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Abstract

We continue our investigation of a bio-inspired solution for
binary classification of textual documents inspired by T-cell
cross-regulation in the vertebrate adaptive immune system,
which is a complex adaptive system of millions of cells in-
teracting to distinguish between self and nonself substances.
In analogy, automatic document classification assumes that
the interaction and co-occurrence of thousands of words in
text can be used to identify conceptually-related classes of
documents—at a minimum, two classes with relevant and ir-
relevant documents for a given concept (e.g. articles with
protein-protein interaction information). Our agent-based
method for document classification expands the analytical
model of Carneiro et al [5], by allowing us to deal simul-
taneously with many distinct populations of antigen-specific
T-Cells and their collective dynamics. We have previously ex-
tended this model to produce a spam-detection system [2; 3].
We have also developed our agent-based model further to ap-
ply it to biomedical article classification [4], testing it on a
dataset of biomedical articles provided by the BioCreative 2.5
challenge [17]. Here, we study the effect that the sequence of
presentation of articles has on classification performance, as
well as the robustness of the ensuing T-cell cross-regulation
dynamics to initial biases of the proportions of effector and
regulatory T-cells. We show that classification is improved
when we preserve the original temporal order of biomedi-
cal articles, suggesting that our model is capable of track-
ing the natural conceptual drift of the relevant biomedical
literature. We further show that initial biases in the propor-
tions of T-cells are corrected by the dynamics of the model.
Our results are useful for biomedical text mining, but they
also help us understand T-cell cross-regulation as a potential
general principle of classification available to collectives of
molecules without a central controller. While there is still
much to know about the specifics of T-cell cross-regulation
in adaptive immunity, Artificial Life allows us to explore al-
ternative emergent classification principles while producing
useful bio-inspired tools.

Introduction
At least since the start of systematic genomic studies, there
has been a tremendous growth of scientific publications in
the life sciences [13]. Pubmed (http://pubmed.gov)
now contains a growing collection of more than 19 million
biomedical articles. Manually classifying these articles as

relevant or irrelevant to a given topic of interest is very time
consuming and inefficient for curation of new published ar-
ticles [14]. Literature (or text) mining offers solutions for
automatic biomedical document classification and informa-
tion extraction from huge collections of text, as well as the
linking of numerous biomedical databases and knowledge
resources [14; 28]. Because it is very important to vali-
date and assess the quality of proposed solutions, various
community-wide competitions and challenges have been or-
ganized so that automatic systems can be evaluated against
human annotated data sets (e.g. TREC Genomics [10]).
One such effort is the BioCreative challenge, which aims
to assess biomedical literature mining in real-world scenar-
ios [11; 18; 17]. Machine learning has offered a plethora
of solutions to this problem [14; 8], however, even the most
sophisticated of solutions often overfit to the training data
and do not perform as well on real-world scenarios such as
that provided by BioCreative [1; 16]. One of the challenges
of biomedical article classification in real-world scenarios is
the presence of highly unbalanced classes; typically, there
are many more irrelevant than relevant documents, without
prior knowledge of class proportions. This was the case of
the article classification data set in the Biocreative BC2.5
challenge [17]. While participating teams (including our
own team [16]) did not enter bio-inspired solutions, the un-
balanced nature of classes and the presence of conceptual
drift, which we showed to occur between training to test-
ing data sets [1; 16], may be a good scenario to test classi-
fiers inspired by the vertebrate immune system—which must
operate under class-imbalance with permanent drift in the
populations of pathogens encountered. Therefore, here we
explore the feasibility of using T-Cell cross-regulation dy-
namics to classify biomedical articles using the real-world
scenario provided by the Biocreative 2.5. data set.

The immune system (IS) is a complex biological system
made of millions of cells all interacting to distinguish be-
tween self and nonself substances, to ultimately attack the
latter [12]1. In analogy, relevant biomedical articles for a

1We use the terminology of self/nonself discrimination, though
perhaps a more accurate description is classification of harmless
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given concept need to be distinguished from irrelevant ones.
To perform such a topical classification, we can use the oc-
currence and co-occurrence of thousands of words in a docu-
ment. In this sense, words can be seen as interacting in a text
in such a way as to allow us to distinguish between relevant
and irrelevant documents—in analogy with the interactions
among T-cells and antigens that lead to self/nonself discrim-
ination in the immune system, as we describe below.

Our Artificial Life approach is based on the idea that the
immune system is a distributed collection of molecular con-
stituents with no central controller [25]. Therefore, its clas-
sification ability needs to result from a collective classifi-
cation process, defined as the ability of decentralized sys-
tems of many components to classify situations that require
global information or coordinated action [20]. Nature is
full of examples of collective classification: the dynamics
of stomata cells on leaf surfaces are known to be statisti-
cally indistinguishable from the dynamics of automata that
are capable of performing nontrivial classification [21], bio-
chemical intracellular signal transduction networks are ca-
pable of emergent classification [9], quorum sensing in bac-
teria [33] and social insects [23], etc. We can study col-
lective classification in general models of complex systems
such as Cellular Automata, namely by identifying regular
patterns in the dynamics that store, transmit and process
information [6; 24; 27]. Here, instead of looking at gen-
eral models of complex systems, we focus on a specific im-
munological model of T-Cell cross-regulation dynamics [5].
We are are interested in exploring the collective dynamics
of this model to: (1) build a novel bio-inspired machine
learning solution for document classification, and (2) un-
derstand how well collections of T-Cells engaged in cross-
regulation perform as a classifier. The first goal entails a bio-
inspired approach to computational intelligence, and the sec-
ond a computational biology experiment, but both are based
on artificial life principles. It should be noted that recent
work in artificial immune systems (AIS) [30] has lead to a
few immune-inspired solutions to document classification in
general [32], however, none to our knowledge has been ap-
plied to biomedical article classification nor do they employ
T-cell cross-regulation dynamics.

We have already proposed an agent-based model of T-
cell cross-regulation for spam detection [2; 3]. Our dis-
tributed model extendes the original analytical model of T-
Cell cross-regulation dynamics [5] to be able to deal with
many multiple features simultaneously, and therefore ren-
der the model applicable to real-world applications. Our re-
sults on spam-detection were comparable to state-of-art text
classifiers [2; 3]. However, our initial agent-based imple-
mentation of cross-regulation dynamics did not explore im-
portant parameter configurations such as the death rate of

vs. harmful substances, because harmless can also include antigens
from bacteria that are necessary for vertebrate bodies, and harmful
can also include body’s own tumor cells.

T-cells or the best training strategies. It also lacked an ex-
tensive parameter search for optimized performance. More
recently, we started addressing some of these issues on full-
text biomedical data from BioCreative, and showed that T-
cell death is important to obtain better classification [4].
This is an interesting result, showing that the loss of T-cells
rather than hindering, can improve the collective classifi-
cation of relevant documents. Therefore, the dynamics of
T-cell cross-regulation as proposed by Carneiro et al. [5]
can lead to the elimination of T-cells that are not useful for
classification—even in our extended formulation which con-
tains hundreds of distinct T-cells representing antigens or
textual features. We also showed that training exclusively
on relevant documents (or self antigens) leads to worse clas-
sification performance than training on both relevant and ir-
relevant documents [4]. This is interesting for tuning the al-
gorithm in text mining settings, but also suggests that T-cell
cross-regulation in the vertebrate adaptive immune system
can improve from a “training” stage where it is presented
with both self and nonself antigens.

Here, we study the importance of the original temporal
sequence of bio-medical articles. Text mining classifiers do
not typically depend on the sequence of documents they are
trained with, but our model of T-cell cross-regulation dy-
namics does. Therefore, we are interested in ascertaining
if the sequence-dependence of ensuing collective dynamics
can be used to track the natural change in real-world textual
corpora, i.e. concept drift [31]. We also study the effect
of biases in the initial T-cell population. This more exten-
sive study allows us to better understand the behavior of T-
cell cross-regulation dynamics and establish its capability to
classify sequential data. It also leads to a competitive, novel
bio-inspired text classification algorithm.

The Immune System as Inspiration
The vertebrate adaptive immune system2 (IS) is a complex
network of cells that distinguishes between self and nonself
substances or antigens—usually fragments of proteins that
can be recognized by the immune system. When nonself
antigens are discovered, an immune response to eliminate
them is set in motion. Recognizing self antigens, which
obviously should not lead to an (auto)immune response to
eliminate them, is resolved by negative selection of T-cells
which takes place in the thymus, and removes T-Cells that
strongly bind to self antigens—after positive selection of T-
Cells that are capable of binding with the major histocom-
patibility complex (MHC). It is in the thymus that T-cells de-
velop and mature; only T-cells that have failed to bind to self
antigens are released (as naive T-cells), while the rest of the
T-cells is culled. Mature T-cells are allowed out of the thy-
mus to detect nonself antigens. They do this by binding to

2A good, though already a bit dated, overview of the vertebrate
immune system for the artificial life community is Hofmeyer’s
[12].
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Figure 1: CRM interactions that define the dynamics of APC and
E and R T-cells. The model assumes that APC can only form
conjugates with a maximum of two T-cells. Adapted from [5].

antigen presenting cells (typically B-cells, macrophages and
dendritic cells) that collect and present antigens via MHC af-
ter breaking them by lysosome. The specific T-cells that are
able to bind to the presented antigens then stimulate B-cells
that start a cascade of events leading to antibody produc-
tion and the destruction of the pathogens or tumors linked
to the antigens. However, it is possible that T-cells and B-
cells, which are also trained in the thymus and bone mar-
row, mature before being exposed to all self antigens. Even
more problematic is the somatic hypermutation that ensues
in lymph nodes after the activation of B-cells. At this stage,
it is possible to generate many mutated B-Cell clones that
could bind to self antigens. Either situation can cause auto-
immunity by generating T-cells capable of attacking self
antigens. One way to deal with this problem is by a pro-
cess called costimulation which involves the co-verification
of self antigens by both T-cells and B-cells before the anti-
gen is identified as associated with a nonself pathogen to
be attacked. To further insure that the T-cells do not attack
self, another type of T-cells known as regulatory T-cells, are
formed in the thymus where they mature to avoid recogniz-
ing self antigens. These regulatory T-cells have the responsi-
bility of preventing autoimmunity by down-regulating other
T-cells that might bind and kill self antigens. Our model is
based on this process of T-Cell cross-regulation.

Artificial Immune Systems (AIS) are artificial life tools,
inspired by theories and components of the immune sys-
tem, and applied towards solving computational problems,
such as categorization, optimization and decision making
[7]. Common AIS techniques are based on specific theoret-
ical models explaining the behavior of the IS such as: Neg-
ative Selection, Clonal Selection, Immune Networks and
Dendritic Cells [30]. AIS fall in categories: (1) mathe-
matical and computational models to understand IS behav-
ior and (2) engineering of adaptive machine learning algo-

rithms. While our approach fits more immediately in the
second category, our goal is also to use our classifier to test
the prevailing model of T-cell cross-regulation and therefore
also contribute to the first category of the study of AIS.

The Cross-Regulation Model
The T-cell Cross-Regulation Model (CRM) [5] is a dynami-
cal system that aims to distinguish between self and nonself
protein fragments (antigens) using only four possible inter-
action rules amongst three cell-types: Effector T-cells (E),
Regulatory T-cells (R) and Antigen Presenting Cells (APC).
As their name suggests, APC present antigens for the other
two cell-types, E and R, to recognize and bind to them. Ef-
fector T-cells (E) proliferate upon binding to APC, unless
adjacent to regulatory T-cells (R), which regulate E by in-
hibiting their proliferation. For simplicity, proliferation of
cells is limited to duplication in quantity in contrast to hav-
ing a proliferation rate. T-cells that do not bind to APC die
off with a certain death rate. The dynamics of the CRM
depend on four interaction rules defined by the following re-
actions (illustrated in Fig. 1):

E−→
dE
{} and R−→

dR
{} (1)

A+R→ A+R (2)
A+ E → A+ 2E (3)
A+ E +R→ A+ E + 2R (4)

Reaction (1) defines E and R apoptosis with the correspond-
ing death rates dE and dR. The last three proliferation reac-
tions define the maintenance of R (2), the duplication of E
(3), and the maintenance of E and duplication of R (4) .

Carneiro et al [5] developed the analytical CRM to study
the dynamics of a population of T-cells and APC that present
a single antigen associated with a single T-cell population.
In [2; 3], we extended the original CRM model to be able to
deal with multiple populations of antigens and T-Cells us-
ing agent-based modeling. More recently, Sepulveda [26,
pp 111-113] extended the original CRM to study analyti-
cally multiple populations of T-cells that recognize antigens
presented by APC capable of presenting at most two distinct
antigens. In our model, explained in detail in the next sec-
tion, APC are capable of presenting hundreds of antigens
to be recognized by T-cells of hundreds of different popula-
tions, using the same four interaction rules of the CRM.

The Agent-Based Cross-Regulation Model
In order to adapt CRM to an Agent-Based Cross-Regulation
Model (ABCRM) for text classification, one has to think
of documents as analogous to the organic substances that
upon entering the body are broken into constituent pieces.
These pieces, known as epitopes, are presented on the sur-
face of Antigen Presenting Cells (APC) as antigens. In the
ABCRM, antigens are textual features (e.g. words, bigrams,
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Figure 2: To illustrate the difference between the CRM and the
ABCRM, the top part of the figure represents a single APC of the
CRM which can bind to a maximum of two T-Cells. The lower part
represents the APC for a document d in the ABCRM, which con-
tains many pairs of antigen/feature “slots” where pairs of T-cells
can bind. In this example, the first pair of slots of the APC Ad

presents the features fi and fj ; a regulatory T-cell Ri and an ef-
fector T-cell Ej bind to these slots, which will therefore interact
according to reaction (4)—Ri inhibits Ej and in turn proliferates
by doubling. The next pair of slots leads to the interaction of regu-
latory T-cells Ri,Rk that proliferate via reaction (2), etc.

titles, numbers) extracted from articles and presented by ar-
tificial APC such that they can be recognized by a number
of artificial Effector T-cells (E) and artificial Regulatory T-
cells (R). Individual E and R have receptors for a single,
specific (textual) feature: they are monospecific. E prolifer-
ate upon binding to antigens presented by APC unless sup-
pressed by R; R suppress E when binding in adjacent lo-
cations on APC. Individual APC present various document
features: they are polyspecific. Each APC is produced when
documents enter the artificial cellular dynamics, by breaking
the former into constituent textual features. Therefore we
can say that APC are representative of specific documents
whereas E and R are representative of specific features.

A document d contains a set of features Fd; an artifi-
cial APC Ad that represents d, presents antigens/features
fi ∈ Fd to artificial E and R T-cells. Ei and Ri bind to
a specific feature fi on any APC that contains it; if fi ∈ Fd,
then either Ei or Ri may bind to Ad as illustrated in fig-
ure 2. In biology, antigen recognition is a more complex
process than mere polypeptide sequence matching, but for
simplicity we limit our feature recognition to string match-
ing. Once T-cells bind to an APC Ad, every pair of adjacent
T-cells on Ad proliferates according to reaction rules (2-4).
APC are organized as a sequence of pairs of “slots” of (tex-
tual) features, where T-cells, specific for those features, can
bind. We use this antigen/feature presentation scheme of
pairs of “slots” to simplify our algorithm. In future work
we will study alternative feature presentation scenarios. In
summary, each T-cell population is specific to and can bind
to only one feature presented by any APC. Implementing the
algorithm as an Agent-based model (ABM) allows us to deal
with the recognition and co-recognition (co-occurrence in
the same document/APC) of many features simultaneously,
rather than a single one as the original CRM does.

The ABCRM uses incremental learning to first train on
N labeled documents (relevant and irrelevant), which are or-
dered sequentially (typically by time signature) and then test
on M unlabeled documents that follow in time order. The
sequence in which documents are received affects the artifi-
cial cellular dynamics, as incoming APC and T-cells face a
T-cell dynamics that depends on the specific documents pre-
viously encountered. Therefore, we use publication-time as
the default ordering for incoming documents, but we study
here if there is an advantage to preserving the original tem-
poral sequence of articles (see below).

Carneiro et al [5] show that both E and R T-cells co-exist
in healthy individuals assuming enough APC exist. R T-
cells require adequate amounts of E T-cells to proliferate,
but not too many that can out-compete R for the specific
features presented by APC. “Healthy” T-cell dynamics is
identified by observing the co-existence of both E and R
features with R ≥ E. “Unhealthy” T-cell dynamics is iden-
tified by observing E � R, and should result when encoun-
tering many irrelevant features in a document—in analogy
with encountering many nonself antigens. In other words,
features associated with relevant documents should have E
and R T-cell representatives in comparable numbers in the
artificial cellular dynamics (with slightly more R). In con-
trast, features associated with irrelevant documents should
have many more E than R T-cells. Therefore, when a doc-
ument d contains features Fd that bind mostly to E rather
than R cells, we can classify it as irrelevant—and relevant
in the opposite situation.

The ABCRM is controlled by 6 parameters:
• E0 is the initial number of Effector T-cells generated for

all new features
• R−

0 is the initial number of Regulatory T-cells generated
for all new features in irrelevant and unlabeled (testing)
documents

• R+
0 is the initial number of Regulatory T-cells generated

for all new features in relevant documents
• dE is the death rate for Effector T-cells that do not bind to

APC
• dR is the death rate for Regulatory T-cells that do not bind

to APC
• nA is the number of slots in which each feature fi is pre-

sented on APC
In the IS, millions of novel T-cells are randomly gener-

ated in the thymus every day to attempt to predict future
antigens. In our algorithm, in contrast, we generate T-cells
only for features (words) occurring in the relevant document
corpus. This is reasonable because the space of meaning-
ful words in a language are largely fixed and much smaller
than the space of possible polypeptide epitopes in biology.
When (textual) features are encountered for the first time, a
fixed initial number of E0 effector T-Cells and R0 regulatory
T-Cells is generated for every new feature fi. These initial
values of T-cells vary for relevant and irrelevant documents
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in training and in testing stages. More Regulatory (R+
0 ) than

Effector T-cells are generated for features that occur for the
first time in documents that are labeled relevant in the train-
ing stage (R+

0 > E0), while fewer Regulatory (R−
0 ) than

Effector T-cells are generated in the case of irrelevant doc-
uments (R−

0 < E0). Features appearing in unlabeled docu-
ments for the first time during the testing stage are treated as
features from irrelevant documents, assuming that new fea-
tures are irrelevant (nonself) until neutralized by the collec-
tive dynamics given their co-occurrence with relevant ones.

Naturally, relevant features will occur in irrelevant docu-
ments and vice versa. However, the assumption is that rel-
evant features tend to co-occur more frequently with other
relevant features in relevant documents and similarly for ir-
relevant features. Therefore, the proliferation dynamics de-
fined by the 4 reactions and guided by co-binding to APC
slots is expected to correct the erroneous initial bias. But
this self-correction has not been proven, and it is one of the
issues we test in the present work, as detailed below. The
pseudocode for the algorithm is shown below:

ABCRM:
(1) ∀d generate a linear array Ad presenting each fi ∈ Fd at nA

arbitrary, randomly distributed slots
(2) Let Ct contain Ek and Rk T-cells for all features fk in the
cellular dynamics at time t.
(3) For an incoming document d, ∀fi ∈ Fd, if Ei /∈ Ct and
Ri /∈ Ct then,
(4) Ei = E0 (generate E0 Effector T-cells for fi)
(5) if d is labeled relevant.
(6) Ri = R+

0 (generate R+
0 Regulatory T-cells for fi)

(7) otherwise
(8) Ri = R−0 (generate R−0 Regulatory T-cells for fi)
(9) update Ct with Ei and Ri
(10) Let all Ei, Ri bind specifically3 to matching fi on Ad:
(11) ∀ pairs of adjacent (fi, fj) on Ad apply the interaction rules:
(Ri, Rj) → Ri + Rj (Ei, Ej) → 2.Ei + 2.Ej (Ei, Rj) →
Ei + 2.Rj

(12) ∀Ri, Ei that bind to Ad, update total number of Ei, Ri

(13) ∀Rk, Ek ∈ Ct that do not bind to Ad, cull Ek and Rk accord-
ing to death rates dE and dR
(14) If d is unlabeled, Let R(d) =

∑
fi∈Fd

(Ri) and E(d) =∑
fi∈Fd

(Ei)

(15) Compute the normalized score S(d) = R(d)−E(d)√
R2(d)+E2(d)

(16) If S(d) > 0 then classify d as relevant, else irrelevant.

Data and Feature Selection
The BioCreative (BC) challenge aims to assess the quality of
biomedical literature mining algorithms such as article clas-
sifiers. The article classification task of Biocreative 2.5 [17]
was based on a training data set (T ) comprised of 61 full-text
articles relevant (PT ) to the topic of protein-protein interac-
tion (PPI) and 558 irrelevant ones (NT ). The realistic im-
balance between the relevant and irrelevant instances is very

3While the features fi are arbitrarily distributed over the APC
Ad, Ei and Ri that are specific to fi, are sampled from Ct based
on the proportions of Ei to Ri

Figure 3: Numbers of relevant (P ) and irrelevant (N ) documents
in the training (T ) and testing (V ) data sets of the Biocreative 2.5
challenge. In the parameter search stage, we use a balanced set of
60 PT (blue) and 60 NT (red) randomly selected articles from the
training data set. In the testing stage we use the unbalanced valida-
tion set containing 63 PV (black) and 532 NV (black) documents.
Notice that the validation data was provided to the participants in
the classification task of Biocreative 2.5 unlabeled, therefore par-
ticipants had no prior knowledge of class proportions.

challenging for common machine learning techniques, since
there are few instances of the topical category of interest
to generalize from. Because we cannot predict how imbal-
anced the validation set will be, we first search for optimal
ABCRM parameters on a smaller sample of the training that
is balanced in the numbers of relevant and irrelevant docu-
ments. For this purpose, we chose the first 60 relevant and
sampled 60 irrelevant articles that were published around the
same date (uniform distribution between Jan and Dec 2008)
as illustrated in figure 3. For final validation we used the
entire Biocreative 2.5 testing data set (V ) consisting of 63
full-text articles relevant to PPI (PV ) and 532 irrelevant ones
(NV ) as also shown in figure 3. Furthermore, we compared
our optimized algorithm with a Naive Bayes (NB) [19] and
a support vector machine (SVM) classifier [15].

We pre-processed all articles by filtering out common
words4 and porter stemming [22] the remaining words
which are all the potential features. We then ranked
words/features f extracted from training articles (T )5 ac-
cording to two scores: the first one is the average TF.IDF6

[8], and the second one is the separation score S(f) =
|pP (f) − pN (f)| where pP (pN ) is the probability of a
feature occurring in a relevant (irrelevant) document of the
training set T [1; 16]. The final rank R(fi) for every feature
fi is given by the product of the ranks obtained from both
scores; we used only the 650 top ranked features according

4The list of common (stop) words includes 33 of the most com-
mon English words from which we manually excluded the word
“with”, as we know it to be of importance to PPI

5For feature extraction we used both the training data of Biocre-
ative 2.5 and Biocreative 2 as described in [16]; all classifiers used
the exact same feature set.

6TF.IDF is a common text weighting measure to evaluate the
importance of a feature/word in a document in a corpus. TF stands
for term frequency in a document and IDF for inverse document
frequency in the corpus. [8]
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Parameter Range Step
E0 [1,7] 1
R−

0 [3,12] 1
R+

0 [3,12] 1
dE [0.0,0.4] 0.1
dR [0.0,0.4] 0.1
nA [2,22] 2

Table 1: Parameter ranges used for optimizing the ABCRM

to R(fi). Features such as “interact”, “lysat” and “transfect”
were ranked above others for their high ranks according to
both scores. See [16] for more details about the feature ex-
traction procedure.

Parameter Search and Robustness
We performed an exhaustive parameter search by training
the ABCRM on 60 balanced full-text articles (30 PT and
30 NT from BC2.5 training) and testing it on the remain-
ing 60 balanced ones (also 30 PT and 30 NT from BC2.5
Training) as illustrated in figure 37. Each run corresponds to
a unique configuration of the 6 parameters of the ABCRM.
The explored parameter ranges are listed in table 1 which
result in a total of 192500 unique parameter configurations
for each experiment. Finally, the parameter configurations
were sorted with respect to the resulting F-score measure of
performance8, which is a good measure between precision
and recall when applied to balanced data [29].

We compiled the performance of the ABCRM on the en-
tire parameter search space for two distinct experiments:
(1) effect of sequence order of articles, and (2) effect of
varying initial T-cell counts. In another publication [4] we
showed that a positive T-Cell death ratio improves classifi-
cation, whereas training exclusively on relevant documents
lowers the performance. In both experiments, we choose the
50 configurations with highest F-score measure to study the
ABCRM performance, because we are interested in identi-
fying the experimental setups that lead to higher robustness
to parameter changes. We compare experimental outcomes
with the paired student t-test; the null hypothesis is that the
two samples are drawn from the same distribution. A p-
value < 0.01 rejects the null hypothesis, establishing a sta-
tistical distinction between the data drawn from two exper-
imental setups—in our case, the data from each experiment
are the top 50 F-score values obtained. Finally, we train on
both relevant and irrelevant documents as this was shown to

7Notice that this parameter search on the provided labeled train-
ing data uses only the information available to the teams participat-
ing in Biocreative 2.5 challenge, and none of the testing data whose
labels were revealed post-challenge.

8F-score = 2.Precision.Recall
Precision+Recall

where Precision = TP
TP+FP

and
Recall = TP

TP+FN
. True Positives (TP) and False Positives (FP) are

the classifier’s correct and incorrect predictions for relevant doc-
uments, while True Negatives (TN) and False Negatives (FN) are
the correct and incorrect predictions for irrelevant documents.

be advantageous [4], and search for optimal parameter con-
figurations (including T-Cell death ratios).

The first experiment aims to establish how much the se-
quence order of processing documents impacts performance.
In particular, we test if preserving the original temporal or-
der of biomedical documents results in better performance,
as this would indicate that the ABCRM can use its sequence-
dependent dynamics to track the natural concept or topical
drift and thus improve classification. Therefore, we com-
pared the performance of the ABCRM when tested on a se-
quence of biomedical articles ordered by the original pub-
lication, against randomly shuffling the articles. We tested
four distinct experimental setups in order to fully explore the
influence of document order:

1. Ordered training set⇒ ordered testing set
2. Ordered training set⇒ shuffled testing set
3. Shuffled training set⇒ shuffled testing set
4. Shuffled training set⇒ ordered testing set

In the case of shuffled sets, we produced 8 runs with dis-
tinct random document orderings; in those cases, perfor-
mance is represented by central tendency and variation.

Figure 4: Left: top 50 parameter configurations ranked in terms
of F-score for experimental setups 1.1/2.1 (red circles), 1.2 (blue
triangles), 1.3 (blue pluses), 1.4 (blue crosses), and 2.2 (green di-
amonds). Right: mean (line), 95%CI (boxes), and standard devia-
tion (whiskers) of F-scores for top 50 parameter configurations.

The results of this experiment are summarized in figure
4. The robustness of performance of the first experimental
setup (preserving temporal order of articles) is significantly
above the other setups. Using the paired student t-test as
described above, we conclude that the ABCRM is sensitive
to article order—i.e. if the articles are shuffled, the perfor-
mance is worse. While the performance of the best classifier
obtained via experimental setup 1.2 is equivalent to the best
one obtained for experimental setup 1.2 (F-Score = 0.853,
see table 2 and figure 4), that setup is very sensitive to pa-
rameter changes and the performance quickly and signifi-
cantly decreases for subsequent best classifiers (see figure
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Exp. F-Score E0 R+
0 R−

0 dR dE nA

1.1 = 2.1 0.852 2 11 10 0.3 0.2 18
1.2 0.853 2 7 6 0.0 0.0 20
2.2 0.862 3 8 7 0.2 0.1 14

Table 2: Performance and parameters of top classifiers in experi-
ments 1.1, 1,2, 2.1 and 2.2.

4). Indeed, the performance of the top 50 classifiers for ex-
perimental setups 1.2, 1.3, and 1.4 is statistically indistin-
guishable from each other, but is significantly lower than the
performance of the top 50 classifiers for experimental setup
1.1. This means that there is indeed a conceptual drift in
the Biocreative 2.5 article data stream, and the ABCRM can
track it better (and in a more robust manner) when publi-
cation date is used as the sequence for processing articles
than when the temporal order of articles is shuffled. This
also suggests that the process of T-Cell cross-regulation in
the IS, as modeled here, can track changing environments.

In the second experiment we test the effect of the ini-
tial biases introduced when features are first encountered.
The initial biases of regulatory T-cells injected in the dy-
namics for a new feature fi, depend on whether the first
document d where the feature is encountered is labeled ir-
relevant/unknown (R−

0 ) or relevant (R+
0 ). Since features

will occur in both relevant and irrelevant articles, this ini-
tial bias for a feature could be detrimental, as a feature most
associated with one class could be first encountered on a
document of the opposite class. Therefore, it is important
to test if the dynamics of the four reactions and APC fea-
ture co-presentation that define the ABCRM can self-correct
such erroneous biases. To perform this test, we altered the
ABCRM algorithm such that T-cells are incremented appro-
priately every time a feature occurs in a document, and not
just the first time the feature occurs (as the canonical algo-
rithm does). Specifically, every time a feature fi occurs in a
document d, we increment Ei = Ei+E0 and Ri = Ri+R+

0

if d is labeled relevant and Ri = Ri +R−
0 if d is labeled ir-

relevant or unknown.
The results of this experiment are also summarized in fig-

ure 4. The performance of top classifiers obtained for exper-
imental setups 2.1 (same as 1.1) and 2.2 is shown in table 2.
While the best overall classifier is obtained with experimen-
tal setup 2.2, the performance of both setups is statistically
indistinguishable. Indeed, using the paired student t-test as
described above, we conclude that this modification does not
improve the performance of the ABCRM on the Biocreative
data set, thus showing that the initial bias can be corrected
by the ABCRM collective dynamics. Because features most
associated with a given class tend to co-occur in text with
other features most associated with the same class, they will
also tend to be co-presented in APC and thus the relevant
T-cells will proliferate with similar rates. Therefore, the dy-
namics of the ABCRM can self-correct initial erroneous bi-
ases from the natural textual co-occurrence of features. This
shows that T-Cell cross-regulation as modeled here can self-

correct initial antigen misclassification by the IS, assuming
that antigens from one class (self/nonself) tend to co-occur
with antigens from the same class.

Validation and Conclusions
To test the ABCRM on the full, unbalanced testing set of
the Biocreative challenge (see figure 3), thus establishing its
merit as a bio-inspired biomedical literature mining classi-
fier, we adopted the best parameter configuration from the
canonical ABCRM (experimental setup 1.1 and 2.1, see ta-
ble 2) obtained from the parameter search described above.
We compared the ABCRM classifier with the multinomial
Naive Bayes (NB) with boolean attributes [19], and the pub-
licly available SVMlight implementation of SVM applied to
normalized feature counts [15]. All classifiers were tested
on the same features obtained from the same data.

ABCRM NB SVM Mean StDev. Median
Precision 0.22 0.14 0.24 0.38

Recall 0.65 0.71 0.94 0.68
F-score 0.33 0.24 0.36 0.39 0.14 0.38

Accuracy 0.71 0.52 0.74 0.67 0.30 0.84
AUC 0.34 0.19 0.46 0.43 0.17 0.44
MCC 0.24 0.13 0.31 0.31 0.19 0.33

Table 3: F-Score, Accuracy, AUC and MCC performance of vari-
ous classifiers when training on the balanced training set of articles
and testing on the full unbalanced Biocreative 2.5 testing set. Also
shown is the central tendency and variation of all systems submit-
ted to Biocreative 2.5.

Since the F-score and Accuracy are not very reliable
for evaluating unbalanced classification [29], we also use
the Area Under the interpolated precision and recall Curve
(AUC) and Matthew’s Correlation Coefficient (MCC). The
results are listed in table 3, which also includes the cen-
tral tendency of the results of all systems submitted by all
Biocreative 2.5 participating teams [17; 16]. It should be
noted that the ABCRM, NB, and SVM classifiers we tested
here, used only single-word features because we wish to es-
tablish the feasibility of the method. In contrast, most clas-
sifiers submitted to the Biocreative 2.5 challenge (including
another method from our group which was one of the top-
performing classifiers [16]) used more sophisticated features
such as bigrams and problem-specific entities. Therefore, it
is not surprising that these methods as tested here performed
under the mean of the challenge. Our goal was to estab-
lish the ABCRM as a new bio-inspired text classifier to be
further improved in the future with more sophisticated fea-
tures. When we compare its performance to NB and SVM
on the exact same single-word features, the results are en-
couraging. Indeed, based on the given measures, while SVM
out-performed the ABCRM, the latter out-performed NB.
Therefore, the dynamics T-Cell cross-regulation lead to a
competitive collective classification of biomedical articles,
which we intend to develop further.

In conclusion, we observed that our algorithm adapts to
the initial bias of T-cell populations generated for new fea-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 713

tures, and it performs best when tested on a sequence of ar-
ticles ordered by publication date—showing that it can track
concept drift in the biomedical literature. These properties
of our Artificial Life model also show that T-Cell cross regu-
lation is capable of efficient collective classification of non-
self antigens and suggest that T-Cell cross-regulation can
naturally respond to drift in the pathogen population. There-
fore T-Cell cross-regulation defined by the 4 reaction rules
and co-presentation of features in APC can be seen as an ef-
fective general principle of collective classification available
to populations of cells. Clearly, there is still much to do to
improve the model. For biomedical literature mining appli-
cations, we need to test it with more sophisticated features
(as top classifiers in the field do). For our goal of under-
standing T-Cell cross-regulation in the IS, we need to un-
derstand better how memory is sustained in the collective
cellular dynamics; for instance, how to sustain regulatory T-
Cells, which keep memory of self, in the dynamics even in
the presence of very unbalanced scenarios where there are
many more nonself instances.
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