are observed in
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scatter plots of cell-cycle gene expression data [Altet.eR800, Holter et al., 2000] (see section
2.3.3).

Scatter plots of assays Assays can be visualized in scatter plots using method®goas to
those used for genes. Coordinates for projection scatbés ple obtained by taking the dot prod-
uctsgkj = Uxgj of eigenassaysgwith expression profilea;. These projections are again readily
obtained from SVD askj = (UTX)xj = (SV' )xj. Coordinates for correlation scatter plots are ob-
tained by calculating the Pearson correlation coeffiobenduy/ \6aj\ |duk|. Such plots are useful
for visualizing diagnostic data, e.g., distinguishinggye of individuals according to expression
profiles. Alter et al. used such a technique to visualize©gile assays [Alter et al., 2000], and
were able to associate individual assays with differenspbhaf the cell cycle.

2.3.2 Detection of weak expression patterns

As noise levels in the data increase, it is increasinglydiffito obtain separation of gene groups
in scatter plots. In such cases SVD may still be able to deteek patterns in the data that may
be associated with biological effects. In this respect SYiD lated methods provide information
that is unique from commonly used clustering techniques.

We will use an example to illustrate the ability of SVD to deteatterns in gene expression data
even though the individual genes may not clearly separatepression space (as visualized in a 2-
dimensional scatter plot). A data matrix was generatedyusvo kinds of expression vector: 1000
genes exhibiting a sine pattesin(2rt /140), with added noise sampled from a normal distribution
of zero mean and standard deviation 1.5; and 1000 genesuwsgitinpise sampled from the same
distribution. Upon application of SVD, we find that the firsgg@engene shows a coherent sine
pattern (Fig. 2.6 a). The second eigengene is dominatedghyflequency components that come
from the noise (Fig. 2.6 b), and the singular value spectsubasically flat after the first singular
value (Fig. 2.6 c), suggesting (as we know a priori) thatehgronly one interesting signal in the
data. Even though the SVD detected the cyclic pattern in teedigengene, the sine wave and
noise-only genes are not clearly separated in the SVD eegengrojection scatter plot (Fig. 2.6
d).

2.3.3 Examples from the literature

Cell-cycle gene expression data display strikingly singalterns when analyzed using SVD. Here
we discuss two different studies that, despite having ustalfdom different experiments and dif-
ferent pre-processing methods, have produced similaltsdélter et al., 2000,Holter et al., 2000].
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Figure 2.6: SVD-based detection of weak signals. a) A plothef first eigengene shows the
structure of the weak sine wave signal that contributes ¢oetkpression vector for half of the
genes. b) The second eigengene resembles noise. c) A eelatiiance plot for the first six
singular values shows a flat spectrum after the first singiaare. d) The signal and noise genes
are not separated in an eigengene scatter plot of 150 ofghalgienes, and 150 of the noise-only

genes.
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Both studies found cyclic patterns for the first two eigereg(see Fig. 4.1 for Holter et al.), and, in
two-dimensional correlation scatter plots, previoushknitified cell cycle genes tended to plot to-
wards the perimeter of a disc (see Fig. 4.2). Alter et al. usiedmation in SVD correlation scatter
plots to obtain the result that 641 of the 784 cell-cycle gedentified in Spellman et al. [Spell-
man et al., 1998] are significantly associated with the fiwst¢igengenes. Holter et al. displayed
previously identified cell-cycle gene clusters in scatletsy revealing that cell-cycle genes were
relatively uniformly distributed in a ring-like featureamd the perimeter, leading Holter et al. to
suggest that cell-cycle gene regulation may be a more aomigprocess than had been implied
by the previous application of clustering algorithms (sieg &.2). Raychaudhiri et al.'s PCA study
of yeast sporulation time series data [Raychaudhuri e2@00] is the first example of application
of either PCA or SVD to microarray analysis. In this studyen90% of the variance in the data
was explained by the first two components of the PCA. The fiistjpal component contained a
strong steady-state signal. Projection scatter plots weed in an attempt to visualize previously
identified gene groups, and to look for structures in the thetbwould indicate separation of genes
into groups. No clear structures were visible that indidatey separation of genes in scatter plots.
Holter et al.’s more recent SVD analysis of yeast sporutatiata [Holter et al., 2000] made use
of a different pre-processing scheme from that of Raychaudd al. The crucial difference is
that the rows and columns &f in Holter et al.’'s study were iteratively centered and ndined,
i.e., the mean value of the (row, column) was subtracted ®aoh element in the (row, column),
and each element was divided by the standard deviation. lteHet al.’s analysis, the first two
eigengenes were found to account for over 60% of the varimmgeeast sporulation data. The first
two eigengenes were significantly different from those ofékaudhuri et al., with no steady-state
signal, and, most notably, structure indicating sepanabiogene groups was visible in the data.
Below we discuss the discrepancy between these analysesstf sporulation data.

2.4 Discussion

As illustrated in section 2.3.2, an important capabilitgtoiguishing SVD and related methods
from other analysis methods is the ability to detect weakag in the data. Even when the
structure of the data does not allow separation of data asatsing clustering algorithms to fail,
it may be possible to detect biologically meaningful patterAs an example of practical use of
this kind of SVD-based analysis, it may be possible to detdather the expression profile of a
tissue culture changes in response to radiation dose, dven ivis difficult to clearly separate the
specific genes that change their expression in responsditdiom dose from other genes due to
noise in expression profiles.

SVD allows us to obtain the dimension of the Euclidean spaeeich the data can be embed-
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ded*, which is the rank of matrix X. As the number of genas is generally (at least presently)
greater than the number of assayshe matrixVT generally yields a representation of the as-
say expression profiles using a reduced number of variabésenr < n, the matrixU yields

a representation of the gene expression vectors using aeédwmber of variables. Although
this property of the SVD is commonly referred to as dimenaliby reduction, we note that any
reconstruction of the original data requires generatioaroim x n matrix, and thus requires a
mapping that involves all of the original dimensions. Givla noise present in real data, in prac-
tice the rank of matrixX will always ben, leading to no direct dimensionality reduction for the
gene expression vectors. It may be possible, however, exdite true rank by ignoring certain
components (typically the lower order ones), thereby reduthe number of variables required
to represent the gene expression vectors. Previous araygEne expression data have found
that 2 to 3 components capture much of the significant exjpresfiange in the data [Alter et al.,
2000, Holter et al., 2000].

Current thoughts about use of SVD/PCA for gene expressiatysis include application of
SVD as pre-processing for clustering. Clustering alganghcan be applied using, e.g., the co-
ordinates calculated for scatter plots instead of the waigilata points. Yeung and Ruzzo have
characterized the effectiveness of gene clustering both amd without pre-processing using
PCA [Yeung and Ruzzo, 2001]. The pre-processing consistesiog PCA to select only the
highest-variance principal components, thereby chooairgduced number of variables for each
gene’s expression vector. The reduced variable sets werkassinputs to clustering algorithms.
For the specific clustering algorithms and data tested, yYemd Ruzzo report better results with-
out pre-processing. However, the specific data sets anteadlug algorithms tested, and the sole
focus on gene clustering limit the implications of the résuFor example, when grouping assays
is the objective, usinga; } instead of{a; } (see section 2.3; Fig. 2.1) enables use of a significantly
reduced number of variables\(s. m) that account for all of the variance in the data. The resglti
reduction of variables trivially decreases the computetior clustering of assays, and may even
result in higher-quality clusters. Hence, at least for pséiastering the results of Yeung and Ruzzo
can'’t be correct.

In section 2.3.3 we discussed how, rather than separatiogvell-defined groups, cell-cycle
genes tend to be more continuously distributed in SVD ptmjaes. For instance, when plotting
the correlations of genes with the first two right singulactees, cell-cycle genes appear to be
relatively uniformly distributed about a ring. This struc¢ suggests that, rather than using a clas-
sification method that groups genes according to their cation in the neighborhood of a point
(e.g., k-means clustering), one should choose a clasgificatethod appropriate for dealing with

4E.g. the dimension of data points distributed on a sphereas the dimension of the Euclidean space in which
the data can be embedded is three. The latter is the dimedityathat SVD provides.
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ring-like distributions. Previous cell-cycle analysesréfore illustrate the fact that one important
use of SVD is to aid in selection of appropriate classificatieethods by investigation of the di-
mensionality of the data. SVD analysis expresses signatlseirdata as linear combinations of
orthogonal signals. A common misconception is that SVD aag meveal information about un-
derlying signals that are orthogonal. In fact, SVD may bedusedetect underlying signals that
are not orthogonal, as can be seen from our synthetic exatapdeset with sine and exponential
patterns (see Figures 2.5; see also small-angle scattarsagtion 2.2).

In this chapter we have concentrated on conveying a genedarstanding of the application
of SVD analysis to gene expression data. Here we briefly roergeveral specific SVD-based
methods that have been published for use in gene expressatyss. For gene grouping, the
gene shavinglgorithm of Hastie et al. [Hastie et al., 2000] and SVDMAN Wall et al. [Wall
et al., 2001] are available. An important feature to noteudboth gene shaving and SVDMAN is
that each gene may be a member of more than one group (e.¢erdlusclustering algorithms).
For an evaluation of the data, SVDMAN uses SVD-based intatjpm of deleted data to detect
sampling problems when the assays correspond to a samplamgavdinal or continuous variable
(e.g., time series data). A program called SVDimpute [Trakaya et al., 2001] implements an
SVD-based algorithm for imputing missing values in genereggion data. Holter et al. have
developed an SVD-based method for analysis of time seri@esgion data [Holter et al., 2001].
The algorithm estimates a time translation matrix that diess evolution of the expression data
in a linear model. Yeung et al. have also made use of SVD in aadefor reverse engineering
linearly coupled models of gene networks [Yeung et al., 2002

It is important to note that application of SVD and PCA to gerpression analysis is relatively
recent, and that methods are currently evolving. There igheory that dictates how to perform
SVD-based gene expression analysis, and there is no seffreakage to date that implements
an automated general-purpose gene expression analyssdethiled path of any given analysis
thus depends on what specific scientific questions are bdihgssed. Presently, gene expression
analysis in general tends to consist of iterative applcetiof interactively performed analysis
methods. As new inventions emerge, and more techniquesnaights are obtained from other
disciplines, we mark progress towards the goal of an intedraheoretically sound approach to
gene expression analysis; much remains to be accomplisbegyer, before we reach that goal.

2.5 Further Reading and Resources

The book of Jolliffe [Jolliffe, 1986] is a fairly comprehewe reference on PCA. It gives inter-
pretations of PCA and provides many example applicatioiity, eonnections to and distinctions
from other techniques such as correspondence analysigaetod &nalysis. For more details on the
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mathematics and computation of SVD, good references arkipGmd Van Loan, 1996, Strang,
1998, Berry, 1992, Jessup and Sorensen, 1994]. SVDPACK®desdeveloped to compute the
SVD algorithm [Berry et al., 1993] SVD is also used in the solution of unconstrained linear
least squares problems, matrix rank estimation, and ceabcorrelation analysis [Berry, 1992].
Applications of PCA and/or SVD to gene expression data haenltpublished in [Alter et al.,
2000, Holter et al., 2000, Holter et al., 2001, Raychaudétai., 2000, Troyanskaya et al., 2001, Ye-
ung and Ruzzo, 2001, Yeung et al., 2002]. Many of the aspddtsese studies were discussed
in sections 2.3.3 and 2.4. In addition, SVDMAN [Wall et alQ(] and gene shaving [Hastie
et al., 2000] are published SVD-based grouping algorittBVE)MAN is free software available
at http://home.lanl.gov/svdman. Knudsen illustratessoifithe uses of PCA for visualization of
gene expression data [Knudsen, 2002].

Everitt, Landau and Leese [Everitt et al., 2001] present RGA special case of Projection
Pursuit [Friedman and Tukey, 1974]. Projection Pursuitjcwhn general attempts to find an
"Iinteresting projection” for the data, is also related tddpendent Component Analysis (ICA)
[Hyvarinen, 1999]. As the name implies, ICA attempts to firlthear transformation (non-linear
generalizations are possible) of the data so that the dedemponents are as much as possible
statistically independent from each other. Hyvérinen @es a discussion of ICA and how it
relates to PCA and Projection Pursuit [Hyvarinen, 1999¢hbermeister has applied ICA to gene
expression data [Liebermeister, 2002]. Other technighasdre related to PCA and SVD for
visualization of data are Multidimensional Scaling [BorglaGroenen, 1997] and Self-Organizing
Maps (SOM) [Kohonen, 2001]. Both of these techniques uselinear mappings of the data
to find lower-dimensional representations. SOM’s have kag@lied to gene expression data in
[Tamayo et al., 1999]. There are also non-linear genetadiza of PCA [Jolliffe, 1986, Scholkopf
et al., 1996].

5Some resources on SVD can also be found on the Web, see for pexathe following
URL's: http://www.cs.ut.ee/~toomas_l/linalg/; httpuiw.lapeth.ethz.ch/~david/diss/node10.html; and
http://www.stanford.edu/class/cs205/notes/book/biatok.
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Chapter 3

SVD identifies different Modes of Response
to Virus Infection 1

3.1 Introduction

3.1.1 Biological Model

Global gene expression analysis using DNA gene chip teolgyamiakes it possible to simul-
taneously monitor the expression levels of large numbersi@NAs in cells [Duggan et al.,
1999, Schena et al., 1995]. One area where gene chip anlfssiseen useful is in studying host-
pathogen interactions. Gene chip analysis allows for tmepawison of gene expression levels in
infected and uninfected cells. One pathogen that has badredtby this approach is human cy-
tomegalovirus (HCMV), a member of the herpesvirus subfabetaherpesvirinae. HCMV causes
life-threatening disease in immunologically immature anchunocompromised people, including
neonates, AIDS patients and allogenic transplant redipighallacombe et al., 2004].

Previous studies of global host gene expression using DNéraairays have shown that
HCMV infection dramatically changes the gene expressiafilprof the host cell [Challacombe
et al., 2004]. HCMV infection alters the expression of nuousrhost cell genes, including genes
that regulate cell cycle progression, cellular prolifemat cell adhesion, and genes encoding tran-
scription factors. Human cells respond to HCMV infectionditering transcription in an attempt
to antagonize viral replication and spread.

Work that was published as part of [Challacombe et al., 2004]

31
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3.1.2 Methods of handling data

To go from raw gene expression data to meaningful resultsrgéy involves normalization, filter-
ing, and analysis to identify patterns in expression leathd With Affymetrix microarray exper-
iments, the raw data consist of probe pair intensities. Tdregxpression level is typically com-
puted using a statistic that captures the response chaséictef a specific probe set. Many dif-
ferent commercial and free software packages can performalization and expression analysis
of oligonucleotide arrays. A few examples are DNA-Chip Arzalr (dChip) [Li and Wong, 2001a],
Affymetrix’s GeneChip software [Affymetrix, 1999], Genpfing (http://www.silicongenetics.com),
Cluster and TreeView [Eisen et al., 1998]. In this study, wmpared the group of human genes
that responded to HCMV infection in a previous study usingn&ehip and a fold change ap-
proach [Browne et al., 2001], to two clusters of co-exprdggnes that we identified using dChip
and Singular Value Decomposition (SVD) analysis. The fihgster contained some of the genes
identified in the previous study [Browne et al., 2001], whikarly all genes in the second cluster
were not identified previously.

3.1.3 Materials and Methods

We analyzed gene expression time course data (from Affyr@EL files; NCBI Gene Expression
Omnibus accession GSE675 available at http://www.nabimh.gov/geo/) obtained after HCMV
infection of human fibroblast cells by [Browne et al., 200dLThip [Li and Wong, 2001a, Li and
Wong, 2001b] was used to normalize the intensities of theyaiata and estimate the expression
levels. SVD [Wall et al., 2003, Golub and Van Loan, 1996] wapiyed to identify and visualize
the two dimensional subspace that captured most of thencaian the expression data. In this
subspace, two clusters of co-expressed genes were ideéntNie annotated the genes comprising
these clusters and grouped them into functional categories

3.1.3.1 Expression Level Estimation

One key issue in expression level estimation of oligonudechips is the way that probe-specific
effects are handled. Affymetrix's GeneChip uses the awediiference of the perfect match (PM)
and mismatch (MM) probes as an expression index for thettgeyee. However, even using MM
intensities as controls, the expression levels of themiffeprobe pairs in a probe set are still highly
variable [Li and Wong, 2001a]. dChip accounts for probectfjzeeffects in the computation of
expression levels by using a probe-sensitivity index tatwapthe response characteristic of a
specific probe pair, and by calculating model-based exjressdices [Li and Wong, 2001a].
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3.1.3.2 Expression Level Data Analysis

Singular Value Decomposition (SVD) is a standard techniguedimensionality reduction and
interpretation of data [Golub and Van Loan, 1996, Wall et2003] (see chapter 2 in this disser-
tation). When applied to a gene expression matrix congistfrthe expression levels of m genes
measured at n time points (assays), SVD can be viewed assafraasformation of the expression
data from an m x n space to a number of characteristic modesdelaribe the temporal patterns
of gene expression. The SVD analysis of the dChip normalizeéd was performed with the sta-
tistical software package?qR Development Core Team, 2004]. The R svd function provates
interface to the LINPACK routine DSVDC. Prior to performi8yD, the data was log transformed
and for each gene its transcriptional response vector wasregl by subtracting its mean and then
standardized to unit variance. Following SVD analysis, @alewuated the correlations of the tran-
scriptional response vectors with the first two modes, theunalized the correlations in a scatter
plot (see chapter 2 for an explanation of the scatter pldte plot indicates two distinct clusters
of genes, one correlated with each mode. We identified thefggtnes in each cluster by visual
inspection of the correlation plot and by manually identifya boundary around the cluster based
on the density of genes. The genes in our newly identified@lssvere ranked by the magnitude
of their expression variance and exported as a list to a fisreveach gene was identified by its
Affymetrix probe set id. Since the genes in a co-expressloster have similar transcriptional
response patterns, the variance is a measure of the angp{dudagnitude) of the transcriptional
response vectors.

3.1.3.3 Annotation Protocol

The gene chip IDs were mapped to GenBank accession numlzkupkraded to the Stanford Uni-
versity’s sourceBatchSearch (http://genome-www5.stahé&du/cgi-bin/SMD/source//sourceBatchSearch)
to obtain annotation information for each GenBank accessiomber.

3.2 Results

3.2.1 Data Normalization

The GeneChip model is additive, and models the expressiehdéa given gene by the sum of the
probe effect and gene effect plus a stochastic componeithwépresents the measurement error.
The dChip model is multiplicative, modeling the expresdmrel of a given gene as the product

2Freely available under the GNU public license. R and its plBjoConductor are becoming widely used in gene
expression analysis.
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probe set AFFX-BioC-3_at
a. GeneChip Model b. dChip Model
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Figure 3.1: Graphs showing the residuals of the statisticalels used by GeneChip (a) and dChip
(b), applied to probe set AFFX-Bio-C-3_at. The multipligatmodel of dChip seems to explain
the variation in the data better.

of the probe effect and gene effect plus a stochastic conmp¢nmesasurement error). The fitted
values give estimates of the expression levels (probetgifas gene effect for the additive model
and probe effect times gene effect for the multiplicativeded® The residuals were calculated as
the observed values minus the fitted values. Figure 3.1 stimysots of the residuals vs. the fitted
intensity values for the statistical models used by Affynxét GeneChip and dChip applied to the
data for the probe set AFFX-Bio-C-3_at. The GeneChip mdeégife 13.1) shows a strong, non-
linear dependence of the residuals on the intensity vallesresiduals in the dChip model (Figure
3.1b) were smaller (note the different scale on the plot) @imore constant and symmetric spread
and far less dependence on the intensity values. This iredithaat the multiplicative dChip model
explains more of the variation in the expression data ande&ti@r fit to the data.

3.2.2 Main Modes of Host Cell Expression Response to Herpesféction

SVD analysis of gene expression data usually shows a déwgesisgular value spectrum with
a leveling off after the first 2-3 modes. The ordering of thede®is determined by high-to-low
sorting of the corresponding singular values. The first fevdeas account for most of the patterns
(i.e. variance) in the data, while the rest typically reprgsnoise, which can aid in identifying
the most prevalent signals in the data. The reduction of daie@ality provided by SVD analysis
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Figure 3.2: The variance captured by each SVD mode for theelsatata is shown in Fig (a). The
figure indicates that modes 1 and 2 capture 75% of the varianitee data. Figures (b) and (c)
show the expression profiles of modes 1 and 2.

facilitates data visualization, and clusters of genes wiithilar transcriptional responses might be
identified. Figure 3.2 shows the singular value spectrunfiastdtwo modes of the dChip modeled
herpes data. The expression data consists of 12 time padtasr{ays), representing 0.5, 1, 4, 6,
10, 12, 14, 16, 18, 20, 24 and 48 h after HCMV infection. Thd fin®® modes capture 75% of
the variance in the data. 3.2b shows the pattern of expressithe first mode over time. This
mode contains most of the variance in the data. At 1 h after NGMection, the expression
pattern of the first mode increases sharply, up to the le\vi4 &, and then decreases slightly over
the next 24 h. (Note that the decrease at 48 h was based on palatawe didn’t have data
points between 24 and 48 h, so an artifact in the 48 h arraydduawe affected the results). All
genes that are highly correlated with the first mode show #agitnanscriptional response to the
pattern of mode 1. Orthogonal to the first mode, the seconceniéidure 3.2c) captures most of
the remaining variance in the data. The pattern comprisiagécond mode decreases until about
12 h after infection, then increases and is somewhat high#8 & than for the early time points.
Genes highly correlated with this mode show similar traipsional response. Note that whereas
genes correlated with mode 1 are up-regulated initiallgrafftCMV infection, genes correlated
with mode 2 are down-regulated. This suggests that geneslatad with mode 1 are activated by
the host’s immune response whereas genes correlated with 2rare down-regulated by the virus
proteins in an attempt to evade the hosts immune responsdhirtt mode captures less than 10%
of the variance of the data (Fig. 3.2a) and only few genes Yeened to be highly correlated with
this mode. We therefore ignore mode 3, as it probably costaiostly noise.
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3.2.3 Visualization of Gene Clusters in Two-dimensional Exression Sub-

space

Figure 3.3a shows a correlation plot of the gene transongti response vectors with modes 1
and 2. The closer the genes map to the periphery of the ciritke radius 1, the more their
transcriptional response vectors are correlated with teetfio modes. We identified two regions
where the genes cluster densely. Both regions are close fmetimeter of the plot. One cluster is
highly correlated with the first mode (right side of the plofigure 3.3a). We manually identified
a boundary for this cluster (see Fig 3.4a). This cluster hdauny contains 1747 genes and Fig 3.4b
shows the average transcriptional response of these geésetuster 1 genes are highly correlated
with mode 1, their average transcriptional response paiserery similar to the expression profile
of mode 1 (Fig 3.2b). The second high density region of gesbighly correlated with the second
mode and somewhat (anti-)correlated with the first mode ureig.5a shows the boundary we
selected for this cluster 2. Figure 3.5b shows the averagesdriptional response pattern for the
462 genes in this cluster. The similarity of this cluste€sponse to the profile of mode 2 (see Fig
3.2c) is apparent.

Comparison of Results to Previous Study by [Browne et al., 2Ll] The criterion used by
[Browne et al., 2001] for genes to be selected as signifigzaaxpressed requires a fold change
(ratio) of 3 in expression over a control measurement in teguential time poin& The control
measurement was obtained from “mock infected” cells, i.ellsahat were infected without a
virus present. [Browne et al., 2001] used Affymetrix’s GEh@ software for the normalization
and determination of the probe set (i.e. gene) expressiafslérom the probe expression levels.
Figure 3.3b shows the projections of the genes identifiedgusfisantly expressed in the study
of [Browne et al., 2001] onto the first 2 modes. The center gf Bi3b is sparsely populated and
most of the transcriptional response vectors are highlyetated (or anti-correlated) with modes
1 and 2. This indicates that modes 1 and 2 also explain mokeofdriance of the genes identified
as significantly expressed in the previous study by [Browvira.£2001]. Many of the genes in this
group were highly correlated with mode 1 and somewhat fewerewanti-correlated with the first
mode. 377 (or 26%) of the genes selected by the fold chang®agp of [Browne et al., 2001]
were within our cluster 1. Genes in the second cluster, figbtrelated with the second mode,
were not well represented by the group of previously idesdtifyenes. Only 15 genes (or 1%) in
the second cluster were selected by the original analysis.
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Figure 3.3: Visualization of the gene transcriptional wesge vectors in a correlation plot with the
expression profiles of modes 1 and 2 (a). Two high densityregjior clusters, one correlated with
mode 1 and the other with mode 2, are clearly visible. A catre@h plot of the genes originally

analyzed by [Browne et al., 2001] with the same modes 1 andlRawn in (b). Most of the genes

identified by [Browne et al., 2001] are either highly cortethwith mode 1 or anti-correlated. Few
genes from our cluster 2, highly correlated with mode 2, atereg the Browne analyzed data.

Statistical Significance of Identified Clusters To assess the statistical significance of the iden-
tified clusters, we calculated the expected number of gemexifin same sized cluster regions by
chance. The cluster boundaries were randomly rotated iB-thimensional space of modes 1 and
2. If the rotated cluster-boundary did not overlap with twe identified clusters, the number of
genes inside the cluster boundary was counted. The meartamthsd deviation of the number
of genes inside the boundary was calculated from 100 samplasthe cluster 1 boundary, the
mean number of genes found inside the boundary was 337 wtdndard deviation of 98 genes.
The number of genes that we identified in cluster 1 (1747) warthan 5 times higher than the
mean number of genes obtained by chance. For the clusterrlaoy we found a mean of 76
genes with a standard deviation of 21; the number of genesiigel in cluster 2 (462) was 6 times
higher.

3.2.4 Biological functions of genes in clusters 1 and 2

We manually analyzed the tab-delimited SourceSearch Vileigh contained the annotated genes
comprising each cluster, looking for genes that parti@patbiological processes relevant to the
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a) Cluster 1 b) Cluster 1 expression
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Figure 3.4: Identification of 1747 genes in cluster 1 (a) drarttranscriptional response pattern
(b). The 1747 genes that were correlated with mode 1, thaemeed cluster 1, were selected by
drawing a boundary around the region of increased densige(garea in a). The transcriptional
response of the genes in this cluster shows a steady indreesgression starting at 6 hpi until 24
hpi. From 24 to 48 hpi, the expression level decreases buirenabove the expression values at
the start of the experiment.
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a) Cluster 2 b) Cluster 2 expression
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Figure 3.5: Identification of the 462 genes in cluster 2 (&) their transcriptional response pattern
(b). The 462 genes comprising this cluster were identifiedltawing a boundary around the
region of increased density (red area in a). The expressifilgoof the genes in cluster 2 shows

a decrease until about 12-16 hours post infection, follobsedn increase beginning at about 18
hours post infection.

host cell response to HCMV infection. These processes declsignal transduction, immune
system regulation, apoptosis, cell cycle regulation, geoesis, cell adhesion and transcription.
These categories were obtained from the Gene Ontology @aunsés biological process ontology
[Ashburner et al., 2000, The Gene Ontology Consortium, 20D4tails of the annotation results
can be found in [Challacombe et al., 2004]. Table 3.1 showsliktribution of the genes in the
2 clusters into the different functional categories. Theramations of the 1747 genes in the first
cluster showed 82 genes involved in immune system regulat®genes involved in apoptosis, 27
genes involved in cell adhesion, 277 genes involved in trdoison regulation, 155 genes involved
in oncogenesis and cell cycle regulation, and 128 genedviedan signal transduction. Of the
462 genes in cluster 2, a search of the annotated gene lisblogizal process revealed 40 genes
involved in immune system regulation, 17 genes involvedpoposis, 20 genes involved in cell
adhesion, 45 genes involved in transcription regulatiOng@nes involved in oncogenesis and cell
cycle regulation, and 61 genes involved in signal transdocSome differences between the two
clusters can be seen by comparing the proportion of genexcim@tegory to the total number of
biologically relevant genes in each cluster. Comparinge¢hmeumbers between cluster 1 and cluster
2 revealed a noticeably greater percentage of genes ireclush the categories of transcription
(37.3%) and oncogenesis/cell cycle regulation (20.9%) thaluster 2 (22.2% and 9.9%). Cluster
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Table 3.1: Proportion of Genes in each functional categorpdth clusters.

| Category | Cluster | Cluster 2 |
Immune system 82 (11.1%) | 40 (19.7%)
Apoptosis 73(9.8%) | 17 (8.3%)
Cell adhesion 27 (3.6%) | 20 (9.9%)

Transcription 277 (37.3%)| 45 (22.2%)
Oncogenesis/Cell cycle 155 (20.9%)| 20 (9.9%)
Signal transduction | 128 (17.3%)| 61 (30.0%)

2 contained a higher percentage of genes involved in sigaagduction (30.0%), immune system
regulation (19.7%), and cell adhesion (9.9%) comparedustet 1 (17.3%, 11.1%, and 3.6%).

3.3 Summary: A new method of analysis leads to different in-
sights

The previous study by Browne et al. [Browne et al., 2001] gghfymetrix software to analyze
gene chip data found that the levels of 1425 cellular mRNAanged by three-fold or greater
in at least two consecutive time points during HCMV infentioThe classes of genes affected
included genes involved in immune system regulation, padrly interferon-responsive genes,
genes involved in cell cycle regulation and oncogenesisganes whose protein products promote
or inhibit apoptosis. Our dChip and SVD analysis of the sam@ession data resulted in two
separate clusters of co-expressed genes respondingedifieto HCMV infection. The original
analysis used GeneChip to preprocess and normalize thami@diabtain expression values for the
probe sets. In the analysis presented here, we used dChippoopess and normalize the data
and obtain expression values for the probe sets. We foundi@iaip’s multiplicative model for
calculation of expression values led to lower residualslassldependence of the residuals on the
magnitude of the expression values. We then used SVD to zanéhe data obtained with dChip.
The SVD analysis produced two significant modes with difi€expression responses. These two
modes captured over 75% of the variance in the data. A ctioelalot of the gene expression
vectors with these two modes produced two statisticallyifigant higher density regions (clusters)
of co-expressed genes that were highly correlated with Moated mode 2, respectively. 26% of
the genes selected by Browne et al.'s fold change filteringeyweesent in the first cluster but only
1% were present in cluster 2. The transcriptional respoatienm of cluster 2 was found to be very
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different from that of cluster 1. Cluster 2 genes showed asiemt expression, first decreasing
and then increasing again. This suggests that cluster Zgaight be affected by the immune
evasion strategies of the virus. Our results indicate thatchoice of analysis methodology for
gene expression data is important. While one method may wetkfor detecting one type of
pattern in the data, it may miss another pattern altogether.
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CHAPTER 3: SVD IDENTIFIES DIFFERENT MODES OF RESPONSE TO U&R
INFECTION




Chapter 4

New SVD based Algorithms for Gene
Expression Analysis

Two new algorithms for time series gene expression anabreispresented in this chapter. To
motivate the algorithms, first a discussion of some clusggerésults of gene expression time series
data is given.

4.1 Clustering of Gene Expression Time Series Data

Here we discuss the clustering results of three differardiss and time series gene expression
data sets [Spellman et al., 1998, Chu et al., 1998, lyer e1889]. The group of [Holter et al.,
2000] used SVD to visualize the clustering results of théseet studies. The data sets were a
yeast cell-cycle data set [Spellman et al., 1998], a datals@ined during the yeast sporulation
process [Chu et al., 1998] and a data set obtained from seeatet human fibroblast cells [lyer
et al.,, 1999]. The clusters of the study by Spellman et al. ewsdstained by first identifying
all gene expression vectors that indicate cyclical cetleyegulation. Spellman et al. calculate
for each gene a “cell-cycle score” that is supposed to caphe likelihood that a gene is cell-
cycle regulated. The score is composed of the maximum atiwal coefficient of the respective
gene expression vector with a sine pattern of cell-cycléoganity (the maximum is calculated
over varying phase shifts), and the maximum correlatiornefgene’s expression vector with the
expression vectors of 104 previously known cell-cycle tatud genes. Spellman et al. identified
a threshold for this score at which 90% of the 104 previousigvin cell-cycle regulated genes
had a score larger than the threshold. An additional 700gyehthe ~6000 assayed had a score
above this threshold. The resulting 800 genes were thermpgrbunto 5 clusters based on the time

Part of this work was presented at the RECOMB 2003 conferfReehtsteiner et al., 2003].
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point at which their expression peaked. . The expressiokspefthese 5 clusters of genes were
correlated with temporal phases of the cell-cycle and kbby these: M/G1, G1, S, G2 and®M

Chu et al. [Chu et al., 1998] clustered gene expression kefdo a yeast sporulation data set
with 7 time points. They first identified the 1100 genes, out of the 6200 yeastgassayed on
the microarrays, that showed the largest fold change, abhtte time points. 481 out of these
1100 genes showed induction during the sporulation proaedsthe other ~620 genes showed
repression. 50 genes were previously studied and known avbeved at different stages of the
sporulation process. All of these 50 genes were inducedsg@oegenes that were repressed dur-
ing sporulation had been identified previously and studiedstaif. Chu et al. clustered these
50 known genes into 7 groups depending on where during thelgpion process their expression
peaked. The different groups were 'Rapid, transient indadimetabolic)’, 'Early (1) induction’,
"Early (Il) induction, 'Early-middle induction’, 'Middlanduction’, 'Mid-late induction’ and 'Late
induction’. Each of the newly determined 481 induced gene®when grouped into the 7 clusters
based on their largest correlation with the average exjoregsofiles of the clusters. The distribu-
tion of the induced genes into the 7 groups were 52, 62, 471%9%,61, and 6 respectively. More
than half of the induced genes had not been functionally t@bed previously, i.e. nothing about
their function was known. Through clustering these gendls kviown genes, Chu et al. were able
to make hypotheses about the unknown genes’ functions.

lyer et al. [lyer et al., 1999] in their study of serum treakeaman fibroblast cells used cDNA
microarrays with probes for ~8600 human genes. 12 time paiate assayed between 15 minutes
and 24 hours after serum addition to the cell culture. Froen8600 assayed genes the 517 genes
with most significant change in expression were identifiedhe €riterion for significance was
that the genes either had to have a fold-change of at leasit 2v@ time points over a baseline
measurement made before serum addition, or a standardidewié thelog(ratio) over the 12
time points of at least 0.7. The 517 genes were clustered7irndo-expression clusters with a
hierarchical clustering algorithm as described in [Eiseal.¢ 1998].

Figure 4.1 shows the eigengene profiles found for the thrée skts. The first two SVD
modes captured 62% of the variance in the yeast cell-cydke @@% of the variance in the yeast
sporulation data and 69% of the variance in the human fibsbldata. Holter et al. projected

2The 4 phases of the mitotic cell-cycle are G1: growth and gmaton of the chromosomes for replication, S:
synthesis of DNA, G2: preparation for M: mitosis, the phasehich the cell and nucleus divide.

3Yeast sporulation is the process of spore developmentnibeanduced by external signals, such as absence of
nitrogen.

4Chu et al. speculate that the previous, non-microarrayiesutiat had focused on the expression of individual
genes and that identified these 50 genes, were biased tofivatiig genes that are induced. This bias could be due
to some assumptions made by the experimenters, for exahmgilegorulation is a process that requires activation of
certain genes to start cellular processes and pathwayeddta sporulation. This illustrates how the inference (vs.
hypothesis) driven and data-rich microarray technolodyetvallows for monitoring of many genes, can produce new
insights that are difficult to make in a data-poor and hypsithériven approach, partly due to incomplete knowledge.
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Figure 4.1: The eigengene profiles scaled by their resgestigular values identified by SVD
for the three time series gene expression data sets: a)gadhsycle, b) yeast sporulation and c)
human fibroblast cells. The eigengene profiles are ordenedpp one being the first eigengene,
i.e. capturing most of the variance in the data. It is stgkihat the patterns of the respective
first two eigengenes are rather simple, exhibiting perigditterns (for the cell-cycle data a)), or
patterns that are slowly changing with few maxima or minifigufe adapted from [Holter et al.,
2000].)

the co-expression clusters of the three previous studieshe two-dimensional subspaces of the
respective first two SVD eigengenes.

Holter et al. visualized the respective gene clusters byepting their genes into the two
dimensional subspace of the respective first two SVD modasgsction 2.3.1 for a discussion of
scatter plot visualization of the SVD). Figure 4.2 illusémthese projections. Several observations
can be made from these projections:

1. Similarly to our clusters in the herpes data, the propectiin Figure 4.2 illustrate that the
genes in the co-expression clusters group close to the etimof the two-dimensional sub-
space identified with SVD. This indicates that the respediist two SVD modes explain
most of the expression change of the genes identified agisagtly expressed in the differ-
ent studies.

2. The different colors in Figures 4.2 indicate the différetusters of co-expressed genes.
Genes from the same co-expression cluster do group togethiee SVD subspace, indi-
cating that proximity in the overall expression space issereed in the respective SVD
subspaces.

3. The time ordering of the expression peaks of the co-egmesluster? is captured and

SWith expression profile of a cluster we usually refer to therage expression profile of the genes in that cluster.
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reflected in the ordering of the clusters around the perimatéhe SVD subspaces. For
example, in Figure 4.2 the clusters are ordered accorditigetoell-cycle phase in which the
clusters’ genes peak. The clock-wise ordering of the ctastethe two dimensional SVD
subspace follows the temporal ordering of the phases ofheycle. The cluster that peaks
in M/G1 follows the cluster that peaks in G1 then the cludtat peaks in S, G2 and again M
6. Similar temporal ordering can be observed for the spdariand human fibroblast data
setd. SVD does seem to pick with the first two modes the subspacgpséssion where
most of the expression change occurs. The subspace whitdreapost of the variance in
the data turns out to be the subspace also capturing the dyohange of expression during
the respective biological processes.

4. The projection of the previously identified co-expressitusters allow another significant
observation: although the clusters group around the pésinod the space and a grouping
(or clustering) of the genes is visible, in many cases thstefs are not very tight. At the
same time, many adjacent clusters merge at their bounddites suggests that these time
series gene expression data might not be partitioned istodi and discrete co-expressed
groups as easily as has been assumed by the applicatiorstérahg algorithms.

The latter observation is also supported by results obddiyefour different clustering studies
that used different algorithms to cluster the yeast cetleylata of [Cho et al., 1998]. All four
methods, manual/visual clustering [Cho et al., 1998],-8etjanizing Maps [Tamayo et al., 1999],
K-means [Tavazoie et al., 1999] and a clustering algoritased on simulated annealing [Lukashin
and Fuchs, 2001], suggest different partitionings of thate data set. The original study of [Cho
et al., 1998] clustered the genes into 5 clusters, [LukaghohFuchs, 2001] clustered the genes
into 20 clusters and the studies of [Tamayo et al., 1999,Zkaeeet al., 1999] both suggested 30
clusters, but different ones. Inspection of the clustefil@®and the expression profiles of their
genes suggest that many of the smaller clusters in the stodieukashin et al., Tamayo et al.
and Tavazoie et al. are grouped together in the larger chusteCho et al. Further, many clusters
clearly overlap and show very similar expression profilesosMclustering algorithms assume
and search for discrete and distinct partitions of the d#tauch a partitioning is not present,
or the wrong number of clusters is chosen, the algorithmsirtgrose an artificial structure on
the data. The outcome then depends greatly on the specifiathlg, the parameters that were

6Such temporal ordering captured in a SVD subspace can aksifeogively demonstrated by projecting the assays
aj, the columns of the gene expression maXi¥isualization of assays is also discussed in section 2.3.1.

A few clusters don't fit into the temporal order as perfecthn example is the 'Early-middle’ cluster in the
sporulation data, whose genes project more towards theragfithe subspace and at a polar angle close to the 'Middle’
genes instead onto the perimeter and at a polar angle bethettarly I’ and the 'Middle’ clusters. Inspection of the
average expression profiles of the different clusters iru[€hal., 1998] suggest that the 'Early-Middle’ and 'Middle’
clusters have very similar expression profiles and migthebee grouped together.
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Figure 4.2: Projection of clusters obtained with differehtstering techniques for different gene
expression data sets. Fig a) for yeast cell-cycle datai@palet al., 1998], b) the yeast sporulation
process [Chu et al., 1998] and c) for serum treated humarbfdsbcells [lyer et al., 1999]. The
different colors indicate the different clusters identifia the different data setgfigure adapted
from Holter et al. [Holter et al., 2000].)

chosen, and any other initial conditions that need to be®as illustrates the need for methods
that allow for visualization of expression data and clustgresults as well as other methods
that can help to validate such results, for example the ifileation of functional coherence of
genes from co-expression clusters (discussed later intehap SVD does allow for visualization
and interpretation of expression data in low-dimensionbkpaces and we present here two new
algorithms for gene expression clustering based on projecbf genes’ expression vectors into
subspaces spanned by two SVD mdfe€lustering of genes in such subspaces will allow for easy
visualization of the obtained clustering results. The fatgbrithm identifies genes that are highly
and significantly correlated with the two-dimensional egsion subspace. It defines a circular
boundary between genes that are likely to be significantyessed in that expression subspace
and genes that are not. The second algorithm groups thdisagnly expressed genes identified
by the first algorithm based on their similarity in expressio the respective two-dimensional
subspace.

10These two algorithms can be applied to the projection of gém® any two-dimensional subspace, they don’t
need to be subspaces identified by SVD.
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4.2 Clustering of Expression Data in 2-dimensional SVD Sub-
spaces

4.2.1 SVD allows for less aggressive “noise filtering”

All previously discussed clustering studies applied reéahggressive filtering criteria, removing
between 75% and 90% of the genes assayed. Such filteringpsseghto remove the expression
vectors that are noisy and non-significant. A reason for agdressive filtering are problems
of clustering algorithms with large amounts of noisy dataoidy gene expression vectors can
obscure the partitioning of the data. In section 2.3.2 weudised the power of SVD to detect
significant patterns in data even when the data is noisy. rbtigstness of SVD to noise allows
our algorithm to work successfully with less aggressivefiittg. In the applications presented
here only about 50% of the genes were filtered out. It is showthé yeast cell-cycle analysis
below how known cell-cycle regulated genes that were ifiedtin our study had been removed
by aggressive filtering in the analysis of [Cho et al., 1998] aould therefore not be identified in
that analysis.

4.2.2 Auto-Correlation Filter ! for removing Noisy Genes

Our analysis approach differs from typical clustering agghes also in the filtering algorithm
we developed and apply. The studies discussed above filemes by a fold-change approach
or with a variance filter. The former requires gene expressactors to have one (or more) ex-
pression values at least a certain factor, i.e. fold chaalgeye the baseline expression value of
the respective gene. For the baseline often the expressionetthe start of the experiment (i.e.,
t=0) or the average of the respective expression vector teeexperiment is chosen. Here we
applied a filter based on the autocorrelation of the expsassectors. Only genes with highest
autocorrelation of their expression vectors are retainetthé data set. The auto-correlation will
be highest for genes that exhibit steady and relatively $molbanges in expression. This new
filtering approach is motivated by the observation that imnetiseries gene expression data, the
main patterns of expression are relatively smooth and “Einphis is illustrated in the eigengene
patterns displayed in Figures 4.1 and 3.2. Besides thegieppatterns of the cell-cycle data, most
genes exhibit relative smooth and monotonic activationepression with at most one reversal,
i.e. maximum or minimum in expression, during these expenits. The one-step auto-correlation
will be large for gene expression vectors exhibiting sudiepas but will be small for genes that
vary fast, e.g. expression vectors that are very noisy. A&mal problem with the fold-change

HAlso referred to as “Serial Correlation Test” in the statistiterature [Kanji, 1993).
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filter is that genes that exhibit only one large peak at one4guint in their expression profile will
not be filtered out, even though such expression peaks mégthtib to experimental artifacts. The
auto-correlation filter, however, is likely to filter suchnges out, as it gives more weight to smooth
changing expression patterns than to the magnitude of erdigmt gene expression vallies

It should be noted that this filter is only applicable if thergding rate with respect to time
(or some other varying variable, for example some chemioatentration) is high enough for
the process under observance, otherwise the time pointsoaexpected to be correlated and no
smooth expression patterns can be expected. If the sampli@gs too low, the auto-correlation
filter we apply here is not appropriate.

Algorithm 1 Serial correlation test for filtering genes with noisy exgsien profiles.

1. Calculate the one-step auto-correlation for gene egmmes/ectorg; which is a vector of
lengthn (time points):

s {Z?:%(Xij—)a) (Xij+1—>5)} 4.1)
- — — _
-1 371 (%) —xi)
If the gene expression vectors have been standardized to zeea, this simplifies to:
n
o Xii X
i @2
n- 2j=1%j

2. If 5 is smaller than some critical valigg, remove gene from the data set. Alternatively,
remove a certain fraction of genes with lowgst

In the gene expression analysis work here the auto-caoeléitter outlined in Algorithm 1
was appliedFor each geng the auto correlation coefficiestis calculated. Largsg indicate that
the sequential expression measurements of gareecorrelated, and thus unlikely to be of random
nature. Either a threshokd can be determined below which genes wgtk< sc will be removed,
or a predetermined fraction of genes with lowgstan be removed.

4.2.3 Boundary Identification in Two-dimensional Spaces (B'S)

It was shown that the significantly expressed genes in se@@series expression data sets are
highly correlated with the first two SVD eigengenes, i.e.ytpeoject towards the perimeter of
the subspace spanned by the first two eigengenes. The hlg@iesented here defines a circular

2Due to the outlined potential problems, the fold-changerflitas sometimes been modified. For example [Browne
et al., 2001] required two expression values at consectithepoints to be above a fold-change threshold.
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boundary in the two-dimensional subspace that separagesghificantly expressed genes that are
highly correlated with the two eigengenes from the genesphgect towards the center of the
subspace. Similarly to the synthetic data in Figure 4.3her‘teal” expression data in Figure 3.3,
gene expression vectors which are not highly correlatet thié two eigengenes, and therefore
project towards the center of the correlation plot, are etqueto be more uniformly distributed in
the two-dimensional subspace. Because they are weaklglatad with the eigengenes, their lo-
cation in the two-dimensional subspace is mostly influermedoise. The significantly expressed
genes that are highly correlated with the subspace and vexpsession is due to some underlying
biological process are expected to be less uniformly thgteid in the subspace. This difference
in the distribution of the genes in the subspace is used toalafcircular boundary separating the
significantly expressed genes from the non-significantfyessed genes.

The algorithm assesses the uniformity of the distributibthe genes by first calculating the
density estimate of the distribution of the polar angleshaf jenes in the subspace. Consider
again Fig. 4.3 or Fig. 3.3. Close to the center of the corigaiaplot the distribution of the
polar angles of the genes will be close to uniform, i.e. thesdg function of the genes over the
interval [0, 211 will be close to one-dimensional uniform density with valy&m. Further away
from the origin and closer to the perimeter, the distributdthe genes will become less uniform,
as the significantly expressed genes involved in differépibgical processes are expected to be
differently regulated and expressed. There will in mosesase a less sharp boundary in real
gene expression data than there is found in Fig. 4.3. Buatiani in the density of genes highly
correlated with the first two SVD modes can definitely be obsein real data, as for example in
Figures 4.2 and 3.3. Note further that gene expression rgetojecting towards the center, though
not having significant expression in that specific subspatght have significant expression in
another subspace orthogonal to the one being observecuythwe have shown previously that
the first two eigengenes seem most times to suffice to captargdgnificant change in expression,
the algorithm might be applied iteratively to different spaces of SVD eigengenes.

Mathematical Details of the BITS algorithm

See Algorithm 2 for a detailed listing of the steps of the alpon. Let us denote the orthonormal
vectors spanning the two-dimensional spacevyandvy,. In the application hergy, andvy,

will be two SVD eigengenes of the expression data ma{tix he correlation vectors,, andcy,
contain the correlation coefficientg, andrj., (see equation 2.13) of the gene expression vectors
gi with the eigengenesy, andvkzrespectively.cgl) denotes the ith element of, and cﬁ'l) = Tk,

If vi, andvy, are SVD eigengenes and the gene expression vegitbes/e been centered to have
zero mean and are normalized to unit length, then the SVDiges\the correlation coefficients

in the respective eigenassays scaled by the singular valeescy, = ux;s¢ (see Eqn. 2.14).
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Figure 4.3: Correlation plot of synthetic data set intragtliin section 2.3.1. Figure reproduced
from Fig. 2.5. The bottom right cluster (red) is composedefsine wave genes, and the top right
cluster (green) is composed of the exponential decay gdimescluster of genes around the origin
corresponds to the noise-only genes.

The correlation plot of the expression vectgr®nto the 2-dimensional subspacevgf andv,,is
obtained by plotting the coefficients oy, against the coefficients ity,. Note thaic,gl)2+cl((iz)2 <1,
i =1,..,m. Therefore the correlation plot will be a disk of radius one.

An initial radiusrq (see step 2 in Alg. 2) is chosen and the denéitgf the polar angles of
the gene expression vectasinside the circle with radiusy in the correlation plot is calculated.
The only requirement on the starting valyds that the number of gene expression vectors inside
the circle with radiusg allow for a stable density estimatibh e(r), a measure of the distance of
f, from the uniform density 1211, is calculated (see step 3c in Alg. 2). According to our earli
reasoning, for small, f; is expected to be close to the uniform density a(d therefore close
to zero. r is iteratively increased anf} ande(r) are recalculated. As the radiusncreases the
distribution of genes closer to the perimeter of the spac®ies more structured arfg will
deviate more from the uniform distribution. A boundary idided by determining the radiusat
which the rate of change &fr) is largest.

It should be noted that no parameter value needs to be spefdfi¢his algorithm. The algo-
rithm will identify the boundary in a data driven way. For examplewill depend on the level
of noise in the data. More noise in the data will make the mregimund the origin of uniformly

13A value ofr, = 0.4 has been found to be appropriate for the data sets thethigonias tested on.
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Algorithm 2 Estimate the separating boundaryy finding the greatest rate of change in the
density function of the polar angles for the genes insideitote of radiusr”

1. Select two orthonormal directiong andv,, (in our case SVD eigengenes) and compute the
correlation vectorsy, andc,.

2. Chose an initial value for the radiug. Then assignr < ry.

3. whiler < 1do

2 2
(a) Find the set of genes inside the circle with radiug, < {i : Cl(<|1) +c|(('2) <rli=
1,...n}.

(b) Compute the one-dimensional density,of the polar angles of the geneslin

(c) Compute the value of(r) = mediane, {| fr (¢;) — %1 }, which is a measure of the
deviation of the densityf; from the uniform densityzln, over the support of the polar
angleg—1, 11.

(d) Assign a new value tofor the next iterationr << r +h.

4. end while

5. Find the boundary that maximizes the rate of changeedf), i.e. that maximizesle/dr.

distributed genes larger, the algorithm will thereforedtémdetermine a larger boundaryhan for
lower levels of noise.

4.2.4 Polar Angle Density Clustering (PAD Clustering)

A second algorithm was developed to define groups of sirgilexbressed genes around high
density regions in the band of genes identified by the BIT®ritlyn. The motivation for this
algorithm is the same as for clustering algorithms in gdne@expressed genes might be func-
tionally related. Once the boundaryn'the 2-dimensional expression subspace has been iddntifie
by the BITS algorithm (Alg. 2), the distribution of the gerieghe ring with radiug <r < 1 can

be inspected visually. If the distribution of genes sugdfest there are regions with significantly
higher density of genes, these regions can be clusteredrotps of similarly expressed genes by
the Polar Angle Density Clustering algorithm outlined irgAB.

First, all the local maxima in the density function of thetdisution of the polar angles that
are greater than the uniform density2it are identified. The algorithm then forms partitions by
grouping together all gene expression vectors with polgteanaround a peak and with a density
value larger than the uniform density. For each peak in timsitiea group of similarly expressed
genes is obtained. Note that this partitioning algorithimgain data driven. The number of groups
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Algorithm 3 Polar Angle Density (PAD) Clustering: Identify clustersaaf-regulated genes.

1

2.

3.

© N o O

. Apply Algorithm 2 and find”
Identify the set of genes outsidel; < {i : cS32+cS32 > i=1,...,mh.
Compute the density, of the polar angles for the geneslin

Identify the genes with maxima in their one dimensionaisity and with values above the
uniform density:S < {j : fz(q) is a local maximum offy and f¢ (@) > 1/21, j € l¢, @; €
[_T[7T[]}'

Lets;j) be the ordered values & (¢-values at the peaks).
nb < card &) (the number of detected peaks)
h; < 1/2m
for j =1tonh. do
(@) Iwr <= min{m: m< s;j), f(m) > hj andf(m) < f(m+)}(left boundary)

(b) upr <= max{m: m> s, f(m) > hj and f(m) > f(m+)}(right boundary)

(c) cluster; < {k: Iwr < 8¢ < upr, where®y is the polar angle for gerie} (genes in the
cluster)

. end for
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of similarly expressed genes identified by the algorithmaadlependent and does not need to be
specified, in contrast to some clustering algorithms likmmgans and SOMs.

4.2.5 Extension to higher Dimensions

The algorithm outlined above works in a 2-dimensional sabep To have a similar 3-dimensional
implementation of the algorithm, the genes inside a sphendldvhave to be projected onto the
2-dimensional surface of that sphere and the distributioth@® genes for different sphere sizes
would have to be compared (similarly as outlined in Alg. 2 doee-dimensional projections for
varying sizes of circles). Studies of such a 3-dimensioeasion of the algorithm revealed that
too few data points, i.e. gene expression vectors, areadlaito populate the space sufficiently
to have stable estimates of the density of genes projectedtba 2-dimensional spheres. The
algorithm can, however, be applied iteratively. For exampl3 significant eigengenes have been
identified for a gene expression data set, different 2-dsioeral projections spanned by two of the
three eigengenes can be explored for structure in the piapec

4.3 Application of BITS and PAD Algorithms to Cell-Cycle Data

The above illustrated method and its algorithms were agpbtahe yeast cell-cycle data of [Cho
et al., 1998]'%. The main goal of the study was to identify the cell-cycleulated genes in
yeast. [Cho et al., 1998] used the Affy chip technology to suea 6200 yeast genes at 17 time
points taken at ten-minute intervals, spanning two cetley. The data was first transformed by
taking the logarithm, and each gene expression vector \@adatdized to have zero mean and unit
standard deviation. The auto-correlation filter outlinedhlg. 1 was applied and the 50% genes
with the lowest auto-correlation coefficient were remov8¥D was applied to this filtered gene
expression data set. The singular value spectrum and théhfieg eigengenes are shown in Fig.
4.4. The first three SVD modes account for 31%, 19% and 14%eoftdtal variance. The first
eigengene shows a pattern of steady decrease or, for geiasamh anti-correlated to this pattern,
increase in expression. It has been observed that the fijet@ene is often associated with some
large trend affecting all or many genes in the data set [&itaf., 2000]:°. The monotonic increase
or decrease in expression of eigengene 1 could be due td#oesadf the artificial synchronization
of many yeast cells for the experiment. Cells are arresteddertain phase of the cell-cycle and
all are released from this artificial arrest at time poiniozél is likely eigengene 1 captures the
large-scale relaxation’ of the cellular system back totaasly state®. Eigengenes 2 and 3 show

14The data was already briefly introduced in section 2.3.1.
191f the data is not standardized to mean zero, the first modallysepresents the average expression of the genes.
16similar observations and suggestions have been given iiettaeset analyzed by [Alter et al., 2000].
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Figure 4.4: SVD of the Cho et al. [Cho et al., 1998] yeast cgtlle gene expression data. Plots of
relative variance (a); and the first (b), second (c) and tfuyatigengenes are shown (same Figure
as Fig. 2.2).

the cyclic patterns we expect to find in cell-cycle expressiata. The periodicity of the patterns is
close to the length of the cell-cycle and their phase diffeeds close tat/2. Cell-cycle regulation

is associated with changes in the expression that is penwid the cell-cycle. Identification of
cell-cycle regulated genes is therefore typically asgediavith identifying genes with expression
patterns that show a periodicity with the cell-cycle. Otsteidies [Spellman et al., 1998,Cho et al.,
1998, Tavazoie et al., 1999] have used the same associdtariodic expression patterns with
cell-cycle regulation. To identify the most significantipelic gene expression vectors, the BITS 2
and PAD clustering algorithm 3 were therefore applied toekgression data set with eigengenes
2 and 3 spanning the two-dimensional expression subspaeealforithms are applied to identify
genes that are cell-cycle regulated.

Note that eigengene 2 and 3 are not perfect sine patternexgarple, their amplitudes decay
over time. Such features are likely to be real propertiebeiata, the individual gene expression
vectors. The decay in amplitude, for example, is probably uthe loss of cell-cycle synchro-
nization between the cells over time. Deriving andvy, from the data with, for example, SVD
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Figure 4.5: a) Correlation plot of the yeast cell-cycle daith eigengenes 2 and 3. b) Correlation
plot with the 3 high-density regions detected by algorithm 3

instead of using some idealized pattern like a sine and edkerefore promises in many cases to
be a better approach.

4.3.1 Application of the BITS algorithm

Figure 4.5 a) shows the correlation plot for the cell-cyciadwith eigengenes 2 and 3 &g
andvy,. Algorithm 2 estimated the circular boundaryrat="0.67. Algorithm 3 was used to
identify clusters of similarly expressed genes outside.ofFigure 4.6 shows two plots of the
density estimates of the polar angle distributions for gemigh radiusr < 0.4, the starting value
ro, and for genes in the outer ring with radiug> 0.65. The change of the distributions from a
close to uniform distribution to a much less uniform disitibn is apparerit.

Three higher-density regions in the distribution of thegoangles outside af are visible.
Figure 4.5 b) shows the correlation plot of the gene with tusters detected by Algorithm 3.
Figure 4.7 shows the expression patterns of all the genéithtee detected clusters. Sub-figure
d) shows the average expression pattern for each clusteh &aster of genes shows a clearly
periodic expression pattern, but with different phasese mbmber of genes outside the circle
with radius 0.67, i.e. potentially cell-cycle regulates, 895. The largest cluster (Figure 4.7 c))
contains 206 genes, the second largest (Figure 4.7 b))inerité4, and the third one (Figure 4.7
a)) contains 152 genes.

1'The number of genes is 1027 and 985 respectively, and thedidfor the kernel density estimator was set at
0.25. The difference in the densities is therefore not due tmequal sample size or the bandwidth parameter.
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Figure 4.6: Density estimates of polar angle distributifmngyenes with radius ar) < 0.4 and b.)
r > 0.65. The change in the distribution from a fairly uniform to ach less uniform distribution
is apparent.

a) cluster 1 b) cluster 2

expression level
expression level

time time

— cluster1
—— cluster 2
— cluster 3

05 1.0 15

expression level
expression level
1

-0.5

time time

Figure 4.7: Three different clusters of similarly expresgenes identified by Algorithm 3 after
application of Algorithm 2. Figures a), b) and c) show all theression patterns of the genes in
the clusters. Figure d) shows the average expression paftarthe three clusters.
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4.3.2 Statistical Test of Significance of Results

Estimation of false positive rate.

One method to assess the quality and reliability of geneesgion results is based on statistical
tests. For example, one can generate synthetic, randonwithtaimilar statistical properties as
the real data and assess the likelihood of finding the sanutgdsy chance. Such a statistical
technique can be used to estimate a false positive rateiatsbwvith the obtained results. Here
we want to estimate the number of genes that would obtain la ¢ogrelation with the profiles
Vi, andvy, by chance only, due to noise in the data. One method to estithatfalse positive
rate is to generate 'control data’ by performing random peations among the elements of each
gene expression vectgy from the original data matriX [Yeung et al., 2001b]. By permuting the
elements of the gene expression vectpythe distribution of the expression values in the new data
matrix is maintained, the dependence between the timegpisriroken, however. The 'random
genes’ are simulated without making any assumption abautistribution of the noise in the
data. If the simulated random genes are projected into theespf original eigengenes 2 and 3
(the eigengenes used to obtain the above results), thegavatamber of random genes that fall
outside the circle of radius= 0.67 is 42. The estimate of the false positive rate of this natko
then 42/895=0.046, which amounts to less than 5%.

4.3.3 Biological Significance of Results

The overall biological significance of each cluster in Fegdr7 was investigated by first associating
the clusters with phases of the cell cycle. The associatesymade by plotting the time-dependent
average expression profile of each cluster in the contexlbtgcle phase information. Figure 4.7
d) shows that the expression of genes in cluster 1 (red) pedks late G1 phase of the cell-cycle,
genes in cluster 2 (green) peak in the M/G1 phase, and geradgsier 3 (blue) peak in the G2
phase. The biological significance of individual genes imittach cluster was explored making
use of the KEGG database [Kanehisa Lab., 2005].

Two observations are reported. The first observation wasdday searching the KEGG text
annotations of all of the yeast genes in the expression ddtéos instances of the text string
‘transcr’ (to capture anything associated with 'transtioip’) and further hand-selecting 184 genes
that were annotated as being involved in transcription.n@$é 184 genes, 32 were found within
the set of genes that our analysis predicted as cell-cygldated. Of these 32, only one is found
within cluster 1 (peaking in late G1): SWI4, which is a knowell«ycle regulator (and also
reported by Cho et al. as a cell-cycle regulated gene). tetbee seems that transcription-related
genes are underrepresented in cluster 1.
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Expression profiles: MBP1 and SWI6
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Figure 4.8: Expression profiles of the two genes coding folsvd MBP1 respectively. Both
show clearly periodic expression profiles.

An important observation we are able to report is the inclusif genes encoding SWI6 and
MBP1 among our predicted cell-cycle regulated genes. Theses were not included among
cell-cycle genes identified by Cho et al., despite being knoell-cycle regulators and both genes
showing clearly cyclical expression profiles with a peraityi of the cell-cycle 4.8. This observa-
tion leads to the question why these obvious candidatesfbcycle regulated genes were missed
by Cho et al., even more so considering that Cho et al. sel¢ioggr cell-cycle candidate genes by
visual inspection. See the next section of a discussioni®f th

4.3.4 Discussion of Results

Comparison of the results to the original study by Cho et al.

Choetal. [Cho etal., 1998] reported 416 cell-cycle regadatenes of which 231 agree with our
895 genes. The differences in the number of cell-cycle etgdigenes identified by both studies
can be explained by several differences in the studies. €ab Bltered the gene expression data
set with a fold-change approach and were left with only 1360eg for further analysis. These
1300 genes were then inspected visually for periodic pagtby Cho et al. Among the 895 genes
that were detected as potentially cell-cycle regulated loynoethod about 600 were removed by
the fold change criteria used by Cho et al. Visual inspeatititmese 600 genes showed that most
of them clearly had cyclic expression patterns. Among ttegs#hes removed by Cho et al.’s fold-
change approach are the genes coding for SWI6 and MBP1, hottrkto be cell-cycle regulated.
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Figure 4.8 shows the expression profiles of the two geneg dearly exhibit cyclic patterns with

a periodicity of the cell-cycle. These results suggest tihatfold-change approach of Cho et al.
filtered out most of the 600 genes with cell-cycle relatedqukc expression patterns because their
amplitude was too low to pass the fold-change thresholds ihistrates one problem with the
fold-change filter. Gene expression patterns clearly Baanit for the specific experiment at hand
can be missed if the amplitude of the pattern is too low or @eebne expression of the gene is
high in general. On the other hand, because the fold-chaltge iin general, treats the different
time-points as independent and does not consider the bpettdrn of the gene expression time
series, it can pass genes with a single peak in expressiam stugle peaks might be artifacts if
they are the only significant expression change during theewxperiment, however.

The (= 175) genes that Cho et al. declared cell-cycle regulatedbrd not identified as such
in our study were also visually inspected. Many of these gat@wed one significant peak in
their expression response. The experiment was conducedww cell-cycles, however, and cell-
cycle regulated genes would be expected to peak at 2 timésps@parated by approximately one
cell-cycle period. How these genes were declared celleaygulated by Cho et al., although they
exhibit only one peak in two periods, has not been resolved.

Biological findings.

Our analysis of yeast cell-cycle data has led to two biolalfycsignificant findings. The first
finding is based on the observation that transcriptiontedlgenes are relatively underrepresented
in cluster 1 (red). As cluster 1 is associated with late GIspha the cell cycle (Figure 4.5 b.), the
expression of transcription-related genes in the Cho efedh set seems relatively repressed among
cell-cycle regulated genes in late G1 phase. The SWI4 mRadstript (part of the SWI4/SWI16
complex, which modulates CIn1, CIn2, CIn6 and Swel is thg onk that was found to be rela-
tively abundant in late G1, perhaps to poise the cell foraasp upon upregulation of SWI6. This
finding leads to a hypothesis that cell-cycle genes that tmdkeanscription factors are relatively
silent in late G1 phase. One way to rationalize such a terydisnioy noting that late G1 phase
corresponds to “stop” in budding yeast, a point where pregjom through the cell cycle can be ar-
rested if the proper environmental signals are not receidede we suggest the possibility that late
G1 phase in part prepares the cell for the possibility of-cetlle arrest by decreasing regulation
of cell-cycle related gene expression, a hypothesis thabeaested by further experiments. The
second finding gives evidence for cell-cycle regulationfil& and MBP1 genes. The expression
profiles of SWI6 and MBP1 are shown in Figure 4.8, and cledrbwsperiodicity characteristic of
cell-cycle genes. The SWI6 and MBP1 protein products arentblecular constituents of the SBF
complex, a known cell-cycle regulator that modulates esgion of Cinl, Clb6, Clb5, Gin5 and
Swel. The SWI6 and MBP1 genes were not identified by Cho etalel&cycle genes.
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Chapter 5

Automated Mining and Analysis of
Functional Information for Gene
Expression Datd

5.1 Introduction

Gene expression data analysis has mostly focused on mhengumerical expression data for sig-
nificant expression patterns and gene co-expression idustet ultimately the biological meaning
of any numerical analysis results needs to be identified.ekample, the biological function of
genes from a co-expression cluster in the context of thererpat needs to be found. Sources
of such information are annotations of genes and proteimatabases and functional informa-
tion about them contained in the literature. Traditionabiplogy experts have been mining these
sources of information manually. When experiments aregtesl to test a single hypothesis, and
few genes or proteins are involved, such an approach is reabégy However, with the advent
of high-throughput techniques like microarrays in FuneéilbkGenomics, where hundreds of genes
can make up a co-expression cluster, the development ofnaitéol algorithms that can assist in
knowledge discovery will become increasingly important.

Here such a method for automated knowledge discovery farpgrof genes (or proteins) from
literature is presented. In short, we present a method #ékastgenes that cluster in expression
space and finds if these genes also clusterfimational spacederived from the literaturéNhere
genes project in expression space is independent from wheyeproject in literature spate

1Some of the work outlined here was presented at the RECOMB @6fference and the Rocky 1 Bioinformatics
workshop [Rechtsteiner and Rocha, 2004a, RechtsteindRaala, 2004b], a publication is in preparation.

2Assuming that literature about expression experiments doe (yet) dominate the literature to an extent where
they actually are not independent anymore.
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Finding genes that cluster in expression space and alsteclusthe functional literature space
will therefore 1.) support (or validate) the found expresstlusters as significant and 2.) provide
functional information about the respective clusters.

The method presented here accepts a group of genes, e.¢s thahare co-expressed in an
expression experiment, and identifies what we ternctional themesvith which these genes are
associated in the literature. Knowledge contained in tieediure is represented by the Medical
Subject Heading (MeSH) terms [National Library of Medicir#904], an indexing vocabulary
of the biomedical literature database MEDLINE/PubM{dational Library of Medicine, 2005].
Literature for the genes is obtained from the curated pnatequence database SwissProt/UniProt
[SIB/EBI, 2004]. The algorithm used to mine the literatunéormation for relevant knowledge
about the groups of genes is derived from Weetor space modeif Information Retrieval (IR)
[Baeza-Yates et al., 1999, Rijsbergen, 1979].

In the original vector space model of IR, documents are sgmied as vectors in a so-called
keywordor term spacetypically the terms contained in the whole set of documensome vocab-
ulary that is used to index the documents (see also Fig. Sifilarly to representing documents
in a term space, we represent genes in MeSH term space. Dotuthat are relevant for a
gene are obtained, then the MeSH terms that index these @wmtsinm the MEDLINE database
are retrieved. The documents that are obtained are pubhcateferenced in the expert curated
protein sequence database SwissProt. Obtaining thetliteritom a curated database like Swis-
sProt insures that the quality of the publications and thelgvance for the respective genes is
high. If genes have similar biological functions, the retpe documents hopefully discuss these
functions, which will be reflected in the MeSH terms indexthgse documents. The vectors of
functionally related genes in MeSH term space is therefapeeed to be similar. We explore
the gene-MeSH term space for significant groups of genesatieafunctionally related, and the
MeSH terms associated with these genes expressing thetidoal themes, with Singular Value
Decomposition (SVD).

5.2 Data and Methods

5.2.1 The MeSH Vocabulary

MeSH is the National Library of Medicine’s controlled vocédxy thesaurus. It consists of sets of

terms and naming descriptors in a hierarchical structuaegérmits searching at various levels of

specificity. At the most general level of the hierarchicalisture are very broad headings such as
Anatomyor EnzymesMore specific headings are found at more narrow levels oélen-level

3PubMed is the WWW gateway to MEDLINE.
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Figure 5.1: The document-term vector space model in Infaondetrieval. Documents and the
guery terms are represented as vectors in term space. Aslarginmeasure between document
vectors and document and query vectors the cosine of the &eglveen the vectors is typically
chosen. Documents can then be retrieved and ranked by te@aking cosine similarity with the
query vector.

hierarchy, such a#nkle andLactose SynthasePart of the MeSH subtree undémino Acids,
Peptides, and Proteins [D14§ shown in Figure 5.2. The MeSH thesaurus is used by NLM for
indexing articles from 4,600 of the world’s leading biomedijournals for the MEDLINE/PubMed
database. Each bibliographic reference is associatecasihof MeSH terms, an average of about
a dozen, that describe the content of the item. SimilarBrdequeries sent to PubMed [National
Library of Medicine, 2005] use the MeSH vocabulary to find jzdtions on a desired topic.

MeSH contains over 22,000 main headings, or terms, and @&@&0Q0 synonyms to these
(also referred to as “entry terms”). The MeSH vocabularydatmually revised and updated.
Subject specialists are responsible for areas of the hgaithces in which they have knowledge
and expertise. In addition to receiving suggestions frotdexers and others, these experts collect
new terms as they appear in the scientific literature or inrging areas of research, they define
these terms within the context of existing vocabulary amy tiecommend their addition to MeSH.

MeSH has been used in some other studies as the vocabulargioédor biomedical knowl-
edge discovery [Masys et al., 2001, Jenssen et al., 200HsyMet al., 2001] chose two small
groups of 25 genes each that were differently expressedarnypes of leukemia [Golub et al.,
1999]. They obtained gene identifiers for the 50 genes andlseé PubMed and retrieved 70
publications related to the 50 genes. They showed that ttf&HMerms occurring more frequently
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m Amino Acids, Peptides, and Proteins [D12]
® Amino Acids [D12.125] +
® Macromolecular Systems [D12. 472] +
® Peptides [D12.644] +
® Proteins [D12.776] +
o ssseesses [lembrane Proteins [D12.776.543) sesaasuss
— Ankyrins [D12. 776 543 080]
— Arrestins [D12.776.543.090] +
— Bacterial Outer Membrane Proteins [D12 776 .543.100] +
— Calnexin [D12.776.543.162]
— Connexins [D12.776 543 225] +
— Dystrophin [D12 776 543 250]
— Ephrins [D12.776 543.287] +
— Heterotrimeric GTP-Binding Proteins [D12 776.543.325] +
— LDL-Receptor Related Protein-Associated Protein [D12.776.543.475]
— Membrane Glycoproteins [D12.776.543 550] +
— Membrane Transport Proteins [D12.776 .543.585]
= ATP-Binding Cassette Transporiers [D12 776 543 585 100] +
= Amino Acid Transport Systems [D12.776.543.585 200] +
= |on Channels [D12.776.543.585.400] +
= lon Pumps [D12.776.543 585 450] +
- Mitechondral Membrane Transport Proteins [D12776.543.585.475]
= Monosaccharide Transport Proteins [D12776.543.565.500]

= MNucleobase, Nucleoside, Mucleotide, and Mucleic Acid Transport Proteins
[D12.776.543.585.625] +

= MNucleocytoplasmic Transport Proteins [D12.776.543.585.750] +
— Myelin Proteins [D12 776 .543620] +
— MNeurofibromin 2 [D12.776 543 685]
— Pulmonary Surfactant-Associated Protein B [D12.776.543.701]
— Pulmonary Surfactant-Associated Protein C [D12.776.543.717]
— Receptors, Cell Surface [D12.776.543.7650] +
— Spectnn [D12.776.543 980]
— Vesicular Transport Proteins [D12.776.543.990] +

Figure 5.2: Part of a subtree of the MeSH concept hierarclvenfE+’ sign indicates there are
more entries below that entry. Only the subtkéembrane Proteins shown undeProteins Note
that going down the hierarchy, the terms become more specific
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with the publications of the two sets of genes were meanirigfthe biomedical context of the
two types of leukemia. Our approach is different from [Masysl., 2001] in several ways. We
apply our method to far larger groups of genes (hundredsowastinds) and with far larger sets of
literature (> 19,000 publications in the study presenteéhd-urther, our algorithm will identify
functional themes that can be represented by many MeSH temchfrom different regions in the
hierarchical tree (e.g. a theme containing “Enzymes” ast@ated “Diseases”). The resulting
functional themes can be used to group the genes from a agessipn cluster into different func-
tional groups and filter out genes that were not associatiédany such themes and therefore more
likely to be in the co-expression cluster due to noise in #p@ssion data. The 50 genes of [Masys
et al., 2001] were selected conservatively, with high canfak that they are differently expressed
in the different conditions. Our much larger gene clusteeseapected to contain much more noise
and identification of significant MeSH terms and functiotedrhes associated with the clusters is
more difficult’. [Jenssen et al., 2001] built a gene network from co-ocoegs of gene identifiers
in abstracts of MEDLINE. They annotated the links amonggafrgenes with the MeSH terms
that index the publications mentioning the respective geies in MEDLINE. Chapter 6 in this
work presents a large scale study that evaluates the chgptef functionally related groups of
proteins in MeSH space

5.2.2 The Vector Space Model and Latent Semantic Analysis

Figure 5.1 illustrates the vector space model of IR [Baeate¥ et al., 1999] (see also [Deerwester
et al., 1990, Berry et al., 1995]). Given a set of documeihts,words (or terms) are extracted
from the documents, or they are obtained from an indexin@bolary that is used to index the
publications (i.e. here the MeSH vocabulary is used whiclexes publications in MEDLINE).

If the terms are extracted from the documents directly,dgity a so calledstop-listis applied to
remove frequent and general terms that are not informabweeatahe contents of the documents.
Each document can then be assigned a term vector which osraaithe vector coefficients the
number of times the respective term occurs in the docufn@hiese so-calletérm frequenciegf)

are also referred to as thacal weightof the respective term for the document [Dumais, 1990]. A
so calledglobal weightfor each term is usually applied as well. This global weigdiis supposed
to capture the information content of the respective terrthenrespective body of documents.

4In [Masys et al., 2001] an Internet address to an online toplémenting their methodology is mentioned. |
wanted to apply the tool to the data presented here and centiparesults but | have never been able to access the
tool and an e-mail inquiry to the authors was not answered.

5The study of chapter 6 partly grew out of the attempt to trydamitatively and objectively validate MeSH as a
vocabulary for biochemical knowledge discovery, a questiat arose from the work in this chapter.

SAlternatively, the coefficients can be the log of the numbietimes the term occurs in the document, which
reduces the weight of very frequently occurring words.
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The most commonly applied global weighting is the Inverseoent Frequency (IDF) [Dumais,
1990] weighting. Given a terrtx, occurring inng documents, an®l being the total number of
documents, the IDF weighting factor for tertnis defined asd fy = Iog(nﬂk). Considering the
extreme values atl fy illustrates the effects of this weightingl fy is maximal for terms that only
occur in one documenidfx = log(N)), these terms have much predictive power. Terms that occur
in all N documents, however, have no predictive power or inforrmationtent about different
documents and their weighting factoridgsf, = Iog(%) = 0. The document vectors in term space
can then be represented in a document-term matrix, e.g.ofuntents as columns and the terms
as rows. The coefficient of document vecthrat term dimension is then given by the matrix
element

Wi = t fij * id fi (5.1)

wheret fy; is the term frequency of tery in documentd; andid fi the previously discussed
IDF for termty. Similarly to representing documents in term space, a sqtuefy terms can be
represented as a vector in term space. A common similarigsare between document vectors
(and between document and query vectors) is the cosine anke between the term vectors.
Given two document vectors andd; in term space, the cosine similarity between the two vectors
is defined by the normalized dot product:

_did;

cosdh. ) = 1G]

(5.2)
where|d;| and|d;j| denote the Euclidean lengths of document veapasdd;. Similarly document
vectors can be compared to a query term vector. Given a gty documents can then be
retrieved and ranked by decreasing cosine similarity wighquery vector.

Here the vector space model of IR was adapted for the refgegaenof gene vectors in MeSH
term space. First, relevant literature for all the genesyemticroarray chip for which the analysis
was performed needed to be obtained. We obtained the ptiblisaeferenced by the respective
genes in the SwissProt database (see details in next SediltmMeSH terms for the publications
were obtained from MEDLINE. For each gegeand MeSH termmy, the number of publications
referenced by geng and also indexed by MeSH temm are counted, this number represents our
local weight, gene-MeSH term frequenuyflf’i. Each MeSH termm, was weighted by a global
weighting factor similar to IDF: given the number of all gerfer which we have literaturé\?,
and the number of genes that reference publications thahdexed by MeSH ternmy, nE, we
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define a global weighting called the Inverse Gene Frequdfaly)(for MeSH termmy:
: NY
igfx = log(—5) (5.3)
Ni

Similar to IDF, if a MeSH term occurs with alY genes, IGF for this MeSH term is zero, as this
MeSH term cannot be informative about different genes. If&SM term occurs with only one
gene, IGF is maximalg fx = log(N?), as this MeSH term is potentially very informative about the
gene and its function. The gene vectors in MeSH term spacéhesmnbe represented in a gene-
MeSH term matrix. Similar to Egn. 5.1, the coefficients of g@ectorg; (columns of matrix) in
MeSH term dimensiomy (rows) is given by the matrix value

W = mfd « igfi (5.4)

Latent Semantic Analysis of MeSH Term Space

Given a cluster of co-expressed genes, we can project tkess gnto MeSH term space as outlined
above. We can now search for groups of genes that cluster8H\Werm space. Here we search and
identify these genes and their location in MeSH term spate 8ingular Value Decomposition. If
genes cluster in a certain location in MeSH space, we expeatdriance of the gene-MeSH data
in that direction to be larger and SVD will be able to deteetsthigher variance directions. The
MeSH terms associated with these SVD modes will describéutinetional themesghe groups of
genes are associated with.

SVD is frequently applied in combination with the vector spanodel in Information Re-
trieval, it is then typically referred to as Latent Semamtitalysis (LSA) or Latent Semantic In-
dexing (LSI) [Deerwester et al., 1990, Berry et al., 1995mifarly to our application to genes in
MeSH term space, SVD can detect if documents cluster inferdifit themes and subjects. SVD
modes have been found to be associated with such differentet and subjects, therefore the
term “Latent Semantic” (LS) space, which in our applicatiea can correspondingly call “Latent
Functional” space.

Besides identifying the dominant themes and subjects indy lod documents, it has been
found that the application of SVD to the vector space modelsignificantly improve retrieval
of documents. Using only the top SVD modes (typically a ceugfl hundred in a data set with
thousands of documents and thousands of terms [Berry et985]), LSA leads to a reduction
of the dimensionality of the document-term space. Thisctdn has often the beneficial effects
that 1.) unimportant and “noise introducing” terms are igub as they are typically captured by
the low variance singular vectors and 2.) that projectiothefdocument vectors into the SVD
subspace reduces the negative effects of monymyndpolysemyon IR with the vector space
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MeSH 2

gene group 2

gene group 1
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.I ° MeSH 1

Figure 5.3: If groups of genes cluster in MeSH term space, $&iDdetect the directions of these
groups of genes. The illustration shows two groups of gemegtsctuster in MeSH term space. One
singular vector (SV 1) points in the direction of group 1 ahd second singular vector points in
the direction of gene group 2. The grey genes in the centararstrongly associated with either

MeSH term 1 or MeSH term 2.
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model. Multiple terms are synonyms of each other if they theesame meaning (e.g. “car” and
“automobile”). They should therefore not be treated aspedelent terms and ideally “collapse”
to the same location in the reduced LSA space (e.g. “car” andomobile” are expected to be
close in the reduced LSA space). Polysemy refers to one texmdp multiple meanings (e.g.
“Java” in the different contexts of programming languag#fee or as an island). The ambiguity
of polysemic terms can be reduced in LSA space. If “Java” mcaow a document projecting
close to documents about coffee in LSA space, it will mogliihave a different meaning in that
document (i.e. meaning related to coffee) than if the docummojects close to documents about
computers (i.e. probably refers here to the Java progragtaimguage). The meaning of the same
terms in different documents can therefore be disambiguate SA based on where in LSA space
the documents project to. In chapter 6 we predict proteinesece families for proteins based on
where in MeSH term space the proteins project. We also esglibthe application of SVD/LSA
to the protein-MeSH term space could improve our predidiotess. We found that this is not the
case and that many (over one thousand) singular vectorgeessary to obtain comparable results
to predicting in the original MeSH term space (~5000 MeSH®r This seems to indicate that
there is little synonymy or polysemy in the MeSH term vocabyll. This might be expected from
a well designed vocabulary, as ambiguous indexing termsEDMNE would certainly pose a
problem for the database and retrieval of relevant docusnéiithough SVD/LSA in gene-MeSH
term space will not be needed for disambiguating MeSH teitrmsll still identify any directions

in MeSH space in which genes cluster.

5.2.3 Obtaining the MeSH Term Frequenciesn fl?i

The associations of genes with MeSH terms, the mesh termédragesm fl?i in Egn. 5.4, need
to be obtained to perform the above outlined analysis. Tainlihe MeSH terms, we first need
to obtain documents that discuss the functions of the gefs® possibility is to obtain gene
names and symbols from gene databases and query MEDLINE &itid abstracts for these gene
identifiers. The gene names and symbols usually have highgaitph though. There can be
multiple identifiers for the same gene (synonymy of genetiflers) or the same identifier can
refer to multiple genes or concepts (polysemy). [Jenssah,&001] inferred gene networks from
co-occurrences of gene identifiers in abstracts and tilddEDLINE publications. They found
that 30-40% of the inferred connections in the network wao®irect due to synonymy and pol-
ysemy of gene identifiers. Here we therefore chose a diffeqeproach and obtained what could

“In document retrieval applications significant improvesén document retrieval have been reported when re-
ducing the dimensionality from originally thousands toyoséveral hundred dimensions. Most of the improvement
is due to the reduction of term synonymy in the reduced lasgemantic space [Deerwester et al., 1990, Berry et al.,
1995].
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be calledexpert literaturefor the genesWe obtained the literature from the expert curated protein
sequence database SwissProt/UniProt [SIB/EBI, 2004¢Bhiet al., 2005] from the European
Bioinformatics Institute (EBI). Each protein entry in Sgf&ot contains the sequence of the pro-
tein, protein and gene names and identifiers pooled fronowsarther databases. SwissProt also
contains cross-references to to other databases, for éxdingpgene sequence in GenBank or the
Pfam protein sequence family the respective protein baldmgEach protein entry also has refer-
ences to relevant literature for the protein in MEDLINE. Bese of expert curation, we can have
high confidence in the relevance of the literature referémeé&wissProt.

See Figure 5.4 for the steps involved in obtaining the gee&MNterm data. To obtain literature
for the genes from an expression experiment, we needed anadimapping of gene identifiers
from the respective mRNA chip to SwissProt proteins. In theadet analyzed below, the mRNA
chip was manufactured by Affymetrix [Affymetrix, 2005], @diffymetrix does provide a mapping
of the genes on their chips to SwissProt prot&iBwissProt provides us with literature references
for the respective proteins (or genes). The MeSH terms &gdltiterature references are obtained
from MEDLINE.

5.3 An Application of LSA to Gene-MeSH Space

5.3.1 Three Gene Expression Clusters in Herpes Virus Infeed Human Cells

The above outlined automated functional analysis was pedd on three co-expression clusters
from the herpes virus infected human fibroblast data setidssd in chapter 3. The expression
of 12,600 genes (probe sets) was measured with AffymetipscfiHGU95A) at 12 time-points,
between 1/2 hrs and 48 hrs after infection with the herpessyifo eliminate the genes with mostly
noisy expression profiles the one-step auto-correlatiter fihtroduced in chapter 4 was applied
and half of the genes with lowest one-step autocorrelatierewemoved. Singular Value Decom-
position was applied to identify the dominant modes of eggin for the remaining genes. Figure
5.5 shows the singular value spectrum and the first two eg@ngrofiles, the first exhibiting a
monotone increasing expression pattern and the secondsaein& pattern of initial decrease and
then increase in expression. 80% of the variance in the sgjame data was captured by these first
two expression modes.

Plotting the correlation of the gene expression vectorh eigengenes 1 and 2 showed strong
variation in the density of genes around the perimeter dfshbspace. The boundary identification
(BITS) and polar angle density clustering (PAD) algorithimsoduced in chapter 4 were applied

8Even without such a mapping, typically a gene to SwissProtigim entry mapping is not too difficult to obtain,
as SwissProt contains extensive cross-references to gésieedes like GenBank.
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Affy to SwissP SwissProt
Gene ID 1 -> SP protein 1 Protein 1 |
Gene ID 2 -> SP protein 2 Pfam 1 _—
Pub 1
\ Pub 2 \
Protein 2
Pfam 2
Pub 3
Pub 4
M1 M2 M3

MEDLINE/PubMed

Pub 1
MeSH 1
MeSH 2
MeSH 3

Pub 2
MeSH 2

MeSH 3
MeSH 4

Gene-MeSH document co-occurrences

Figure 5.4. To obtain the gene-MeSH term association mats@ obtained a mapping of
Affymetrix gene IDs for the chip used in the gene expressioalysis (HGU95A) to SwissProt
proteins. The SwissProt database provided us with litezateferences for the proteins. MeSH
terms for these publications were obtained from MEDLINEe ene-MeSH association matrix
then contains for each gene-MeSH term pair the number ofrdents referenced by the respective
gene and also indexed by the respective MeSH term in MEDLIMEthe MeSH term frequencies
mfJ from Eqn. 5.4).

relative variance

eigenexpression

a)

© I

o

U

o

N

o

e | WHHHW—W
o

mode

b)

0.2

0.2

&

-0.4
|

0
0
0
0
|
0
0

(0]

AN

0

B
I

0.5

T I
240 48.0

time/hpi

eigenexpression

0.4

0.0
|

-0.4
|

0.5

T I
240 48.0

time/hpi

Figure 5.5: Singular Value Decomposition of the herpesdieieg human fibroblast data set. Shown
is the singular value spectrum (the relative variance cagthy the respective modes) and the first
two eigengenes. Over 80% of the variance is captured by stavio expression modes.
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Figure 5.6: Results of the application of the BITS and PADpéthms to gene expression vectors
in the subspace of eigengenes 1 and 2. Three high densitneegf genes were identified close
to the perimeter of the space (shown in plot a). The averageesgion profiles of the genes in the
respective clusters are shown in plot b).

to the gene expression vectors in the subspace of eigentjemes2. Three high density regions,
or clusters, of similarly expressed genes were identified, Sgure 5.6 a). Two of the clusters
(red and green) were identified in the study presented inteh&p An additional region with a
higher density of genes (blue) was identified by the PAD ailigor. Figure 5.7 shows a bi-plot, a
projection of the genes and the assays onto SVD modes 1 arel 2hé projection of the genes
onto the first two eigengenes and a projection of the assaystha first two eigenassay(sFor
easier interpretation, the sign of the projection of theags®onto eigenassay 2 has been flipped.
The red arrows corresponding to the assays are labeled biy@oints (hrs after infection). The
figure shows that the assays are time ordered in this twordiroeal projection, they are ordered
clock-wise. The assays also cluster in roughly 3 groups tlaesk groups of assays project close
to the 3 clusters of co-expressed genes. Genes that prégsetto a certain assay vector in the
bi-plot have their expression induced at the correspontimg point (relative to the baseline to
which expression is measured, here the mean expressioralbéiene points). The blue cluster

9Possibly the easiest way to visualize this plot is to thinthefgenes plotted as points in the original 12 dimensional
space spanned by the 12 assays, i.e. time points of the mqydri These time point basis vectors are illustrated by
the red arrows. SVD performs a rotation of the space so that wfothe variance is captured by the new basis
vector system (the singular vectors, linear combinatidriseoriginal basis vectors). Figure 5.7 shows the projecti
(rotation) of the genes (black dots) and the original timapbasis vectors (red arrows) onto the first two singular
vectors capturing most of the variance. This is achievedrbjepting the genes onto the eigengenes (right singular
vectors) and projecting the assays onto the eigenasséysiigular vectors). (See also chapter 2.)
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of genes is associated with assays corresponding to thetead point (1/2, 1, 2 and 4 hrs after
infection). These genes’ expression is induced at thedg #aue points, as can be seen in the
expression profiles in Figure 5.6 b). The assays at 10 and dprbject close to the genes of
cluster 2. Because these assays project close to eigeriassag the sign of the projection with
eigenassay 2 has been flipped, genes of cluster 2 have asegpregpression at these intermediate
time points. Assays corresponding to medium to late timetsgi.e. from 14 to 48 hrs after
infection, project close to gene expression vectors of gaecluster (where the last, 48 hr time
point, is somewhat outlying). These genes will have an iedwexpression at these medium to late
time points (as can again be seen in the average expressite for the cluster of genes in Figure
5.6 b)).

In addition to the 12 time point assays after virus infectiBrowne et al. [Browne et al., 2001],
who produced the study, also measured expression aftercalled- “mock infection”. In mock
infection, the human fibroblast cells undergo the same é@xjeatal procedure as in infection with
the herpes virus except that no virus is present. Such mdektions are performed to control for
effects of the experimental procedure, and not the virugieme expression of the host cells. Two
assays, 16 and 24 hrs after mock infection, were obtainedrasots. The projection of both of
those assays onto eigenassays 1 and 2 are shown in Figure g&ea arrows, labeled m16 and
m24. Both mock infected assays project close to the assayesponding to the earliest time points
of the virus infection experiment, e.g. the assays takemf¢P1 hr after virus infection. Compare
the mock infected assays also to the assays at 16 and 24 érviafis infection. The assays 16
and 24 hrs after virus infection are positively correlatathwnode 1 whereas the mock infected
assays, corresponding to the same time points after moektiah, are negatively correlated with
mode 1. This suggests that, first, the mock infected cellsnaaesimilar “state of expression” as
the cells right after infection. It suggests further that many changes in gene expression have
occurred 1/2 and 1 hr after infection with the herpes virue.dadh conclude further that the change
in expression we observe in the subspace of mode 1 and 2 atg dak to the virus and not any
experimental procedures during infection.

5.3.2 LSAin MeSH Term Space

For 11,348 Affymetrix IDs on the chip HGU95A mappings to Ssisot protein identifiers were
obtained®. 8036 of the Affymetrix IDs had mappings to 6074 SwissProtgin identifiers (mul-
tiple Affymetrix probe sets can be present for the same geoain; the maximum number of
Affymetrix probe sets for a protein were 10). The 6074 gepre$éins had 19644 publications
referenced in SwissProt. MeSH terms for these publicaticere retrieved from MEDLINE. The

1%Downloaded from the Affymetrix website [Affymetrix, 2005kquires (free) registration.
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Figure 5.7: Projection of both the gene expression vectdexk dots) onto the eigengenes and
the assay expression profiles onto the eigenassays (resarithe assays are labeled by the hour
after infection they were sampled at. The assays seem t@goughly into 3 distinct groups
which project close to the three clusters of genes that vaenatified by the PAD algorithm. Also,
the assays are in temporal, clockwise order around the p&irsuggesting that some temporal
process(es) is in progress causing the observed changgsréssion. Also shown are two assays
16 and 24 hrs after a “mock infection” (green arrows). Thesedssays project close to the earliest
assays, 1/2 and 1 hr, after virus infection. This indicatesthe observed expression change in the
12 assays after virus infection are due to the virus and noe¢aperimental effects of the infection.
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Figure 5.8: The distribution of number of publications (FM) and MeSH terms per gene (or
protein) in our data set. Many genes have only 1 or 2 pubtinatieferenced. The mean number of
publications per gene is 4.3, the median is 3. The mean nuaflogstinct MeSH terms associated
with a gene is 42, the median is 35.

19644 publications were found to be indexed by 6568 distM&eSH terms. The 346 MeSH terms
that indexed publications of more than 100 different pragevere removed, as they are most likely
too general to be informative about a gene’s (or proteiniscfion. The 1928 MeSH terms that
indexed publications of only one gene were removed as weHyah very unique terms often add
mostly noise to the data and do not link any proteins/genbiH term space. It has been found
that typically the terms occurring with ‘'medium frequeneyé the most important for successful
information retrieval with the vector space model [Deereest al., 1990].

We obtained a 6074 by 4294 gene-MeSH association matrik,avibatrix element for a gene-
MeSH pair indicating how many publications were found refexed by the respective gene/protein
in SwissProt and also indexed by the respective MeSH termBDMNE (the mesh term fre-
quencymf? in Equation 5.4).

For the 4294 MeSH terms the inverse gene frequency (IGF) aizsilated (see Eqn. 5.3)
and applied as global weighting factors to the MeSH termueagy matrix, see Eqn. 5.4. 1528
Affymetrix probe sets from cluster 1 mapped to 1343 distgenes in SwissProt. 210 probe sets
of cluster 2 mapped to 205 distinct genes in SwissProt andh8&33 sets from cluster 3 mapped
to 339 distinct genes.
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Figure 5.9: The number of genes a MeSH term occurs with (frtkeough the publications ref-
erenced in SwissProt). Some MeSH terms occur with almoggealés but many occur with only
one or few genes. The 5 most frequently occurring MeSH temm$laman, Molecular Sequence
Data, Amino Acid Sequence, Support - Non-US Govt and Basei&ese. Obviously the very
frequent MeSH terms are not informative about specific genes

. Dihydrotestosterone receptor; Androgen receptor)

. Amyloid beta A4 protein precursor; ABPP; Alzheimer'seise amyloid protein

. Hemoglobin beta chain

. A-28; Aw-68; HLA class | histocompatibility antigen, A8@lpha chain precursor
. Transthyretin precursor; Prealbumin; TBPA; TTR; ATTR

. Collagen alpha 1(l) chain precursor

. Cystic fibrosis transmembrane conductance regulatoFRCEAMP-dependent chloride chan-
nel

8. Serine-protein kinase ATM

9. VWF; Von Willebrand factor precursor

10. Thyroid stimulating hormone receptor; TSH-R

~NOoO ok, WNPE

Table 5.1: Genes with most publication references. Synamgmes and symbols are separated by
semicolons.
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Iterative Algorithm for MeSH Outlier Removal

Before applying SVD to the resulting gene-MeSH associati@trices for the three gene co-
expression clusters, random sets of genes with the sanme aszihe clusters were generated to
identify and remove “outlier MeSH terms”. Outliers hereemsf to MeSH terms that alone can
determine a SVD mode of a random set of genes and thereforei@athe analysis. 15 random
sets of genes, 5 sets with the same size as cluster 1 (1348mindelected genes), 5 sets with
the same size as cluster 2 (205 randomly selected genedj,smtsl with the same size as cluster 3
(339 randomly selected genes) were created. SVD was pextbom the resulting 15 gene-MeSH
association matrices and the outliers among the MeSH teers identified. Outlier identification
and removal is rather typical in data analysis with PCA/S\JDlljffe, 1986] and often performed
by visual inspection of the data. Here we developed an dlgarthat performs outlier detection
and removal in an automated way. The algorithm identifieafandom gene-MeSH data set the
MeSH terms that are most correlated (largest absolute @ ltige coefficient) with each of the
first 10 SVD modes (of that respective gene-MeSH data sdt)el€oefficient of a MeSH term for
one of the 10 SVD modes is larger than 0.7, the MeSH term is edaak outlier and for removal
before the next iteration of the algorithfn All outlier MeSH terms for all 15 random sets and
for the first 10 singular vectors were marked and then removVkd algorithm was applied to the
resulting data set and the next set of MeSH term outliers wWetermined. After 10 iterations,
when fewer than 5 MeSH terms were identified per iteratioa thineshold for the singular vector
coefficients was lowered to 0.6.6% = 0.36). After 14 iterations, again less than 5 MeSH terms
were identified as outliers in the 15 random sets. It was alsod that the singular value spectrum
for 15 different, independent random data sets, obtaineoisols, stopped to vary significantly
between iterations. The algorithm to remove MeSH term exglivas therefore halted after 14
iterations and the removal of 158 MeSH term outliers. Moghefremoved MeSH term outliers
are rather general and occurred with many genes, but belewitnal cutoff of occurrence with
100 genes.

LSA in MeSH Term Space for 3 Gene Clusters

The SVD/LSA was performed on the resulting IGF weighted gei®SH term frequency matrices
for the three co-expression clusters. Figure 5.10 showsahance captured by the first 50 SVD
modes of the gene-MeSH term matrices for the three clustétsster 1 corresponds to the red
cluster in Figure 5.6, cluster 2 to the green cluster andefssto the blue cluster in Fig. 5.6. Also
shown, by red lines, are the variances found by SVD in 5 ranglauaps of genes of the same size

11The Euclidean length of the SVD singular vectors is norneaito one, and a MeSH term with a coefficient of
0.7 or more therefore determines halff®= 0.49) or more of the length of that singular vector.
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a.) cluster 1 b.) cluster 2 c.) cluster 3
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Figure 5.10: The variance for the first 50 components of th® $¥the gene-MeSH association
matrices for the three co-expression clusters and for rangimups of genes. The green point
plots show the variances for the respective gene cluseegdhtinuous red lines show the average
variance for 5 random groups of genes (with the same numlgpgras as the respective cluster).
The standard deviation from the mean for the 5 random grosighown by the dashed lines.
Cluster 1 corresponds to the red cluster in Fig. 5.6. Clustarresponds to the green cluster and
cluster 3 to the blue cluster in Fig. 5.6.

as the clusters (note, these 15 random sets of genes wepeitnt of the sets used to remove
outliers). The variances for the co-expression clustensdl3ashow increased variances over the
random groups of genes. For cluster 2, however, the varsaofdee first few modes are not higher
than for same sized random groups of genes.

Figure 5.11 shows the projection of the genes (black ciy@dad MeSH terms (red triangles)
onto the respective singular vectors of modes 1 and 2 (leftéigand modes 3 and 4 (right figure).
Table 5.2 lists the 20 genes most correlated with mode 1 ainrd@melated with mode 2. The func-
tional theme of this group of genes could be called “smallearcribonucleoproteins and splicing
factors”. The MeSH terms most associated with these geresSaticeososmes”, “RNA, Small
Nuclear”, “ Ribonucleoprotein, U1 Small Nuclear” and “Rigcleoprotein, U2 Small Nuclear”.
As small nuclear ribonucleoproteins are frequently pagpliceosomes and splicing factors, the
MeSH terms and genes are clearly related. The genes mostated with mode 1 and positively
correlated with mode 2 split into three distinct groups ia gubspace of modes 3 and 4: genes
positively correlated with mode 4 and negatively with mod@@&ble 5.3), genes correlated neg-
atively with both modes 3 and 4 (Table 5.4), and genes pe$jtivorrelated with mode 3 (and
mostly uncorrelated with mode 4) (Table 5.5). Genes of Tal8eare mostly transcrpition factors,
some associated with regulating the cell-cycle. GeneslleTa4 are overwhelmingly associated
with Thyroid receptor proteins or proteins binding to theggtor. Table 5.5 contains a significant
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Figure 5.11: Projection of genes (black circles) and MeShh$g(red triangles) onto the first two
SVD components (left) and components 3 and 4 (right) fortelus.

number of transcription factors (different from Table 5aBp Retinoblastoma binding proteins.

For cluster 2 genes, the same analysis was performed. Figl@eshows fewer genes were
found to be strongly correlated with the first 2 modes thancfaster 1 (as might be expected
from the singular value spectrum). Genes (anti-) corrdlatith mode 1 were grouped into genes
correlated with mode 2 and anti-correlated with mode 2. Bpthups contain mainly immune
system regulating proteins: interferon response gengsalstransduction and apoptosis related
proteins in Table 5.6 and inflammatory cytokines, as welleksadhesion and apoptosis related
proteins in Table 5.7.

Three groups of genes for cluster 3 were found correlateld thig first two modes (Figure
5.12). Table 5.8 lists proteins correlated with mode 1. Mextyacellular and cell adhesion related
proteins are found in this group of genes. Genes negatieetelated with mode 2 (Table 5.9) list
extracellular matrix proteins, many of them related to @gd#in. Several proteins in Table 5.10 are
related to membrane channel proteins and dehydrogensases.

5.4 Discussion

We compare the functional groups of genes we identified fertlto-expression clusters to hu-
man annotations in [Challacombe et al., 2004] (also seeteh8pand [Browne et al., 2001]. The
functional annotations of genes in clusters 1 and 2 were algnaspected and results reported in
chapter 3 and [Challacombe et al., 2004]. [Challacombe. e2@04] reports a “noticeably greater
percentage of genes in cluster 1 in the categories of trgtiscr and oncogenesis/cell cycle regula-
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075533 Splicing factor 3B subunit 1; Spliceosome associated prdtgs5

Q15459 Splicing factor 3 subunit 1; Spliceosome associated prdte#

Q15427 Pre-mRNA splicing factor SF3b 49 kDa subunit; Spliceosossmaiated protein 49
Q13435 Pre-mRNA splicing factor SF3b 145 kDa subunit; Spliceosassnciated protein 145
P43331 Sm-D3; Small nuclear ribonucleoprotein Sm D3; snRNP cooégim D3

P08579 U2 small nuclear ribonucleoprotein B

Q15356 Sm-F; Small nuclear ribonucleoprotein F

Q15357 Sm-G; Small nuclear ribonucleoprotein G

P14678 Sm-B/Sm-B”; Small nuclear ribonucleoprotein associatexdgins B and B”

P09661 U2 small nuclear ribonucleoprotein A”; U2 snRNP-A’

Q14562 ATP-dependent helicase DDX8; RNA helicase HRH1; DEAH-bootgin 8

Q07955 pre-mRNA splicing factor SF2, P33 subunit; Alternativeigplg factor ASF-1

P08621 U1l small nuclear ribonucleoprotein 70 kDa; U1 snRNP 70 kDa

Q9Y4Y8 U6 snRNA-associated Sm-like protein LSm6

043143 ATP-dependent RNA helicase #46; Putative pre-mRNA sgli€éattor RNA helicase; DEAH box protein 15
Q14498 RNA-binding region containing protein 2; Splicing facto€g1

014893 Survival of motor neuron protein-interacting protein 1;n@82

000566 U3 small nucleolar ribonucleoprotein protein MPP10; M ghpeosphoprotein 10

Q13487 snRNA activating protein complex 45 kDa subunit; Proximegsence element-binding transcription factor
delta

Q16533 snRNA activating protein complex 43 kDa subunit; Proximegsence element-binding transcription factor
gamma

Table 5.2: The SwissProt accessions and names for the gemésster 1 correlated positively
with mode 1 and negatively with mode 2 (see Figure 5.11; theegi@re ordered by decreasing
correlation with mode 1; synonym names are separarted bsneskon). Most genes are mRNA
splicing factors and ribonucleoproteins.
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Q16514 TAFII-20/TAFII-15; Transcription initiation factor TFD 20/15 kDa subunits
014981 TAF(11)170; TBP-associated factor 172

Q15544 TAFII-28; Transcription initiation factor TFIID 28 kDa sulnit

Q15543 TAFII-18; Transcription initiation factor TFIID 18 kDa sulbit

043513 Cofactor required for Sp1 transcriptional activation suib@; Transcriptional co-activator CRSP33
000268 TAFII-130

Q15545 TAFII-55

Q15542 TAFII-100; Transcription initiation factor TFIID 100 kDaubunit

P52657 TFIIA-12; Transcription initiation factor 1A gamma chain

P13984 TFIIF-beta; Transcription initiation factor RAP30

P20226 TATA box binding protein; Transcription initiation fact@I1D

Q00403 Transcription initiation factor 1B

P51948 CDK-activating kinase assembly factor MAT1; Cyclin G1 irgteting protein
P52655 TFIIA-42; Transcription initiation factor 1A alpha and teechains

P51946 Cyclin H; MO15-associated protein

P32780 TFIIH basal transcription factor complex p62 subunit

Table 5.3: Cluster 1. genes positively associated with niydeegatively with mode 3 and posi-
tively with mode 4, ordered by decreasing correlation wittdie 2. Most of the proteins belong to
the group of the so called “general transcription factohsit bind to RNA Polymerase Il and that
are required to initiate transcription.
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Q15648 Peroxisome proliferator-activated receptor binding @irgt Thyroid receptor interacting protein 2; p53 reg-
ulatory protein RB18A

Q9UHV7 Thyroid hormone receptor-associated protein complex Z¥domponent; Trap240
Q09472 E1A-associated protein p300

Q15649 TRIP-3; Thyroid receptor interacting protein 3

Q15643 TRIP-11; Thyroid receptor interacting protein 11

Q14669 TRIP-12; Thyroid receptor interacting protein 12

Q15650 TRIP-4; Activating signal cointegrator 1; Thyroid recepitateracting protein 4

P47210 26S protease regulatory subunit 8; Proteasome subunitTidi®-1; Thyroid hormone receptor interacting
protein 1

Q15642 Cdc42-interacting protein 4; TRIP-10; Thyroid receptdenacting protein 10
P35790 CHETK-alpha; Choline kinase

Q14686 Nuclear receptor coactivator 6; Peroxisome proliferattiivated receptor-interacting protein; Cancer-
amplified transcriptional coactivator ASC-2; Thyroid hamne receptor-binding protein

P18583 Protein C210rf50; Negative regulatory element-bindingt@in
Q99963 EEN-B2; SH3-containing GRB2-like protein 3

Q9Y3I1 F-box only protein 7

043504 HBV X interacting protein; Hepatitis B virus X interactingqiein

P41002 G2/mitotic-specific cyclin F

Table 5.4: Cluster 1: genes positively associated with niydeegatively with mode 3 and nega-
tively with mode 4, ordered by decreasing correlation withd@ 2. The thyroid-hormone receptors
are hormone-dependent transcription factors that coeiptession of many target genes [Park
et al., 1993].
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075461 Transcription factor E2F6

Q14186 Transcription factor DP-1; E2F dimerization partner 1
075367 Core histone macro-H2A.1

Q13185 HECH; Chromobox protein homolog 3

Q14493 Histone RNA hairpin-binding protein

P17317 H2A/z; Histone H2A.z

Q09028 Chromatin assembly factor 1 subunit C; CAF-1 subunit C;firdtiastoma binding protein 4
Q06587 Polycomb complex protein RING1; RNF1

000716 Transcription factor E2F3

Q15291 Retinoblastoma-binding protein 5; RBBP-5

P29374 Retinoblastoma-binding protein 1; RBBP-1

P29375 Retinoblastoma-binding protein 2; RBBP-2

Q01094 Retinoblastoma binding protein 3; RBAP-1

096020 G1/S-Specific cyclin E2

P24864 G1/S-specific cyclin E1

P06400 Retinoblastoma-associated protein; RB

Q15329 Transcription factor E2F5; E2F-5

Q08999 Retinoblastoma-like protein 2; RBR-2

P32519 ETS-related transcription factor EIf-1

Table 5.5: Cluster 1: genes positively associated with nibded mode 3, ordered by decreasing
correlation with mode 2. Many genes in this cluster are tapson factors and transcriptional
regulators involved in oncogenesis and cell cycle regutesome are involved in apoptosis [Chal-
lacombe et al., 2004].
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Figure 5.12: Projection of genes (black circles) and MeShh$g(red triangles) onto the first two
SVD components for cluster 2 cluster 3. Fewer genes tharldster 1 are found associated with
the respective LSA modes.

Q13651 IL-10R1; Interleukin-10 receptor alpha chain precursor
Q08334 IL-10R2; Interleukin-10 receptor beta chain precursor
P01579 Interferon gamma precursor; IFN-gamma; Immune interferon
P42701 IL-12RB1; Interleukin-12 receptor beta

P80217 Interferon-induced 35 kDa protein; IFP 35

P51692 Signal transducer and activator of transcription 5B

P52198 Rnd2; Rho-related GTP-binding protein RhoN

P25446 Tumor necrosis factor receptor superfamily member 6 pssryFASL receptor; Apoptosis-mediating sur-
face antigen FAS; CD95

P20290 RNA polymerase B transcription factor 3; TranscriptiontfadTF3

P19075 Tumor-associated antigen CO-029

Table 5.6: Cluster 2: genes anti-correlated with mode 1 aoden?. Interferon response genes
(immune system regulation), signal transduction, apaptetated proteins.
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P10147 Small inducible cytokine A3 precursor; Macrophage inflantonaprotein 1-alpha; GO/G1 switch regulatory
protein 19-1; PAT 464.1

P13236 Small inducible cytokine A4 precursor; Macrophage inflantonaprotein 1-beta; T-cell activation protein 2
P25024 IL-8R A; High affinity interleukin-8 receptor A; IL-8 recept type 1

P51685 CC-chemokine receptor CHEMR1

P80098 Small inducible cytokine A7 precursor; Monocyte chematagtotein 3

P32302 C-X-C chemokine receptor type 5; MDR15; Monocyte-deriveckptor 15

P30740 EI; Monocyte/neutrophil elastase inhibitor

Q9NRI5 Disrupted in schizophrenia 1 protein

Q14289 Related adhesion focal tyrosine kinase; Cell adhesiorskibata

Q14790 Caspase-8 precursor; Apoptotic protease Mch-5

Table 5.7: Cluster 2 : genes anti-correlated with mode 1 asitigely correlated with mode 2.
Mostly inflammatory cytokines, also cell adhesion and apsigtrelated proteins.

tion than in cluster 2”. Our analysis revealed three grodgsaoscription factors that are strongly
associated with the first few LSA modes in cluster 1, inclgdiell-cycle and oncogenesis regula-
tors in Table 5.5. Analysis in chapter 3 also lead to the agioh that “cluster 2 contained a higher
percentage of genes involved in signal transduction, imeraystem regulation, and cell adhesion
compared to cluster 1”. The two first LSA modes of cluster 2agamainly contained immune sys-
tem regulating and signal transduction proteins (manyfi&ten response genes and inflammatory
cytokines), as well as some apoptosis and cell adhesiotedefaoteins. This corresponds also
very well to the finding of [Browne et al., 2001], who reportecdease in expression in the first 8
hrs post infection for interferon response genes and inflator cytokines (genes in our cluster
2 show a decrease in expression between 4 and 20 hours pagtan). All functional groups of
genes that are reported for cluster 1 and 2 in [Challacomla¢,e2004], as well as in [Browne
et al., 2001], are found among the first few LSA modes in outyasmafor the respective clusters
(e.g. cell-cycle and oncogenesis transcription factansniine system regulators, apoptosis and
cell adhesion related proteins). Interestingly, we alamtbsome functional groups of genes in
clusters 1 that were not reported in [Challacombe et al.4P@6r in [Browne et al., 2001]. The
largest not reported group of genes are small ribonucleéem®and splicing factors in cluster 1
(Table 5.2). This group of genes is important for the proogssf the host messenger RNA before
transport to the cytoplasm and translation to proteins. esuof the literature revealed that the
herpes virus can severely impact the host cell’s proteidyction by interfering with the splicing
of the host mRNA. The literature typically reported a dirgderaction of the virus proteins with
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P07942 Laminin beta-1 chain precursor

P11047 Laminin gamma-1 chain precursor

Q16363 Laminin alpha-4 chain precursor

P98160 PLC; Basement membrane-specific heparan sulfate protmgbore protein precursor
P02545 70 kDa lamin; Lamin A/C

P31431 Ryudocan core protein; Amphiglycan; Syndecan-4 precursor

P18827 CD138 antigen; Syndecan-1 precursor

P47914 60S ribosomal protein L29; Cell surface heparin bindinggiroHIP

P13611 Versican core protein precursor; Large fibroblast protgoayt; Chondroitin sulfate proteoglycan core protein
2

094766 GICUAT-I; Glucuronosyltransferase-|

P16070 CDw44; Heparan sulfate proteoglycan; GP90 lymphocyte hgradhesion receptor; Extracellular matrix
receptor-lll; CD44 antigen precursor

P27544 LAG1 protein; Embryonic growth/differentiation factor tqeursor; Longevity assurance homolog 1
P29279 Hypertrophic chondrocyte-specific protein 24; Connedisgue growth factor precursor

P36956 Sterol regulatory element binding protein-1

Q12772 Sterol regulatory element binding protein-2

Q16394 Putative tumor suppressor protein EXT1

Table 5.8: Cluster 3: genes positively correlated with mbddany extracellular and cell adhesion
related proteins. Laminin is a large, noncollagenous giyotein with antigenic properties. It

functions to bind epithelial cells to the basement memb(deSH annotation [National Library

of Medicine, 2004]).
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P05997 Collagen alpha 2(V) chain precursor

P20849 Collagen alpha 1(IX) chain precursor

P02461 Collagen alpha 1(Ill) chain precursor

Q07092 Collagen alpha 1(XVI) chain precursor

P12109 Collagen alpha 1(VI) chain precursor

P08123 Collagen alpha 2(I) chain precursor

094833 Dystonia musculorum protein

P29279 Connective tissue growth factor precursor; Hypertrophmrocyte-specific protein 24
P07996 Thrombospondin 1 precursor

P35555 Fibrillin 1 precursor

P13611 Versican core protein precursor; Large fibroblast protgcayh
Q14192 Skeletal muscle LIM-protein 3

P22003 Bone morphogenetic protein 5 precursor

P35442 Thrombospondin 2 precursor

P35556 Fibrillin 2 precursor

Table 5.9: Cluster 3: genes negatively correlated with mddeExtracellular matrix proteins.
Collagen is the main constituent of skin, connective tissugthe organic substance of bones and
teeth.
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075783 Rhomboid-like protein 1

075154 Eferin

P29372 N-methylpurine-DNA glycosirase

095180 Woltage-dependent T-type calcium channel alpha-1H sabuni
P50550 P18; Ubiquitin-conjugating enzyme UbcE2A; SUMO-1-pratkjase
P98161 Polycystin 1 precursor

P22674 Uracil-DNA glycosylase 2

P34969 5-hydroxytryptamine 7 receptor; Serotonin receptor

P15382 Potassium voltage-gated channel subfamily E member 1
Q9BYH1 Seizure 6-like protein precursor

Q03135 Caveolin-1

Q92952 SK1; Small conductance calcium-activated potassium afigpmotein 1
Q12809 eag homolog; Potassium voltage-gated channel subfamilgiioer 2
Q8TDN2 Potassium voltage-gated channel subfamily V member 2
P00325 Alcohol dehydrogenase beta chain

P00326 Alcohol dehydrogenase gamma chain

P11766 FDH; Alcohol dehydrogenase class Il chi chain (EC 1.1.1.1)
Q01959 Sodium-dependent dopamine transporter

075828 Carbonyl reductase [NADPH] 3

Table 5.10: Cluster 3: genes positively correlated with enadd
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splicing factors [Hardy and RM., 1994], but our analysisgesjs that the transcription of many
splicing factors of the host cell is affected as well. In fattister 1 genes are up-regulated genes.
The host cell might respond to the interference of the vimaggins with host mRNA processing
by increasing the production of ribonucleoproteins andcsm factors, to improve host mRNA
processing. This reasoning might also explain the findiag tihe “general transcription factors”
in Table 5.3 are upregulated. One reason why this group cdgemas not identified in cluster 1
by the human expert (chapter 3 and [Challacombe et al., 200idht be because the expression
of this functional group of genes was not expected to be @tkcThe human annotator states that
she focused on functional classes of genes whose transariptknown to be influenced by the
virus: signal transduction, immune system regulation papsis, cell cycle regulation, oncogen-
esis, cell adhesion and transcription. Ribonucleopretaimd splicing factors do not fall within
these functional classes, therefore they were missed iartalysis. This illustrates the potential
value of the exploratory, inference driven functional daiaing approach applied here. Another
functional group of genes not explicitly mentioned in [Qaabmbe et al., 2004] or [Browne et al.,
2001] are the Thyroid hormone receptor transcription fiacto Table 5.4. Research of [Park et al.,
1993] suggests that regulating thyroid hormone receptpression may play an important role
in regulating the life cycle of the herpes simplex virus ie thost cell. Cluster 3 genes were not
annotated by the human expert in [Challacombe et al., 20@d]jn® comparison to our findings
could be made. The singular value spectrum for this clustéteSH term space was above that
of random groups of genes for the first few modes. A significamhber of genes in cluster 3
are cell adhesion molecules and extracellular proteigsJ&minin, cell surface glycoproteins and
collagen. [Challacombe et al., 2004] reports that cell agihremolecules are key to several func-
tions of the immune response, including T cell-antigerspnging cell interactions, T cell-B cell
interactions, and cytotoxic T cell/NK cell interactiongiwihe infected target cells. All of these are
essential components for the generation of effective inflatory responses and the development
of rapid immune responses. Genes in cluster 3 are reprassbdii expression in the later time
points. It is therefore likely that the virus inhibits thepegssion of these cell adhesion molecules
to inhibit the host’s immune response. Potassium, SodiuiCaicium levels have been reported
to be affected by HCMV and other herpes virus infections kstadt and Mallavia, 1982, Browne
et al., 2001], which could explain the group of channel pgrteve identified in cluster 3 and listed
in Table 5.10.

In conclusion, we demonstrated the potential value ofditene mining, here specifically the
mining with MeSH terms, for functional information. We weable to validate our findings with
what had been found previously by experts and their manwdliation of annotation data. In ad-
dition, we identified new functional groups of genes in theegpression clusters that had not been
reported in these expert studies, probably because the &d¢he manual evaluation of annotation
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data was on different functional groups. We do not claim thatapproach can replace expert
inspection of the data. The functional information repdrite [Browne et al., 2001, Challacombe
et al., 2004] was more detailed than our automated analgsigl provide. What our analysis can
provide, though, are “functional themes” for groups of geaad proteins that can guide the ex-
pert annotator and focus his or her work. In addition, ourhodblogy might point to functional
themes and groups of genes that are not expected and mighssedim the large amounts of data
when dealing with hundreds or even thousands of genes.




Chapter 6

Pfam Protein Family Prediction in MeSH
Space

6.1 Introduction

Mining of biological information from databases and liter@ gains increasing importance as
both the amount of data from high-throughput experimentsthe amount of biological knowl-
edge stored in databases and literature increases. Diffiezehniques for information mining in
Bioinformatics have been presented but usually in veryifipeand different contexts, gene net-
work inference from literature data, functional annotatod proteins, and improvement of remote
homolog detection for proteins [Masys et al., 2001, Jenssei., 2001, Andrade and Valencia,
1998, MacCallum et al., 2000]. What has been missing in the diee large-scale studies that al-
low for quantitative validation and a gold standards defjran effective basis for method compar-
ison. Here we propose such a large-scale, quantitativerappifor evaluation and comparison of
methods for information retrieval for Bioinformatics frditerature. The large scale test set against
which we test our literature mining approach is the Pfamenatequence classification [Sonnham-
mer et al., 1997, Bateman et al., 2004]. Pfam is a manuallgtedrcollection of protein families,
currently encompassing several thousands of familieso@erprojects, including both the human
and fly, have used Pfam for large scale functional annotatiggenomic data. The proteins of a
Pfam family are functionally very similar due to their sianity in sequence. It is this congruence
of Pfam with protein functional classes, as well as its ¢f@sdion based on a physical property of
proteins, their sequence, that makes it an ideal test sebjfective evaluation and comparison of
information retrieval and knowledge discovery mining altfons in Bioinformatics.

The specific knowledge discovery approach we test here igdti®r space model [Manning

1Submitted to ISMB/BioLink 200%Rechtsteiner et al., 2005].
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and Schiitze, 1999] of Information Retrieval in combinatigth the biomedical indexing vocab-
ulary MeSH (Medical Subject Heading Vocabulary). The NadioLibrary of Medicine (NLM)
uses MeSH to index all the biomedical publications in itsriture database MEDLINEMeSH

is a controlled, hierarchically organized vocabulary thas been developed and adapted to new
knowledge domains by NLM for decades. MeSH contains oved@2ferms and 100,000 syn-
onyms (so-called entry terms). The algorithm we use heregesent and discover knowledge in
the MeSH vocabulary is the vector space model. Each protdibewepresented by a MeSH term
vector, obtained from the literature about that proteininilgrity measure can then be defined for
proteins in that MeSH term space. If two proteins are fumaily related, and the literature and
MeSH indexing terms capture the functional informationwttibe proteins, we expect the MeSH
term vectors for the proteins to be similar. For functionpakry different proteins, we expect the
MeSH term vectors to be different. As Pfam families are fiomally congruent, i.e. proteinsin a
family are functionally closely related, we expect Pfam ilaes to cluster in MeSH term space. To
test this hypothesis, we take a protein’s Pfam family to denown and classify it into a Pfam fam-
ily based on its neighbor proteins in MeSH term space and Biam families. If our hypothesis is
correct, and publications about proteins and the corredipgmMeSH indexing terms capture func-
tional information about proteins, this classification sliobe successful in most cases. Further,
we can assess how well the corresponding MeSH vectors Hegmateins and their functions.

Our study contains 15,217 proteins from 1611 Pfam familié&nowledge discovery tech-
niques are supposed to be useful for the increasingly lscgée studies and data sets in Bioin-
formatics, they need to be able to perform well on such lamga dets and need to be tested
and compared on such. A technique that works for few funatiafasses (e.g. see the stud-
ies by [Masys et al., 2001, Andrade and Valencia, 1998])ef@mmple for the separation of two
groups of proteins with very different functions, might madrk for the separation of many func-
tional groups when the resolution of functional differenceeds to be at a more detailed level.
But exactly this is the challenge for the future of inforneatimining and knowledge discovery
in Bioinformatics. We also needed for our study a body of mattions that are associated with
and are about the proteins from the 1611 Pfam families. Waitodd these publications from the
SwissProt/UniProt [SIB/EBI, 2004] protein sequence dasab SwissProt is a manually curated
database and the information it contains, e.g. literateferences for the respective protein se-
guences, is therefore very reliable. For the 15,217 pretem obtained 26,411 publications from
SwissProt. From the literature database MEDLINE the MeSkexmg terms for these publica-
tions were obtained.

2In fact, unless specified otherwise, any query text striag ithentered in PubMed (the WWW gateway of MED-
LINE [National Library of Medicine, 2005]) is first mapped kdeSH terms and the respective documents indexed by
these terms are then retrieved, ordered by some significmoce.
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SwissProt MEDLINE/PubMed
|, Protein 1 / Pub1
Pfam 1 MeSH 1
Pb1 — | MeSH 2
Pub 2 \ MeSH 3
Protein 2 \ Pub 2
Pfam 2 MeSH 2
Pub 3 MeSH 3
Pub 4 MeSH 4
M1 M2 M3

Figure 6.1: Our data was obtained from the SwissProt praeguence database and the MED-
LINE/PubMed literature database. SwissProt is a protejjusece database curated by experts.
Besides the amino acid sequence of a protein it also listerdift types of annotations, cross-
references to other databases, e.g. the Pfam family of aipr@nd references to relevant publi-
cations for the protein. The publication references werpprd to the respective publications in
the biomedical literature database MEDLINE. From there Wined the MeSH indexing terms
for the publications of each protein. This information chart be represented in a protein-MeSH
co-occurrence table, where the entry for a given proteirsMéerm pair indicates the number of
publications referenced by the protein and indexed by th8Mieerm. The proteins, represented
by the rows of this co-occurrence table, can be interpretectators in MeSH term space (some
weighting factor is typically applied to the term dimenspas discussed in section 6.2).
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For successful separation and prediction of Pfam famigsyvi’'s manual indexing of publi-
cations with MeSH needs to be performed well and consistdftiifferent indexers chose vastly
different indexing terms for proteins from the same Pfamilgnprediction of the correct Pfam
family for a protein will be difficult. Our study indirectlyheeds some light on this question of
MeSH indexing consistency. The study of Funk et al. [Funk Bedl, 1983] reported a 40-60%
overlap of MeSH terms assigned by different indexers to #maespublication. Our study will
illuminate if such overlap is sufficient to separate and jotdefam families.

Another question we explored is the one of synonymy and pofysin the MeSH term vocab-
ulary. It has been shown that the performance of the vecaresmodel in information retrieval
can be improved significantly by identifying with SingulaalMe Decomposition (SVD) the sub-
spaces in the term-document space with highest variandes t&chnique is referred to as Latent
Semantic Indexing (LSI) or Latent Semantic Analysis (LSBggrwester et al., 1990, Berry et al.,
1995]. LSI detects correlations among terms in the set otichents and therefore can weaken
negative effects of term synonymy (multiple terms have #n@e meaning) and term polysemy
(terms that have multiple meanings). We applied LSA to ootgin-MeSH co-occurrence matrix
and predicted Pfam families in the resulting reduced SVIxepaThis technique provided very
little improvement over predicting in the original protduleSH term space, and only with a thou-
sand or more dimensions (singular vectors). This indidatgthere is little synonym or polysemy
in the MeSH vocabulary, which can be expected from a weligsiesi, controlled vocabulary.

Related work to ours was presented by Andrade et al. [AndaadeValencia, 1998]. They
took 71 functional groups of proteins and extracted keywdrdm abstracts (versus using MeSH
terms) from publications referenced in SwissProt. Theithistion of this “bag of keywords” over
the families served as a background distribution againstiwthey compared keywords from a
new protein or protein family. Given a new protein or familydaits literature, keywords are
identified that occur significantly more often in the litena of this new protein or family than in
the background distribution. The presented technique \@hdated with anecdotal evidence and
only with a few example proteins. The number of protein faesiand body of literature was small,
our data set is significantly larger (1611 families). As nimmed before, an approach that works
for few, very different functional groups, might not workrfmany families where the “function
space” is more “crowded”, i.e. there is overlap in the fumas of the families. But if a literature
mining approach is supposed to be of value for the incredangg scale tasks in Bioinformatics,
it needs to scale well to such larger scopes.

An application of information mining for gene co-expressimusters using MeSH terms has
been presented by Masys et al. [Masys et al., 2001]. Thailydtas taken a small set of publica-
tions associated with two groups of differently expressatbs in two different medical conditions
(two different blood leukemia). They then identified the Me@&rms that occurred significantly
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more often with the respective groups of genes. They shohadthe identified MeSH terms
were informative about the gene groups and the two medicalitions with which their increased
expression was associated. The study again focused on @mlytivo) groups of functionally
different entities and the validation was again heurigiicthese two groups.

Much of the current information mining work in Bioinformes is still performed for very spe-
cific tasks with often rather small scopes. The results aenofalidated with anecdotal evidence
relating to the task at hand, e.g. the specific medical cmmdita gene expression data set was
obtained for. We test our method, literature set and MeShhaga large test data set, the Pfam
family classification, which is based on an objective, pbgisproperty of proteins, their sequence
similarity. We are testing if the large set of Pfam familiesldahe literature MeSH term space are
mutually coherent. As Pfam is often congruent with functioclasses, our study and its results
suggest how well our method should perform in tasks other Bfam classification, for example
the prediction of function for groups of proteins or genes.

6.2 Methods and Data

6.2.1 Data

The literature data set for this study were the publicatrefesrenced by proteins in SwissProt and
the MeSH terms for the publications were obtained from MBREI(see Figure 6.1). SwissProt
is manually curated by experts and this set of publicati@mstberefore be considered axpert
literature set (see also [Shatkay et al., 2000]). In the work here Swoes$sfersion 41.0 was used,
which contains 122,564 protein sequence entries. 89,14Beske had Pfam family references
(3938 different Pfam families) as well as 75,649 distindblpration references. As we wanted to
establish a baseline in this study, we performed severeafifilj steps to eliminate any “artificial
links” between proteins and Pfam families as well as to remiowvise” from the data set.

First, the 15% of proteins were removed that had more tharféara family referenced. These
proteins would have linked the respective Pfam familiégext we filtered out all publications that
were referenced by multiple proteins from more than one Réamnily. Many of these publications
are about sequencing, e.g. of chromosomes or whole genamlethe@refore can be referenced
by many proteins. Such publications will not contain spedifformation about proteins and their
families and therefore will add noise to the literature d4f4368 MEDLINE publications, or 63%,
were referenced by proteins from only one Pfam family ang thiere retained in the literature
data set. The number of proteins for which we still had ltiem references after this filtering

3Such links might be desirable, as Pfam families occurriggtoer in proteins might often be functionally related.
But in this baseline study we wanted to detect any functioglationships of proteins and Pfam families purely from
independent literature.
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step decreased however to 32,922 (43% of the proteins tdadreaPfam family reference). This

suggests that many of the protein sequences in SwissPref twathis date, literature references
that are not specific to the protein or its family and theirdiions but are of a more general type.
Two more filtering steps were applied to the data. First, edtgins that had exactly identical

literature references were filtered out except for one maprative (selected at random). This
step removed mainly proteins that were identical or closslated but, for example, from different

organisms. The next filtering step removed literature egfees to the same publication by multiple
proteins (of the same Pfam family) except for the referencer® of the proteins (we chose the
protein that had the fewest literature references). Both@fast two filtering steps insure that any
similarity in MeSH term space (e.g. similar MeSH term vesjaf proteins from the same Pfam

family are due to independent and not shared publications.

The above filtering steps are conservative and control fppassible artificial link of proteins
in MeSH space. The publications for each protein (and tbesghe respective MeSH terms) are
independent from each other. Any relationships detectexliirstudy among proteins and Pfam
families are due to independent literature and theref@ eae to the related information contained
in the publications of the respective proteins and Pfamlfami

After filtering, the data set contained 27,682 proteinsgnexicing 47,368 MEDLINE publi-
cations (each publication only referenced once, by a sipgltein) and 2503 Pfam families. On
average, each protein references 1.7 publications andRfaah family has 13 protein members.
892 or 36% of all Pfam families have only 1 or 2 proteins, 16464%6 have 3 or more proteins.
296 Pfam families, or 12%, have 20 or more protéinBue to the nature of our classification
algorithm (discussed in detail later) we predicted Pfamiliasmonly for the proteins of the 1611
Pfam families with 3 or more protein membergo limit the bias of our classification algorithm
towards larger families (see also discussion later), wééithe size of Pfam families to 20 pro-
tein members. For Pfam families with more than 20 protein tvens) 20 were selected at random.
This lead to a data set with 15,217 proteins, from 1611 Pfamiliies with 26,411 publications and
5,639 different MeSH ternfs

4The 5 largest families are the 7 transmembrane receptoogsiafamily PFO0001 (Pfam id) with 810 proteins,
the Immunoglobulin domain PFO0047 with 525 proteins, theb@l family PF00042 with 499 proteins, the Protein
kinase domain PF00069 with 494 proteins and the HomeoboxaaoRiF00046 with 372 proteins.

5In principle our nearest neighbor classification algoritonld also have predicted families with 2 protein mem-
bers. However, the performance for small families decrefess and we selected a cutoff of 3.

6-2000 MeSH terms that occurred with only one protein wereonssd. These MeSH terms do not link any
proteins.
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Figure 6.2: Distribution of the 27,682 proteins over the 25%am families. 892 Pfam families
(36%) have only 1 or 2 proteins, 1611 have 3 or more proteifi6.Pfam families, or 12%, have
20 or more proteins.
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Figure 6.3: Distribution of 26,411 publications over theZllY proteins from 1611 Pfam families
(with size 3 or more protein members). The average numbeiffefeht publications referenced
per protein is 1.7. But 67% of the proteins (10,220) have dndocument. An additional 18%
have 2 documents. 97% (14,741) have 5 or less documents. rOteénphas 64 documerits
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6.2.2 The Vector Space Model in Information Retrieval

The vector space model in Information Retrieval (IR) représ documents in (typically high-
dimensional) keyword space [Manning and Schitze, 199%&Jates et al., 1999]. Here we
have adapted that model to represent proteins in MeSH kelysmaice (see also Fig. 6.4 for an
illustration). Each coefficient of the protein vector in MéSpace is made up of what is called a
local weightwhich is then multiplied by global weight The local weight is typically referred to as
the term frequencifik. Heret i is the number of publications cited for proteim SwissProt that
are also indexed by MeSH terkin MEDLINE. The global weight, here denotédify represents

a weighting of the MeSH term dimensidénwhich is supposed to reflect the information content
of MeSH termk. The global weighting applied in this study is discussedrnext subsection.

The coefficient of protein vectarin MeSH term dimensioR is then given bywi, =t fy «id fy.

wi is thek!" coefficient of the protein vectqs;. We used as the similarity measure between protein
vectors in MeSH space the cosine measure (a common distaasine for the vector space model
in IR [Baeza-Yates et al., 1999, Manning and Schiitze, 19868rmester et al., 1990, Berry et al.,
1995]): given protein vectorp; andp; in n-dimensional term space, the cosine between these
protein vectors is given by the normalized dot product:

PiPj
[Pl |y

cogpi,pj) = (6.1)

6.2.2.1 Global MeSH term weighting

The most popular weight in IR is the Inverse Document FrequéiDF) [Dumais, 1990, Manning
and Schitze, 1999]. The weighting factdif, for a termk is defined asd fy = Iog(nﬂk) whereN

is the total number of documents in the collection apds the number of documents indexed by
termk. Note that if termk indexes every document it will have no information to disgriate
among the documents. This is reflected in the IDF weightipg: N and thereforéd fx = 0. If on

the other hand terrk indexes only 1 document, then its ability to discriminateoagndocuments
(this document from all others) is very high. These termd wmiteive the maximum weight:
nk = 1 and therefored fx = log(N). We have applied this standard IDF weighting to the MeSH
term dimensions and a modified IPFF (Inverse Pfam Frequemeighting. Here each MeSH
term is weighted by the log of the inverse number of Pfam fasithat contain proteins with

referenced documents indexed by MeSH térnpf fy = Iog(’;"TPFF) whereNPF is the total number
k

of Pfam families in the data set anf" is the number of Pfam families that contain a protein which
reference a document indexed by MeSH téerBoth weightings improved recall by 20-40% for a
given cosine similarity. IPFF weighting performed slightletter than IDF and all results reported
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were obtained with IPFE

6.2.3 Algorithm for Pfam prediction in MeSH vector space

The classification algorithm employed here is closely egldb the k-nearest neighbor algorithm
[Duda et al., 2000]. Instead of considering the k neareseprmeighbors of a proteinto make a
Pfam family prediction, our algorithm makes its predictlmsed on the proteins found in a fixed
neighborhood of protein The neighborhood is defined by the cosine (see Egn. 6.1)a Gen
proteini and neighborhood cosireg a), the neighborhood of proteinis delimited by a hyper-
cone with an opening anglke and centered around the protein vegbpr For each Pfam family
the number of protein members within the hyper-cone neigidmd are counted. Our algorithm
returns a ranking of Pfam families based on this number aleprs in the neighborhood, i.e. the
family with most proteins in the neighborhood is ranked firslote that not all Pfam families
have the same number of protein members and our algorithmasgd towards predicting larger
families, as they have more protein members. To weaken fla@stewe limited the maximum
family size to 20 protein membéfs See Fig. 6.4 for an illustration.

6.3 Results

6.3.1 Pfam Predictions for Proteins

Figure 6.5 shows the prediction success of our algorithneims of proteingecalled i.e. the
number of proteins for which the Pfam family was predictedettly. The x-axis indicates the
cosine of the neighborhood angle. The y-axis on the left shtw number of proteins and the y-
axis on the right the percentage of total proteins. Notedbhaalgorithm does not necessarily make
a prediction for a protein. The red, dashed curve shows farrhany proteins predictions could be
made at the respective neighborhood size. For small co§iretarge angela) predictions for all
proteins can be made. Butega) = 0.6 (a ~ 53°), for example, only 47% of the proteins have
a Pfam family prediction (only proteins can be predicted Have other proteins in the respective
neighborhood).

°Besides IDF, IPF and IPFF weightings, we also applied egthmsed weighting measures for MeSH term oc-

currences with proteins and Pfam families. Such entropgdaseasures take not only into account if a MeSH term
occur rs with a protein or Pfam family, but also the frequesifcgo-occurrence (i.e. the number of documents indexed
by the MeSH term and also referenced by the protein or Pfariiyfarilo significant improvement in the results over
IPF and IPFF was found.

10we also ranked Pfam families based on the number of proteibaes in the neighborhood normalized by Pfam
family size. This biased the prediction towards smallerif@s As there are many more small families in the data
set, the overall prediction success of the algorithm wagtow



102

CHAPTER 6: PFAM PROTEIN FAMILY PREDICTION IN MESH SPACE

Figure 6.4:

Protein 5

Protein 1 (Pfam 1)

Ny *.._ Protein 3 (Pfam 2)

Protein i

‘F?rotein 2 '(Pfam 2)
\ _
: e
— Neighborhood boundary

Protein 6

lllustration of classification algorithm andof@in vectors in (reduced, two-

dimensional) MeSH space. If protein i's Pfam family is to lregicted, the protein members
of each Pfam family in the cosine neighborhood of protesne counted. The Pfam families are
then ranked by the number of members they have in the neigbbdr In the illustrated case,
proteini has two protein members of Pfam family 2 and one from Pfamlfainin its designated

coqa) neighborhood.
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Figure 6.5: Prediction success for 15,217 proteins fronlam families. Atoqa) = 0.3 47%
of the proteins have their Pfam family predicted correcththe first predicted family. For 70% of
the proteins the correct Pfam family is ranked among theSifsimilies. For 77% (an additional
7%) among the first 10 families.

The green curve in Fig. 6.5 shows the number of proteins fdchvthe first ranked Pfam
family was the correct family. Atoga) = 0.3 (a ~ 73°), for 47% (7115) of the proteins the first
ranked family was the correct family. Note that the predictis made into 1611 Pfam families.
Disregarding knowledge of the family sizes, we would exesticcess rate 0f/1611= 0.06%
when predicting Pfam families by chance. Our predictionitagpresents & 750 fold increase
over such a Pfam prediction by chance. Of further interethas for an additional 12% of the
proteins the Pfam family ranked second is the correct farkity 70% of the proteins (an additional
11%) the correct Pfam family is among the Pfam families ranfkest to fifth, and for 77% the
correct family is ranked first to tenth.

6.3.2 “Misclassifications” into related families

These results raised the question if the top ranked Pfanliéaaire very different and, in cases
where the correct Pfam family is not ranked top, choosingdbeaanked family would be a com-
pletely wrong classification, or, if the top ranked familee® closely related, and therefore clas-
sification into the top ranked family would still provide teerrect functional annotation of the
protein in most cases. We identified the kinds of misclasgibos between Pfam families that
were most frequently made by our algorithm. The graph in fedi6 shows the most frequent
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Figure 6.6: Misclassifications among Pfam families. Theeasoth this directed graph are the
Pfam families. The size of each node indicates the numbeoroéctly predicted proteins for the
respective family. The numbers 1-6 indicate the cliquesfafiPfamilies discussed in more detail
below. The graph was created with the Fruchterman-Reinglgidrithm in Pajek [Batgelj and

Mrvar, 2004].

misclassifications between Pfam families for the protéias had their correct Pfam family ranked
between second and tehth The cosine neighborhood was setaga) = 0.4 (a = 66°). The
graph shows a directed link between two Pfam families if 3 orexproteins from the Pfam family
where the link originates had the Pfam family where the linksranked higher than the correct
Pfam family (i.e. the Pfam family where the link originatedhig. 6.6 only shows the 473 Pfam
families with such links among thélh The graph clearly indicates that Pfam families cluste int
cliques in MeSH space. Many of the cliques are small, anctther fewer, more highly connected
cliques that are larger.

We found three major types of Pfam families that were coretkot cliques and we present

1INote that there are no mispredictions for the 47% of prottiiashave their family ranked first.
2Many of the smaller families were filtered out by the cutoff3oproteins. We have observed, however, that the
cligues shown are robust to parameter variations, suchoasipicutoff or cosine neighborhood size.
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PF00979: Reovirus outer capsid protein, Sigma 3
PF01518: Sigma NS protein

PF03084: Reoviral Sigmal/Sigma2 family
PF01616: Orbivirus NS3

PF01718: Orbivirus non-structural protein NS1, or hydwigb
tubular protein

PF01700: Orbivirus VP3 (T2) protein

PF01516: Orbivirus helicase VP6

PF00897: Orbivirus inner capsid protein VP7
PF00898: Orbivirus outer capsid protein VP2
PF00901: Orbivirus outer capsid protein VP5

Table 6.1: This clique contains 7 orbivirus protein fansl{® structural and 2 non-structural) that
are all linked to each other. In addition there are 3 Reoimagein families. Orbiviruses are a
genus under the RNA virus family Reoviridae, so they areteelaSee also the lower plot in Fig.
6.7, showing that MeSH terms Bluetongue virus and Reowrid# the families in this clique.
The Bluetongue virus is a species of the Orbivirus genusedtrs the Bluetongue virus is the
most studied species of the Orbivirus genus.

2 examples for each type: (i) Pfam families related to d#ferviruses, examples being the Or-
biviruses of clique 1 and Rotaviruses in clique 2 in Fig. @ & Tables 6.1 and 6.2, (ii) Pfam
families that are linked due to related enzymatic functi@xamples being Hydrolases in clique 3
and Dehydrogenases in clique 4 in Fig. 6.6 and in Tables &l®%ahand (iii) Pfam families that
are subunits of proteins or protein complexes, exampleglibe ATP Synthase subunits in clique
5 and Cytochrome C Oxidase subunits in clique 6 in Fig. 6.6iarEhbles 6.5 and 616. The
different cliques of Pfam families are listed and discusedte Tables 6.1 - 6.6 and their captions.

Plots of the protein-MeSH tf*ipff association matrix areosm in Figures 6.7. The upper plot
shows that only a few MeSH terms are highly associated ancifgpto a clique and its Pfam
families. The lower plot shows the 20 MeSH terms most assettiaith the proteins from the
6 cliques of Pfam families. These MeSH terms are very spedaifibe respective Pfam families.
The indexing of the publications in MEDLINE must be very caitesnt and specific to achieve
such high prediction success with such few, very specific M&3ms. Considering that 85% of
proteins only cite one publication, almost all the literataited by correctly predicted proteins of
a family needs to be indexed by this few, specific MeSH term#fe family.

BNote that especially the distinction between cliques basednzymatic function and being a protein subunit is
not always clearcut.
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PF00426: Outer Capsid protein VP4 (Hemagglutinin)
PF00434: Glycoprotein VP7

PF00989: Rotavirus major capsid protein VP6
PF00981: Rotavirus RNA-binding Protein 53 (NS53)
PF01452: Rotavirus non structural protein

PF01525: Rotavirus NS26

PF02509: Rotavirus non-structural protein 35

Table 6.2: The Pfam database lists all these 7 families asmbglg to the Rotavirus genus, which
like the Orbivirus genus in Table 6.1 belongs to the family\Refoviridae. The MeSH vocabulary
and the indexing process of the respective literature wegeiic enough to separate these 2 cliques
of protein families. They do share MeSH terms, for examplesorlated to the capsid proteins
(see lower plot in Fig. 6.7).

PF02289: Cyclohydrolase (MCH)

PF00795: Carbon-nitrogen hydrolase

PF01425: Amidase

PF00561: alpha/beta hydrolase fold

PF01546: Peptidase family M20/M25/M40

PF00557: metallopeptidase family M24

PF01244: Membrane dipeptidase (Peptidase family M19)
PF03575: Peptidase family S51

Table 6.3: A clique of pfam families that are hydrolases. fiddationship of these families is again
captured by the MeSH terms. The three most associate Me8i3 teith this clique are all located

under D08.811.277-Hydrolases (see plotin Fig. 6.7). Nméthere is not one MeSH term linking
all Pfam families in this clique. The clique is also less ygtonnected and more chain-like than
the highly connected cliques of virus families and proteibunits. This is a property we found

for other enzyme related cliques as well.

PF00106: short chain dehydrogenase
PF00107: Zinc-binding dehydrogenase
PF00465: Iron-containing alcohol dehydrogenase

PF00180: Isocitrate/isopropylmalate dehydrogenase

Table 6.4: Four Pfam families of different dehydrogenases.
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PF01991:
PF00231:
PF00213:
PF04627:
PF00119:
PF00137:
PF01990:
PF01496:

ATP synthase (E/31 kDa) subunit

ATP synthase

ATP synthase delta (OSCP) subunit
Mitochondrial ATP synthase epsilon chain
ATP synthase A chain

ATP synthase subunit C

ATP synthase (F/14-kDa) subunit

V-type ATPase 116kDa subunit family

Table 6.5: All families in this highly connected clique ar€RASynthase related. The main MeSH
terms associated and linking the proteins of these Pfanliéswaire Proton Translocating ATPases

and Adenosinetriphosphatase.

MeSH terms that proteihgsiclique share with the proteins in the

clique of Cytochrome C Oxidase in Table 6.6 are related tochibndria. Both protein complexes
are essential components of the cellular respiration paghavmitochondria. Both cliques link up
and form one larger clique when weaker links are shown inrfei@¢u6.

PFO00510:
PF00015:
PF02936:
PF02285:
PF02284:
PF01215:
PF02238:
PF02046:

Cytochrome c oxidase subunit IlI

Cytochrome C and Quinol oxidase polypeptide |
Cytochrome c oxidase subunit IV

Cytochrome oxidase c¢ subunit VIII

Cytochrome c oxidase subunit Va

Cytochrome c oxidase subunit Vb

Cytochrome c oxidase subunit Vlla

Cytochrome c oxidase subunit Vla

Table 6.6: Clique of Cytochrome C Oxidase subunits. Like Sithase (Tab 6.5), Cytochrome
C Oxidase is an essential complex in the respiratory pattofayitochondria. MeSH terms Cy-

tochrome C Oxidase and Electron Transport Complex IV ararigldnighly relevant and specific

to these families (see lower plot in Fig. 6.7).
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Categ. D

MeSH terms

1 2 3 4 5 6

Pfam cliques

B04.820.630.550.100 Bluetongue virus
I B04.820.630 Reoviridae
B04.950.500.250 Capsid
D12.776.964.970.600.550 Capsid Proteins
D12.776.964.970.600.850 Viral Core Proteins
D24.611.216.327 Antigens, Viral
| E05.200.875.150.125.890 Serotyping
B04.820.630.790 Rotavirus
I | D08.586.277.087 Amidohydrolases

I D08.586.277.656.350.100 Aminopeptidases
D08.586.277.656.350.297 Dipeptidases
| D08.586.682.047.070 Alcohol Dehydrogenase
|| D08.586.682.047 Alcohol Oxidoreductases
D08.586.682.047.497 Isocitrate Dehydrogenase
| D08.586.277.040.025.325 Proton-Translocating ATPas:

| D08.586.277.040.025 Adenosinetriphosphatase
D13.444.308.283.225 DNA, Mitochondrial
A11.284.195.190.875.564 Mitochondria
[IIIl] D08.262.175.285 Cytochrome—c Oxidase

' NA Electron Transport Complex IV

Pfam cliques

Figure 6.7: Image plots of the protein-MeSH tf*ipff assditia matrix for the 6 cliques of 45 Pfam
families and a total of 477 proteins. The proteins of the eespe Pfam families and cliques are
the columns of the matrix and the MeSH terms are the rows. ppenimage shows the 160 most
significant MeSH terms, with at least one tf*ipff value of II0wore with a protein. Colors indicate
the magnitude of the matrix values, darker red indicatimgdavalues, lighter yellow indicating
smaller values. Category D MeSH terms, containing mosteptitein and enzyme related MeSH
terms, are indicated by the dashed horizontal lines. Therdawage plot only shows the 20 most
significant MeSH terms and what they are.
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6.3.3 Factors influencing prediction success

We identified two factors that influence prediction succ€gshe number of protein members a
Pfam family has (we also refer to this &amily siz¢ and (ii) the number of publications that a
protein references. As mentioned previously, our clasgifio algorithm is expected to perform
better for larger families. Larger families close to smafiienilies can lead to misclassifications of
the proteins from the smaller families. The top figure in B@ shows the correlation of prediction
success with family siZé. As family size increases, so does prediction success. iednked
Pfam family is the correct Pfam family for 70% of proteinsrfrdamilies of size 15 and close to
80% from families with sizes of 20 proteins. Proteins fromniiges with size 3 or 4 are predicted
with a success rate of only 25%, however. The bottom figurgvshmw the prediction success is
correlated with the number of publications that a protefienences. For proteins with only one
publication reference (85% of the proteins), at best 58% @faroteins can be predicted correctly
by the first ranked Pfam family. For proteins with 5 publiocatreferences recall increases to 76%
and for 10 publication references recall reaches 83%. &p®had 40 or more publications, all
of these were predicted correctly.

6.4 Discussion and Conclusions

Our study shows that Pfam families do indeed cluster in Mefats. We have shown this for a
large data set of 1611 Pfam families, whereas previousesumostly have shown the separation of
few sets of functionally distinct groups of genes or prateimsome keyword space (e.g. [Andrade
and Valencia, 1998,Masys et al., 2001]). It should be ndtatithis clustering of sequence families
in MeSH is achieved through the literature, not in some kegvapace that is associated with the
proteins directly. Such keywords, like the SwissProt kesdgaused in the study of MacCallum
et al. [MacCallum et al., 2000], might be assigned with thggptal properties of proteins, like
sequence similarity, in mind. Clustering of Pfam familiessuch a keyword space would be less
surprising.

It should also be noted again that we filtered the literatgggessively, that we allowed each
document to be referenced by only one protein. Therefomreesults were not obtained by having
proteins and Pfam families somehow linked “artificially” blgared publications.

Also, our algorithm performed an unsupervised classificgtine algorithm did not “learn” to
classify the Pfam families by fitting some parameter§he classification results of our algorithm

14For both plots in Fig. 6.8, the neighborhood angle was notiftxet the best prediction for each protein was
selected. These prediction rates are the best that coulchiievad with our algorithm if the neighborhood size would
be allowed to vary, for example with location of protein in $t¢ space.

15We therefore did not perform a cross-validation study.
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max Recall (%)

max Recall (%)

Figure 6.8: The dependence of Pfam prediction success dlyfsiae (top) and number of publi-
cations referenced per protein (bottom). Both factors areetated with prediction success. Note
that we found no correlation between family size and numtbeef@renced publications, both
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might, however, be improved by allowing the neighborhoosie size to vary, for example with
Pfam family size and/or location in MeSH space. This willuieq further study.

We have shown that Pfam families that are close in MeSH sgagefamilies that have many
mispredictions of proteins among them, are related. Suohflsions” of functionally related
Pfam families is for many Bioinformatics tasks actuallyidesle, as in many tasks, it is the func-
tional class of a group of genes or proteins that is soughtheospecific Pfam family.

Our study showed that a few MeSH terms seem to determine auifg@ Pfam family or
a clique of related Pfam families. As mentioned before, sssful prediction of proteins with
few literature citations per protein requires highly catesnt and specific indexing of publications
by NLM in MEDLINE. It is surprising to us how well the indexingrocess must be performed
to achieve our results. That only few, very specific MeSH teapecify a Pfam family probably
explains why techniques like Latent Semantic Analysis (L f*eerwester et al., 1990,Berry et al.,
1995], which exploit synonymy and polysemy in a vocabulang which we tested for this task
as well, did not improve our results significantly. BasigaPfam families, or related cliques of
Pfam families, are already orthogonal to each other in Mef@tas, and there is little synonymy
or polysemy in the vocabulary and indexing process.

We have shown that two factors greatly influence the abibtypitedict the Pfam families of
proteins: the amount of literature that they have and theeaizheir family. The latter is partly an
artifact of our classification algorithm. We want to expladding more literature, first by filtering
less aggressively and adding back some literature thatad by proteins from more than one
Pfam family. Such literature could be added with some wesigsimilar to the IPFF weighting
of the MeSH terms. A second way to add literature would be byimgi all of MEDLINE for
the respective protein names and symbols. We have discasseel of the challenges that such
an approach poses. However, we don’t know of a study comparibody of literature and the
specificity of its information when obtained from experikelSwissProt citations, or when mined
by entity identification. It would be interesting and infaative to repeat our study with a body of
literature obtained in the latter form, and compare it torgsuilts obtained here.
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Chapter 7
Summary and Possible Future Work

Work in two main areas of Bioinformatics was presented iis tlissertation: gene expression
analysis and automated mining of functional informaticonirliterature. SVD was presented as
a well suited method for time series expression analysilypdue to its robustness to noise in
expression data and its ability to allow for easy visual@abf the data. Two algorithms based
on SVD were presented that identify significantly expresgeies and group the genes into co-
expression clusters. In the second part of the work, a mdthodne functional information from
literature was presented. The usefulness of the develomthooh to the analysis of expression
data was illustrated. A large scale validation study of tlethod was performed: the classification
of proteins into sequence families based on literature wagpared to the known, true sequence
classification.

There are several ways in which the presented methods ceuéxtended. Our expression
analysis work focused on SVD, where the identified modesiaeal combinations of the gene
expression vectors. As expression data become more coifgpieXonger time courses and more
complicated processes that are observed) methods thaeteat don-linear relationships among
expression patterns might become more valdabldethods that might be useful are Non-linear
PCA [Jolliffe, 1986, Scholkopf et al., 1996] or Kernel metlsd Scholkopf and Smola, 2002], for
example.

The literature mining method that was presented can be @steas well. We focused in the
presented work on the MeSH vocabulary. The presented vegéame model could be implemented
with different vocabularies. Terms could, for example, ktraeted from the literature direcly
We found in our work that publications in MEDLINE are indexeih very specific MeSH terms,
e.g. the precise enzymatic function (EC class) an enzynferpes. This can cause two enzymes

1As was shown, for the current data sets, most times two limeates suffice to “explain” the data.
20One problem with that approach is that most publicationsatevailable as free text. MEDLINE only provides
the abstract for publications.
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that have related function, but not exactly the same functiod therefore not exactly the same
MeSH terms, to appear unrelated in MeSH term space (i.e. rifteip vectors are orthogonal to
each other in MeSH term space). The hierarchical orgaoizatf the MeSH vocabulary might
be used to eliminate this problem. For example, if a pubbcateferenced by a protein or gene,
is indexed with some MeSH term in MEDLINE, all MeSH terms abakis MeSH term in the
hierarchy could be added to the term vector of the documenpr@ein/gene). This approach
is somewhat related to what is know as “spreading activa{idalton and Buckley, 1988] (e.g.
“spreading” the “indexing activation” up the term hierayth We explored this approach when
classifying proteins into Pfam sequence families. Oursifasition results did not improve and
worsened if we propagated the indexing activation to theléwpl of the MeSH hierarchy. We
suspect that because many MeSH terms have multiple parerd ie the hierarchy, the activation
spreads too fast and information is lost. If the propagatipithe hierarchy could be constrained,
maybe to a select set of branches in the MeSH tree, the appnoigbt still be valuable. Further
research might be done in this area.
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Glossary’

C

cDNA stands for 'complementary DNA, a single stranded DNA maledhat is complementary
to a full-length mRNA.. Such strands are typically 500-50@8ds long.

cDNA microarrays microarray technology for transcript level measuremedrdsuse cDNA strands
as probes on the chip.

cell-cycle the temporal cycle of cellular processes that leads to thisidh of a cell. Typically
this cycle is divided into (i) G1 phase, growth and preparatf the chromosomes for repli-
cation, then (ii) S phase, synthesis of DNA (and centrosyntiesn (iii) G2 phase, which is
preparation for (iv) M phase, mitosis, when the actual diviof the cell and nucleus occur.

central dogma (of molecular biology) the coding of genes in DNA which are transcribed into
MRNA which in turn are translated into proteins.

co-expressiongenes that have similar expression values across diffemditions or experi-
ments are calledo-expressedsimilar’ needs to be defined and measured with a similar-
ity or distance measure). Clustering algorithms attempdéntify groups (or clusters) of
co-expressed genes. Co-expressed genes are assumed toegelated and functionally
related.

complementary (sequencesare nucleic acid sequences that can form a double-stratrdetlse
with another nucleic acid sequence by following base-pgirules (adenine (A) pairs with
thymine (T) and cytosine (C) with guanine (G)). The complatagy sequence to GTAC for
example, is CATG.

comparative hybridization (see 'competitive hybridization’)

3This is a still incomplete glossary.
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competitive hybridization in cDNA microarrays the 'competitive’ hybridization prag=eof re-
verse transcribed and fluorescently labeled cDNA strarms fest and control mMRNA sam-
ples. Competitive hybridization is supposed to take carartficial 'spot-effects’ on mi-
croarray chips.

D

DNA (nucleotides) a nucleotide is an organic compound with a molecular stradtat contains
a nitrogen-containing unit (base) linked to a sugar and ajphate group. Four different
nucleotides (cytosine, thymine, adenine and guanindgrdify only in their base, comprise
the DNA.

E

eigengenewe denote as eigengenes the right-singular vectors (rotergecfVT) of a SVD of a
gene expression matrix.XThe eigengenes are linear combinations of the gene expmess
vectors (rows) of @ene expression matrix. X he first few eigengenes typically capture the
dominant patterns of expression change containedjgna expression matrix

eigenassaywe denote as eigenassays the left-singular vectors (colaetors of matriXxJ) of a
SVD of agene expression matrix.X' he eigenassays are linear combinations of the expres-
sion profiles (columns) of gene expression matrix. X

expression signature(or ‘finger-print’) a characteristic state of the Transtoipe that distin-
guishes different cell, tissue or phenotypes. Such ’sigeat could be very beneficial for
early detection of diseases, for example.

expression vectora gene’s expression values across different samples/tmmesp Typically a
row in agene expression matrix Where the rows refer to the genes and the columns to the
samples/time points.

expression profile the measured expression values of a all genes on a microafygycally a
column in agene expression matrix Where the rows refer to the genes and the columns to
the samples/time points.

F

fold change an approach often chosen to identify genes significantiygimg in expression be-
tween two experiments or to filter genes before further msiog. A threshold on the ratio



129

of a gene’s expression over some control expression vahppited. Typical values for such
fold-change thresholds range between 2 and 3 (genes witlr latio than the threshold be-
ing filtered out).

functional theme we use this term to denote significant association of a grdugenes with
some biological function, e.g. a group of co-expressed g¢imat can be associated with
some cellular process.

G

gene expression matrixa matrix of gene expression values obtained from microaesqeri-
ments. Typically a row refers to a gene’s expression veatonss the measured assays
and a column represents the expression values of all thesgeaasured with a single as-
say/microarray.

genotype the genetic constitution of an individual, either overallai a specificocusin the
genome (sephenotype

H

homolog (or homologous gene) - two or more genes whose sequencegyaificantly related
because of close evolutionary relationship, either betwsgeecies drthologg or within a
speciesfaralogy.

high-throughput experiments/technologies

hybridization process in which two complementary nucleic acids stran#sant through hydro-
gen bonds so that double stranded DNA-DNA or DNA-RNA struesiare formed. Between
DNA strands adenine (A) pairs with thymine (T) and cytosi@g\yith guanine (G). For ex-
ample, the complementary sequence to GTAC is CATG. The teydef complementary
nucleic acid strands to hybridize is the basis of microateajnology.

induction genes that increase in expression in time, or whose expressiel is observed to
be above their normal baseline level in a certain conditame, calledinduced éee also
repression).
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L

locus a unique chromosomal location defining the position of anviddal gene or DNA se-
qguence.

M

MeSH Medical Subject Heading nomenclature used by the Natiomaéky of Medicine to index
all publications in MEDLINE. MeSH is a hierarchical nomestire of 22,000 key terms
organized under main headings like Organisms, Diseasesnichls and Drugs, etc. The
MeSH key term hierarchy can be linked to genes (or other io#d entities like proteins)
through publications in MEDLINE that mention the respeetjenes.

N

Nucleotide is an organic compound with a molecular structure that ¢gos&nitrogen-containing
unit (base) linked to a sugar and a phosphate group. Foerelift nucleotides (cytosine [C],
thymine [T], adenine [A] and guanine [G]), differing only their base, encode the DNA
sequence of genes.

O

oligo-nucleotides relatively short sequence of nucleotides, in the oligoleatide chip technology
on the order of 25 nucleotides.

P

phenotype the observable characteristics of a cell or organism geeetype

polysemy discussed in the context of Latent Semantic Analysis. Rohysrefers to the phe-
nomenon that one keyword can refer to several conceptsalsegynonymy

principal component score vectors(also just calledcores) the column vectors of the orthogonal
matrix T of the principal component decomposition of a mafix = 1a’ + TP'. The
scores are the coordinates of the row objectX af the space of therincipal component
loading vectors.
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principal component loading vectors (also just callegrincipal componentshe row vectors of
the orthogonal matri®" of the principal component decomposition of a makiX = 1a +
TPT. The principal components are the eigenvectors of the @ivee matrix ofX.

R

repression genes that decrease in expression in time, or whose expnegsiel is observed to
be below their normal baseline level in a certain conditiwg, called repressed (see also
induction.

S

scree plot term introduced by Cattell [Cattell, 1966] to denote thet piiothe singular values (or
singular values squared) identified by SVD. Cattell propgdseaise the scree plot to identify
the significant components in a SVD analysis. The scree pluds to decrease sharply
initially, for the components that are associated with aigin the data, and then levels off
for the components that are mostly associated with noise.

scores seeprincipal component score vectors

spot effects artifical effects on measured expression values due taetsibf the spotted probes on
a cDNA microarray. Competitive hybridization of a refererand the test sample mRNA and
subsequent normalization of the two measured fluorescgnalsi is supposed to eliminate
spot effects.

synonymy discussed in the context of Latent Semantic Analysis. Symynrefers to the phe-
nomenon that several keywords can refer to the same cor{septalsgolysemy

transcriptional response seeexpression vector.

Transcriptome all the transcripts of an organism (similar to '‘Genome’ aRtbteome’)



132 CHAPTER 7: GLOSSARY

Vv

vector space modelin Information Retrieval, a model that represents documaeast vectors in
keyword or term space (the terms contained in the documeAtsimilarity measure be-
tween documents can be defined (typically the cosine of tigeedretween the document
vectors), and documents are retrieved based on their sityivgith the query term vector.
See [Baeza-Yates et al., 1999, Deerwester et al., 1990, Beal., 1995].



Appendix A

Biology Background

A.1 The Central Dogma of Molecular Biology

The central dogmaof molecular biology (see also Fig. A.1) states that therimfation for a pro-
tein’s sequence which is encoded in deoxyribonucleic daMA) by sequences of four different
nucleotides, is firstranscribedinto messenger RNANRNA) and thertranslatedinto proteins.
The number of genes in humans was originally thought to beramrd 00,000 but has been revised
to between 25,000 and 30,000 [Consortium, 2001, Venter,&2@01}. Proteins are sometimes re-
ferred to as thenolecular machinesf a living cell, they are involved in one way or another in mos
of the biological processes in a cell. The control of pro@dndance in the cell is an important
mechanism by which the cell controls its internal state agponds to external stimuli. Protein
abundance is in large part controlled by regulation of ttapson. It is this process, the regula-
tion of transcription, that microarrays are aimed at maaguor whole genomes. Sometimes the
complete set of transcripts in a cell is referred t@amscriptomesimilarly to theGenomdor the
set of all genes of an organisior the Proteomethe set of all proteinsMicroarrays allow us to
measure the Transcriptome of a cell, or a set of cells.

Physicists could regard the mRNA transcript levels as aedudighe state variables describing
the molecular state of a cell. Being able to determine andteadly model the internal states
of a cell, versus only being able to observe external, plygncal properties of a cell, promises,
among other things, greater success in earlier and mordispkagnosis of diseases and a better
understanding of life on the cellular and molecular level.

1The actual number of different proteins in a cell is actuhligher. Due toalternative splicingof the mRNA
transcripts before translation into proteins, more thammotein can be encoded by a single gdrast-translational
modificationdurther diversify the protein population of a cell.
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Appendix B

Gene Expression Data Analysis

A gene expression data set usually contains data from maredhe experiment, i.e. microarray,
as multiple samples or time points are assayed for compariBoe data is therefore multidimen-
sional and commonly organized in matrix form, with each r@sresponding to a gene or mRNA
transcript and each column to a sample or a time point. A fipagiluex;; in the matrix corre-
sponds to the measured expression value for a specifici genassayj, where the assay typically
corresponds to a certain sample or time point. The ircwa gene expression matrix represents
genei’ s expression values across the samples and is referred e egpression vectoor tran-
scriptional responsef genei. Alternatively, the elements of colunjrof the expression matrix is
referred to as thexpression profilef the corresponding assay (see also se@band specifically
section 2.1 for more detailed definitions).

B.1 Transformation, Normalization and Filtering

The purpose of transformation and normalization of dataidentify and remove artificial sources
of variation. A frequently performed transformation on ro@rray gene expression data is to take
the logarithm of the data. For data from cDNA microarraysegkpents, upregulation and down-
regulation by a certain factor have the same absolute véteelag transformation, just opposite
signs. Further, it has been shown that log transformed data & more normal distribution than
raw intensities or ratios alone [Terry Speed’s Group, 20@8jch can simplify further statistical
analysis. Another observation that has been made is thattience of the expression values is
less dependent on their mean after log transformationc¢atitig that the error causing processes
are multiplicative rather than additive [Terry Speed’s Grp2003]. After log transformation the
error processes become additive and their effects are emdigmt of the absolute magnitude of
expression.

A so-calledglobal normalizatiorof all data on a chip is performed to account for differences i
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labeling efficiency between the two fluorescent dyes in cDNéraarrays. A constant adjustment
is used to force the distribution of the log-expression galto have a median of zero on each
slide!. After suchglobal normalization or global scaling,of the data, often times a form of
local standardizatiorof the individual gene expression vectors is performed. flost frequent
standardizations are centering of the gene expressionrgesio the means are zero, and scaling
so the standard deviation or variance is one.

Filtering involves reducing the data by removing uninfotiveagenes whose expression levels
did not change or were below a user-defined threshold. fRigi&f genes is most often performed
by removing genes based orfad-changecriterion or based on the variance across samples or
time points The fold-change filter removes genes whose expression elargss the samples is
lower than a pre-specified fold-change with respect to aeaf®e expression value (which could
be the average expression value of a gene across the samplesxpression measurement taken
before the start of an experiment, e.g. before virus ind@dtiSuch filters have to be applied before
the standardization of variance.

B.2 Distance Measures

To be able to explore the similarity of gene transcriptiqualfiles in expression space, firssian-
ilarity or distance measuneeeds to be defined he kind of distance measure used can impact the
output of further analysis and is therefore important tostder. The measures that have mostly
been used to analyze gene expression data have been thdeanchistance and the Pearson
correlatiorf. For time series data the Pearson correlation has beenstadges the often more ap-
propriate measure [Knudsen, 2002] as a similar patternmiession change among genes is more
indicative of similarity than similar amplitude, or magmike of expression. However, if the com-
mon standardizations of mean centering and unit variare@aplied to the gene transcriptional
profiles, the two measures are closely related. The Pearsorl&tion between two variables or
vectorsx = {Xi,...,Xn} andy = {ya,...,yn} is defined as

10 x—X. yi—Vy
hy= 53 (o) GEEN

With the meanX =y = 0 and the standard deviatioag = oy = 1, it follows that

IMore complicated normalization techniques have been stgddor cases where dye biases can depend on spot
overall intensity and location on the array (print-tip eff® [Yang et al., 2001].

°Note that the Pearson correlation is actually a similarigasure, witlryy = —1 indicating largest dissimilarity
between vectors andy andryy, = 1 indicating largest similarity. Any similarity measurenche transformed into a
distance measure, for example a Pearson distance can bedjmfy =1-—ry.
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1 n
Fxy = r—]_ZlXiYi
i=

The square of the Euclidean Distance for the two vectorsfinelas

n

Oy = i;(Xi—yi)2

= i()(,-2+Yi2—2><iYi) (B.2.2)

and usingoz = £57  x2 =07 =157 y? =1t follows that

dxy = Zn(l_r_lmzlxiyi)
= 2n(1—ryy) (B.2.3)

More complex measures, for example based on Informatiooretie measures lik&utual
Information[Cover and Thomas, 1991], might detect more complex caetationships than the
linear Euclidean distance and Pearson correlation.

In the analyses presented in the dissertation, the genessipn data have been log trans-
formed, mean centered and standardized to unit variance.

B.3 Levels of Analysis of Gene Expression Data

Gene expression data analysis can be organized into tiveds t& increasing complexity:

1. The “simplest” analysis is on the level of single genesemtone seeks to find if a single
gene in isolation is differently expressed in different dibions.

2. The second level is a multi-variate analysis of gene esgioa data from multiple conditions
or time points. The goal of such an analysis can be to groupkesthat have been assayed
based on their gene expression profiles or to identify grofigenes responding in a similar
way in a time series expression experiment. The most fratyuapplied methods for this
kind of analysis are clustering algorithms.
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3. At the third level the goal is to infer the underlying ge@ad protein) networks that are
ultimately responsible for the patterns observed. Mosthef work here attempts to re-
engineer the gene regulatory networks from the expressita d

The work here is mostly concerned with level 2. For complessrwe give a brief overview of the
other levels of analysis as well.

B.3.1 Level 1: Detecting Differentially Expressed Genes

To identify genes that are differently expressed in two daspf mMRNA one approach commonly
used is a simpldéold changeapproach. A gene is declared to have significantly changdukif
absolute factor of change between the expression leveieitwto samples is larger than a certain
threshold. Typical threshold values range from 2 to 3 [$&all2001, Cho et al., 1998, Browne
et al., 2001]. It has been argued, however, that such a sifololehange criterion is unlikely to
yield optimal results [Szallasi, 2001]. First, becauseuhegance in measured expression levels
depends on the mean expression level, a specific fold-cheangéave different significance in
different regions of the spectrum of expression levelsygothe log-transform can take care of
some of that effect [Terry Speed’s Group, 2003, Szalla$i1P0 Second, artificial random effects,
like stochasticity in reverse transcription, especiatly fare transcripts, can cause fluctuations in
measurements of transcript abundance that do not refldadiflsmences [Szallasi, 2001]. It has
been reported that a 1.5 - 2 fold 'pseudo-change’ in 1% of thentified gene population can be
expected by chance in microarray experiments [SzallagilR0f one notes first the compound
effect of usually evaluating multiple experiments, sedgnithat thousands of genes are assayed
on a single chip, and thirdly, that for most experiments onesti't expect a biologically caused
change in expression for more than 10% of the genes, thisgndisantly large number of genes.

If replicate measurements are available, a more sophisti@pproach to the question of dif-
ferential expression is the use of-test[Baldi and Long, 2001]. In a t-test, the empirical means
and variances of the replicates of two conditioaad j are used to compute a normalized distance
between the two populations in the form

t=(m-mp)/y =) B3.4)

where, for each populatiom ando are the estimates for the mean and standard deviatiom and
is the number of replicates in the two conditiondollows approximately a student distribution.
Whent exceeds a certain threshold depending on the confidendesé&geted, the two populations
of replicate measurements are considered to be differemialse in the t-test the distance between
the population means is normalized by the empirical stahdaviations, this has the potential for
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addressing some of the shortcomings of the fold-changeriait. There is a fundamental problem
with the t-test for microarray data, however. For many expents there are no replicates, or that
number is small because experiments remain costly andugthaepeat.

B.3.2 Level 2: Multivariate Analysis of Gene Expression Da

Multi-variate analysis of gene expression data has tylyitatused on the application of clustering
techniques. Genes can be clustered based on their traimTairesponse vectors (the vector of
expression values across conditions). Such genes areectteras co-expressed and the assump-
tion is that these genes also might be co-regulated andidinerfeinctionally related. Samples can
also be clustered based on their expression profiles. THehgoa often is to find a grouping of
the samples based on their expression profiles, for examglesamples that are from healthy and
samples that are from non-healthy tissue.

Clustering is a fundamental technique in exploratory datdyesis and pattern discovery. The
application of clustering algorithms to some data assuhmepteexistence of groupings of the ob-
jects to be clustered. Random noise and artifacts may haeuddd these groupings. The objective
of the clustering algorithm is to recover the original grigpof the data. Sometimes clustering al-
gorithms are divided intsupervisecandunsupervise@lgorithms. Most often though, supervised
clustering algorithms are referred todassificatioralgorithms. In classification tasks information
about the groupings of some of the data needs to be presgutally a set of reference vectors or
classes is given and at least some of the objectstdiv@ing datg are assigned to one (or multi-
ple) of these. (Unsupervised) Clustering typically triestfer groupings from the structure of the
data directly, when no predefined set of vectors or classe&raown. Gene expression analysis
so far has mostly been exploratory. The functions of manyegemder different conditions are
still unknown and therefore (unsupervised) clusteringhoés are more commonly used for gene
expression analysisClustering can also be seen as providing a reduction ofithertsionality of
the expression data. If a few clusters of co-expressed gemeBe identified in a gene expression
data set and these clusters can be associated with cellaletidns or processes, then the data set
with potentially thousands of assayed genes has been ‘@dtitic a few significant underlying
cellular processes that generated the data.

3Some attempts with classification methods, such as supgctavmachines, have been made [Brown et al., 2000].
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B.3.3 Level 3. Gene Regulatory Model Inferences from Gene Epxession
Data

A goal in Functional Genomics is to be able to build detailedegyregulatory models. Attempts

have been made to use gene expression data to infer anderemgiineer gene regulatory networks.
However, the task of reverse engineering of gene regula@works from time series data has
proven difficult at the current stage of gene expressionyasgal he number of time points assayed
is typically in the lower teens, the number of genes involaeslin the thousands and the data is
noisy. Some examples and reviews on the sate of gene reguiaterence from expression data

are given in [D’haeseleer et al., 2000, D’haeseleer, 2B@xallasi, 2001].

B.4 Clustering Algorithms applied to Gene Expression Data

Hierarchical Clustering Eisen et al. [Eisen et al., 1998] popularized the applicatibthe ag-
glomerative hierarchical clustering algorithto gene expression data. The Pearson Cor-
relation was used as a similarity metric. The algorithmtstasith N clusters containing a
single gene each. At each step in the iteration the two dadesters are merged into a
larger cluster. In the average-linkage version of the atlgor, distance between two clus-
ters is defined as the distance between the averages of gtersligene expression vectors.
After N-1 steps, all the genes have been organized into aerarchy of clusters and this
hierarchy can be visualized in a tree where the branch lecmtiesponds to the measured
distance of the corresponding nodes (i.e. clusters).

Two variants of the average-linkage algorithm are singlkage and complete-linkage algo-
rithms. The iterative agglomeration of the two closestteisremains the same, but distance
between clusters is defined differently. For single-linkatye distance between two clusters
is defined as the distance of the closest pair of elements tinentwo clusters. Complete
linkage defines the distance of two clusters as the distahite gair of elements from the
two clusters with the largest distance.

These three clustering techniques will in many cases pedifferent partitionings of data,
as each favors, or is biased towards, a different clusterlogy. Complete linkage favors
spherical clusters, whereas single-linkage is able tactikteer-dimensional clusters which
can be extended in only some dimensions of the space. Avinigge is placed somewhere
between the two but in general also favors spherical clsistére bias towards spherical clus-
ters can be a problem for data where the different dimensignsassays, are correlated, as
is usually the case for time series data and other expredatarwhere several samples come
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from the same categories, i.e. healthy and diseased samples

K-means Tavazoie et al. [Tavazoie et al., 1999] applied a K-meansteting algorithm [Mac-
Queen, 1967] to a yeast cellcycle gene expression datalsetdtal., 1998]. Tavazoie et al.
chose the Euclidean distance as the distance measure. teaKs algorithm partitions the
N genes into K clusters, where K has to be pre-set by the useiti&l cluster centroidsare
chosen - usually at random - and each gene is then assignled ttuster with the nearest
centroid. Next, the centroid for each cluster is recal@ddty averaging all gene expression
vectors belonging to the respective cluster. This proce#giated until no more changes
occur in the partitioning, or the amount of change falls ietopre-defined threshold. K-
means clustering minimizes the sum of the squared distari@sgenes to their respective
cluster centroids. Different random initial seeds can legltto assess the robustness of the
clustering results.

Downsides to K-means clustering are that the number ofeisisb be detected is an input
to the algorithm and needs to be known. For example, Tavabhmise K=30 clusters for the
yeast cellcycle data. The same data has been clusteredeéonxpression clusters by visual
inspection by Cho et al. [Cho et al., 1998]. Further, like @rerage-linkage and complete-
linkage hierarchical clustering methods, K-means favpisescal cluster topologies. As
argued previously, such an assumption can in general notble fior gene expression data.

Multi-Variate Gaussians Mixture Models Yeung et al. [Yeung et al., 2001a] introduced an algo-
rithm that fits multi-variate Gaussian distributions to gexpression dataAn Expectation-
Maximization (EM) algorithm is used to maximize the likadibd and fit the multi-variate
Gaussian mixture models. Rather than classifying each ipggmene specific cluster, mem-
bership is indicated by the distributions’ values for eatthe Gaussian distributions. This
can be interpreted as allowing each gene to haftezay membership degr@e more than
one cluster, i.e. distribution. Such a feature might be atalle for gene expression data as
genes can participate in more than one biological process.

Because the models can be flexible, allowing for many diffecevariance matrices for the
Gaussian distributions, these models encompass othéechgsschemes, like the Fuzzy K-
means algorithm (as the name suggests, the fuzzy versidre ofrisp’ K-means algorithm
discussed above). However, more complex implementatibtiseoalgorithm can also fit
unique and quite varying covariance matrices for eachetuBlifferent covariance matrices
that allow for clusters with different sizes, (ellipticalhapes and orientations in expression
space can be fit. Therefore, unlike K-means or hierarchicatering, they are less biased
towards specific cluster topologies. All of this comes at st,cof course, of having to fit

4This algorithm is also known as a variant of the Fuzzy K-Meang-means algorithm.
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increasing numbers of parameters the more complex the sibdebme. For the most com-
plex model, allowing size, shape and orientation to vasgetaren+n(n+ 1) /2 parameters
to estimate for each cluster, wherés the dimensionality of the data [Yeung et al., 2001a].
Yeung et al. [Yeung et al., 2001a] propose to also use theghibétic nature of the mod-
els to estimate the correct number of clusters, i.e. numb&aassian distributions. They
provide an implementation of the algorithm that uses theeBmn Information Criterion
(BIC) to help select appropriate number of clusters as vgethadel classes, i.e. covariance
matrices [Fraley and Raftery, 1998].

Self-Organizing Map The Self-Organized Map (SOM) [Kohonen, 1995] algorithnologjs to the
class of Artificial Neural Networks (ANN). It has been applie microarray gene expression
data of the yeast cell cycle as well as a study of hematopaiéferentiation of four human
cell lines [Tamayo et al., 1999]. The cluster centers in a Sdtypically located on a grid.
A SOM performs a neighbor-preserving projection of the diatan their higher dimensional
space onto the grid-space, which typically is 1, 2 or 3-disi@mal. At each iteration, a
randomly selected gene expression vector is chosen anehitakiracts’ the nearest cluster
center, plus some of its neighbors in the grid. Over timegfesiuster centers are updated at
each iteration, until finally only the nearest cluster isnttdowards each gene, placing the
cluster centers in the center of gravity of the surroundiegegexpression vectors.

Like in K-means, the user has to specify the number of clasded therefore have some
a priori knowledge about the number of clusters to expectaddition, the grid topology,
including the dimensions of the grid and the number of nodesach dimension need to be
specified. For example, 8 clusters could be mapped to a 2x4ri2lbga 2x2x2 3D cube.
The different geometries will impose different structuoesthe data.

Of benefit of the grid structure is that it helps to visualize tesults. Nearby nodes in the grid
will correspond to clusters with more similar expressiotigras than clusters corresponding
to nodes further away in the grid.

The following general statement about clustering in [Jaith Bubes, 1988] also has to be consid-
ered for clustering of gene expression data:

There is no single best criterion for obtaining a partiticligtering] because no precise
and workable definition oflusterexists. Clusters can be of any arbitrary shapes and
sizes in a multidimensional pattern space. Each clusterigrion imposes a certain
structure on the data, and if the data happens to conformetoetjuirements of a
particular criterion, the true clusters are recovered.



