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Complex systems are typically understood as large non-
linear multivariate systems. Their organization and behavior
are commonly modeled by representations such as graphs
and automata networks. Graphs, where nodes representing
variables lack intrinsic dynamics, capture the structure or or-
ganization of complex systems. The simplest way to study
multi-variate dynamics, is to allow network nodes to have
states and update them with automata; for instance, Boolean
networks (BN) are canonical models of complex systems
and exhibit a wide range of dynamical behaviors [1].

The structure of networks has provided many insights into
the organization of complex systems [2]. The success of this
approach is its ability to capture the organization of com-
plex systems, and how it changes in time (network evolu-
tion) without explicit dynamical rules for node variables. As
the field matures, however, there is a need to move from
understanding to controlling complex systems. This is par-
ticularly true in systems biology and medicine, where in-
creasingly accurate models of biochemical regulation have
been produced [3]. More than understanding the organi-
zation of biochemical regulation, we need to derive control
strategies that allow us, for instance, to move a mutant cell to
a wild-type state [4], or revert a mature cell to a pluripotent
state [5]. Towards these goals, a question of central impor-
tance remains: How well does network structure represent
the multivariate dynamics of the underlying complex sys-
tem, especially from the point of view of control?

Network controllability aims precisely to identify a min-
imal set of driver variables (a.k.a. driver nodes) from
the structural network, which can fully control system
dynamics—i.e. drive system dynamics to any state-space
configuration [6]. Structural controllability is an influential
method to derive driver variables, using only structural prop-
erties of the system without any consideration of its dynam-
ical details [7]. It has been used to suggest, for instance, that
biological systems are harder to control than social systems
[8]. However, applications of structural controllability have
been heavily critiqued due to its stringent assumptions [9].

Here we explore the relationship between network struc-
ture and controllability through the analysis of dynamical

ensembles of BN. The control problem for general BN is
computationally intractable (NP-hard) [10]. Simplification
techniques, such as structural controllability or those based
on dynamical redundancy [4], are thus highly desirable. The
BN studied here are discrete dynamical systems X = {xi}
of N Boolean variables xi ∈ {0, 1} that are updated syn-
chronously according to deterministic logical functions. The
structural network specifies all directed pairwise interactions
{eij} which indicate when variable xi is an input for the
logic of xj . At time t, the network is in a configuration Xt,
which is the vector of all variable states (xi(t)) at time t. The
overall dynamics of temporal sequences of network con-
figurations can be represented by the state-transition graph
(STG). In this graph, each node is a configuration Xt of the
BN and each directed edge is a transition from Xt to Xt+1.
Thus, the STG fully describes the 2N possible configura-
tions and transitions in the network’s dynamical landscape.

We study the control due to a subsetD ⊂ X of driver vari-
ables as instantaneous perturbations to the variable’s state.
To capture all possible dynamically allowable trajectories
due to controlled interventions on D, we introduce the con-
trolled state transition graph (CSTGD). The CSTGD is an
extension of the STG where additional edges connect a con-
figuration to each of its 2|D|−1 perturbed counterparts. The
network is fully controllable if a trajectory exists between
every pair of configurations; for BN this is equivalent to re-
quiring the CSTGD to be strongly-connected.

We extend this binary notion of controllability by tal-
lying the fraction of configurations that are controlled by
driver set D. Given a specific configuration Xk, the frac-
tion of reachable configurations rCSTGD (Xk) is the number
of other configurations reachable on graph CSTGD via a di-
rected path starting from Xk, normalized by 2N − 1. The
mean fraction of reachable configurations is then given by
R = 〈rCSTGD (Xk)〉k, where k = 1 . . . 2N . It measures the
fraction of configurations which are on average reachable
by controlling the variables in D. The mean fraction of con-
trolled configurations is C = 〈rCSTGD (Xk)− rSTG(Xk)〉k.
It measures the average fraction of controlled configurations
by discounting those transitions which would have naturally

429

rocha
Typewritten Text

rocha
Typewritten Text

rocha
Typewritten Text

rocha
Typewritten Text
A. Gates and L.M. Rocha [2014]."Structure and dynamics affect the controllability of complex systems: a Preliminary Study". Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems: 429-430, MIT Press.

rocha
Typewritten Text



A

B C

STG! 100!
!

101!
!

110!
!

111!
!

010!
!

001!
!

011!
!

000!
!

100!
!

101!
!

110!
!

111!
!

010!
!

001!
!

011!
!

000!
!

100!
!

101!
!

110!
!

111!
!

010!
!

001!
!

011!
!

000!
!

100!
!

101!
!

110!
!

111!
!

010!
!

001!
!

011!
!

000!
!

CSTG{A}!

CSTG{B}! CSTG{C}!

A! A!
B! A!
C! A�B!

a)!

b)!

Figure 1: a) FeedForward network motif structure with
dynamics given by the rules in b) give rise to the State-
Transition Graph (STG). Each of the singleton sets {A},
{B}, and {C} are used as driver variable sets to produce
the Controlled STGs (CSTGD) shown.

occurred due to the uncontrolled dynamics of the network.
A fully controlled network must have R = 1.0, but partially
controlled networks will vary in [0,1].

We start by characterizing the entire ensemble of possible
BN dynamics for theN = 3 variable Feed-Forward network
motif [11] shown in Figure 1a. For each network structure,
there are L =

∑
i 2

ki possible transition rules, where ki is
the in-degree of variable xi. In this case, the full ensem-
ble consists of 2L = 26 = 64 distinct networks; the logic
of one is depicted in Figure 1b. This figure also depicts its
STG and the CSTGD for various driver sets D. If we addi-
tionally remove all variable transition functions that refer to
tautologies, contradictions, and functions always controlled
by a single input (fully canalizing [12]), we obtain a smaller
Non-trivial ensemble. The controllability analysis for both
ensembles is shown in Figure 2. Notice that structural con-
trollability analysis predicts that variable A is capable of
fully controlling the network. However, this driver variable
(CSTG{A}) fails to control a large majority of the possible
BN. Even pairs of variables cannot fully control all networks
(R < 1.0); to guarantee full control for every network, all
three variables need to be driven.

This simple example highlights the tenuous relationship
between structure and dynamics for complex systems, and
the implications for understanding and characterizing their
control. This work has been extended in four significant
ways [13], and will be showcased at the conference: (1)
analysis of several more network motifs; (2) extend our mea-
sures of partial control to the more biologically relevant con-
cept of attractor control (since all non-attractor configura-
tions are transients); (3) study the space of random BN (such
as Erdos-Renyi structural networks with transitions param-
eterized by in-degree and bias) to establish that similar re-
sults hold as the systems are scaled up; (4) study models of
biochemical regulation such as the segment polarity gene-
regulatory BN of Drosophila melanogaster [14], the con-
trol of which is known [4]. These studies show how the
structure-only analysis of complex systems tends to fail to
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Figure 2: Measures R and C for the Full Ensemble of 64
BN (green squares and red circles) with structure given by
the Feed-Forward network motif shown in Figure 1, as con-
trolled by various combinations of driver variables. The
Non-trivial subset is highlighted by red circles.

properly characterize their full or partial controllability. Ad-
ditionally, we lay the groundwork for understanding which
restrictions must be enforced on the transition functions of
BN, such that structure may suffice for predicting control-
lability. Our full study and analysis has been submitted for
publication [13].
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