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Zhiping Wang 

ABSTRACT 

BIOMEDICAL LITERATURE MINING FOR PHARMACOKINETICS 

NUMERICAL PARAMETER COLLECTION 

Model-based drug studies have been developing very fast recently. They require high quality 

pharmacokinetics (PK) parameter numerical data. However, most parameter measurements are 

still buried in the scientific literature. Traditional manual data extraction is too expensive to 

handle the exponentially growing number of publications. This thesis focuses on the application 

of text mining (TM) and machine learning (ML) for drug pharmacokinetics parameter data 

collection from the published literature.   

First, we explore the feasibility of TM on the extraction of drug PK parameter data from 

PubMed abstracts. Our method achieves higher precision and obtains rich information content. 

For the test drug Midazolam, it extracts 10 times more PK clearance data than the manually 

constructed commercial Drug Interaction Database (DiDB). Similar performance is obtained on 

additional test drugs. 

Following the success of TM on abstracts; we extended the methodology to full text articles 

and developed a literature mining pipeline for PK parameter data extraction. It combines 

machine learning, automatic information processing, and manual curation. It compromises four 

main components: (1) information retrieval, which applies both ontology-based name entity 

recognition (NER) and ML methods to classify PubMed search results; (2) article downloading 

of full PDF articles through PubMed external links; (3) information extraction of PK data from 



 

both tables and free text of articles; and (4) transformation and storage of mined information, so 

that it can be reachable in a drug-modeling-friendly manner. This literature mining pipeline and 

methodology is the first working approach to extract numerical data from full text articles, 

capable of processing both plain text and tabular data.  

The specific contributions of this thesis include: 

 A new PK ontology for entity template construction 

 Comparison of NLP and machine learning algorithms for PK information retrieval 

 Tabular data extraction 

 PK information extraction from full text literature 

 A complete pipeline of numerical data extraction from both abstracts and full-text 

articles for pharmacokinetics 

 



 

Contents 

 

Acknowledgements ............................................................................................................................. iv 

Chapter 1. INTRODUCTION AND REVIEW .............................................................................. 1 

1.1 Background ............................................................................................................................ 1 

1.2 Review of Literature Mining ................................................................................................ 3 

1.2.1 Information Retrieval / Text Classification................................................................... 3 

1.2.2 Entity Recognition .......................................................................................................... 4 

1.2.3 Information Extraction .................................................................................................. 6 

1.2.4 Other Text Mining Areas ............................................................................................... 8 

1.2.5 Biomedical Text Mining Applications ........................................................................... 8 

1.2.6 Text Mining on Full Text .............................................................................................. 10 

1.3 Review of Pharmacokinetics-Related Literature Mining ................................................. 12 

1.3.1 Drug-Drug Interaction Mining ..................................................................................... 12 

1.3.2 Kinetics Parameter Mining .......................................................................................... 16 

1.3.3 Pharmacokinetics Parameter Mining ......................................................................... 19 

1.4 Thesis Overview .................................................................................................................. 21 

1.4.1 Pharmacokinetics Ontology ........................................................................................ 21 

1.4.2 Text Mining on Abstracts ............................................................................................ 22 

1.4.2.1 Manual Drug Pharmacokinetics Data Curation ................................................. 23 



 

1.4.2.2 Abstract Pharmacokinetics Parameter Mining ................................................... 24 

1.4.3 Text Mining of Full Text Documents ........................................................................... 24 

1.4.3.1 Article clarification .............................................................................................. 24 

1.4.3.2 Article Collection ................................................................................................. 25 

1.4.3.3 Tabular Data Extraction ....................................................................................... 25 

1.4.3.4 Pharmacokinetics Information Extraction from Full Text Documents ............ 26 

1.4.4 Pharmacokinetics Parameter Transformation ........................................................... 26 

1.4.5 Thesis structure ............................................................................................................ 26 

Chapter 2. PHARMACOKINETICS ONTOLOGY .................................................................... 28 

2.1 Pharmacokinetics Ontology Construction ......................................................................... 28 

2.2 Utility of Pharmacokinetics Ontology ............................................................................... 32 

2.2.1 Study Annotation ......................................................................................................... 32 

2.2.2 Pharmacokinetics Corpus ............................................................................................ 36 

2.2.3 A Drug Interaction Text Mining................................................................................... 40 

2.3 Conclusions and Discussions .............................................................................................. 43 

Chapter 3. TEXT MINING OF PUBMED ABSTRACTS.......................................................... 44 

3.1 Midazolam Case Study Overview ...................................................................................... 45 

3.2 Abstract Mining Methods ................................................................................................... 47 

3.2.1 Text Preprocessing ....................................................................................................... 47 

3.2.2 Entity Recognition ........................................................................................................ 48 



 

3.2.2.1 Entity Template Library ...................................................................................... 48 

3.2.2.2 Tagging Entities ................................................................................................... 50 

3.2.3 Information Extraction ................................................................................................ 51 

3.2.4 Linear Mixed Model Meta-Analysis for Outlier Detections ...................................... 54 

3.2.5 Validation and Classification ....................................................................................... 55 

3.3 Abstract Mining Results...................................................................................................... 56 

3.3.1 Evaluation of Each Mining Step .................................................................................. 56 

3.3.1.1 Entity Recognition ............................................................................................... 56 

3.3.1.2 Information Extraction ......................................................................................... 57 

3.3.1.3 Large Scale Evaluation ........................................................................................ 58 

3.3.1.4 Midazolam Clearance Parameter Estimation and Outlier Detections .............. 58 

3.3.2 Performance Evaluation on Constructed Test Data .................................................. 62 

3.3.2.1 Validation Data Generation ................................................................................. 62 

3.3.2.2 Entity Recognition ............................................................................................... 63 

3.3.2.3 Information Extraction ......................................................................................... 64 

3.3.2.4 Evaluation ............................................................................................................. 67 

3.3.2.5 Comparison of Midazolam Data Mining and Its Validation Analysis ............. 67 

3.4 Abstract Mining Contributions ........................................................................................... 68 

3.4.1 Compare Entity Template with Automatic Abstract Classification .......................... 68 

3.4.2 Information Content Comparison with DiDB ............................................................. 69 



 

3.5 Abstract Mining Conclusions ............................................................................................. 72 

Chapter 4. TEXT MINING OF FULL TEXT DOCUMENTS ................................................... 74 

4.1 Revised Information Retrieval ............................................................................................ 74 

4.1.1 Text Pre-processing ..................................................................................................... 75 

4.1.2 Hybrid Information Retrieval Method ........................................................................ 76 

4.1.3 Results and Discussions ............................................................................................... 80 

4.2 Article Collection ................................................................................................................ 82 

4.3 Tabular Data Extraction ...................................................................................................... 83 

4.3.1.1 Pharmacokinetics Data Extraction from PDF Tables ........................................ 83 

4.3.1.2 Information Content Comparison with Abstract ................................................ 86 

4.4 Pharmacokinetics Information Extraction from Full Text ................................................ 87 

4.4.1 Pharmacokinetics Data Distribution ........................................................................... 87 

4.4.2 Pharmacokinetics Clearance Data extraction ............................................................ 88 

4.5 Full Text Mining Conclusion.............................................................................................. 89 

Chapter 5. CONCLUSIONS AND FUTURE WORK ................................................................ 90 

5.1 PK Data Repository ............................................................................................................. 90 

5.2 Contributions ....................................................................................................................... 91 

5.3 Future Work ......................................................................................................................... 93 

 

  



 

List of Tables 

TABLE 2.1 : PK ONTOLOGY CATEGORIES....................................................................................... 29 

TABLE 2.2: CLINICAL PK STUDIES .................................................................................................. 34 

TABLE 2.3 : IN VITRO PK STUDY ....................................................................................................... 35 

TABLE 2.4 : ANNOTATION PERFORMANCE EVALUATION .............................................................. 40 

TABLE 3.1 : KEY TERMS AND FORBIDDEN TERMS.......................................................................... 49 

TABLE 3.2 : MINED AND VALIDATED MDZ CLEARANCE DATA.................................................... 59 

TABLE 3.3 : ABSTRACT CLASSIFICATION BY TEMPLATE AND SVM ON MDZ ............................. 66 

TABLE 3.4 : CLEARANCE EXTRACTION WITH AND WITHOUT ENTITY TEMPLATE .................... 66 

TABLE 3.5 : MDZ CLEARANCE COMPARISONS AMONG KNOWN DATA, DIDB, AND MINING 

RESULTS ...................................................................................................................................... 70 

TABLE 3.6 : CL DATA EXTRACTION ON MORE DRUGS: DIDB VS. LITERATURE MINING ......... 72 

TABLE 4.1 : INFORMATION RETRIEVAL PERFORMANCE ............................................................... 81 

TABLE 4.2 : PK PARAMETER EXTRACTION FROM TABLES FOR MDZ ......................................... 86 

TABLE 4.3 : PK PARAMETER DISTRIBUTION STATISTICS .............................................................. 87 

TABLE 4.4 : SUMMARY OF PK CLEARANCE DATA EXTRACTION .................................................. 89 

  



 

LIST OF FIGURES 

FIGURE 1.1 : EXAMPLE OF ENTITY PROCESS FOR DDI PREDICTION [145]. ................................ 13 

FIGURE 1.2 : EXAMPLE OF LEXICAL PATTERNS TO EXTRACT DDIS [147]. ................................. 15 

FIGURE 1.3 : EXAMPLE OF INCLUSION CRITERIA IN DIKB [151] ................................................. 16 

FIGURE 1.4 : WORK FLOW OF A KINETICS MINING SYSTEM [153] .............................................. 17 

FIGURE 1.5 : RULE PATTERN FOR A KINETICS MINING SYSTEM [158] ........................................ 19 

FIGURE 1.6 : THE SCHEME OF THIS THESIS. ................................................................................... 27 

FIGURE 2.1 : GRAPH KERNEL APPROACH ....................................................................................... 42 

FIGURE 3.1 : THE ARCHITECTURE OF ABSTRACT BASED PK MINING ......................................... 47 

FIGURE 3.2 : PRECISION PERFORMANCE ANALYSIS OF THE MACHINE LEARNING ALGORITHM 

IN ALL MDZ RELATED ABSTRACTS ......................................................................................... 57 

FIGURE 3.3 : ESTIMATED CLEARANCE DISTRIBUTION................................................................... 60 

FIGURE 3.4 : MDZ CLEARANCE DATA ............................................................................................ 61 

FIGURE 3.5 : RECALL AND PRECISION PERFORMANCE ANALYSIS OF THE MACHINE LEARNING 

ALGORITHM IN A MDZ ABSTRACTS SUBSET .......................................................................... 65 

FIGURE 4.1 : TABLE DATA EXTRACTION PROCEDURE................................................................... 84 

FIGURE 4.2 : TABLE RECONSTRUCTION EXAMPLE ........................................................................ 85 

FIGURE 5.1 : PK TEXT MINING FRAMEWORK ................................................................................ 91 

 

 



1 

 

Chapter 1.                             

INTRODUCTION AND REVIEW 

1.1 Background 

In recent decades, a new drug requires an average of 15 years to be released, costing almost a 

billion dollars in research and development [1]. In 2004, the FDA released a report entitled: 

“Innovation or Stagnation, Challenge and Opportunity on the Critical Path to New Medical 

Products” [2]. Among its six general topic areas, three of them emphasized the importance of 

computational modeling and bioinformatics in biomarker development and streamlining clinical 

trials. In multiple follow-up papers, clinical researchers, experimental biologists, computational 

biologists, and biostatisticians from both academia and industry started to discuss the challenges 

and opportunities of the pharmacokinetic-pharmacodynamic (PK/PD) model based approach in 

drug development [3-6]. PK/PD modeling simulates the pharmaceutical effects of a drug using 

mathematical equations by integrating both of its pharmacokinetical and pharmacodynamical 

characteristics. Today, drug discovery is considered impossible without sophisticated modeling 

and computation [7], which can substantially reduce the cost of drug development by 

constructing effective simulations, identifying therapeutic strategies, and making novel 

predictions.  

This thesis focuses on text mining techniques to assist PK modeling, which is centered on the 

absorption and distribution mechanism of an administered drug, its metabolism, excretion and 
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duration of effects. To fulfill the PK modeling potential in drug development, there is an 

enormous need for databases of PK parameters. For example, to specify the first human dose of a 

new compound, one needs its in-vitro and in-vivo PK parameters based on animal studies [3, 5]. 

However, current pharmacology databases provide little PK data. DiDB [8] is an on-going 

project which manually accumulates published PK data for each drug. DrugBank [9] is a 

comprehensive pharmacology database which has rich annotations on the structure, mechanism, 

pathway, and targets of drugs, but offers very sparse PK data. The other pharmacology resources, 

e.g. PharmGKB [10], dailyMed [11], PubPK [12]and PK/DB [13], have varying emphasis on 

drug properties but neither has complete drug PK parameter data available. One common feature 

of the above databases is the reliance on manual data curation of PubMed search results. The 

widely used online literature search service, PubMed, contains about 20 million abstracts from 

MEDLINE and additional life sciences journals, which has been growing exponentially [14]. 

Therefore, it is almost impossible for biomedical researchers to discover and keep track of all 

relevant publications in their own discipline manually. In addition to the lack of scalability for 

the publication growth, manual curation also suffers from inter-annotator disagreement [15] 

(though mining algorithms also don’t agree with each other, it is convenient to include validation 

and meta-analysis mechanisms in mining to minimize this effect as we did in this thesis). The 

complexity of information from PK studies makes the manual curation even harder when various 

drug doses, administration routes, patients, sample collection intervals, and the like are target 

information for collection. Moreover, the drug PK information that needs to be collected depends 

heavily on the mechanics of PK models and their simulations, which is in turn driven by the 

science. Thus the required literature information becomes a moving target, which adds more 

difficulty for manual as well as automated knowledge integration.  
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Though currently, most PK databases still rely on manual curation to collect accurate data, 

this is inefficient to keep up with the exponentially growing scientific publications, and to handle 

the large amount of varying information needs of users. One study argued that it will take years, 

or even decades, for biomedical database construction, if we just rely on manual curation [16]. 

Meanwhile, computer-aided curation has been proven to be effective in maintaining the Medline 

database [17, 18]. Therefore we investigated literature and text mining (TM) as an alternative 

solution to manual curation for PK parameter data collection which targets to efficiently handle 

large scale of information, automatically extract PK data with good quality, and timely data 

update, analysis and storage.  

1.2 Review of Literature Mining  

1.2.1 Information Retrieval / Text Classification 

It has not been very long that TM was applied in the biomedical domain but it has already shown 

enormous progress [19]. PubMed possesses information retrieval (IR) capabilities to find articles 

relevant to a certain topical query. It is such an important tool for biomedical researchers that 

many PubMed based IR tools have been developed to make the search itself easy and precise. 

Rooted in Pubmed, alternative search engines have been implemented such as Relemed [20] 

which enables sentence-level searches, PubMed Reader , and HubMed [22]. Some tools allow 

PubMed searches to be filtered according to the similarity to given input articles such as eTBlast 

[23] and MScanner [24], which makes the query more personalized.  
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The most obvious IR approach is to look for keywords  that characterize the articles, for 

instance, using the vector model [25]. PubMed is an example of this type of similarity query. 

More complicated retrieval systems were also developed to improve performance, which 

originate from different algorithms such as latent semantic indexing (LSI) [26], statistical models 

[27], combination of statistical and LSI models [28], and other machine learning methods such as 

support vector machines [29], and hidden markov models [30]. The performance of most of these 

algorithms depends on appropriate feature selection (single terms, term combinations, or strings) 

for the literature of interest. Common feature selection methods include term frequency–inverse 

document frequency (tf-idf) [31], principle component analysis (PCA) [32] and information gain 

[33]. Feature selection for the biomedical domain, from both linguistic and application points of 

view, is still under improvement [34].   

1.2.2 Entity Recognition 

Another fast growing area in biomedical TM is entity recognition, the process of automatic 

recognizing key terms and concepts of a certain area such as gene/protein names. There are 

several challenges in dealing with biomedical entities. One is the polysemy (multiple meanings 

of a word). Medical terms or gene names have been found to carry greater ambiguity than 

general English words, up to 14.20% [35]. For example, 2.4% of gene names in FlyBase are 

common English words which make dictionary-based gene name recognition uncertain. Another 

problem is synonymy [36], e.g. P53, TP53 and TRP53 all refer to the same gene. To deal with 

the variability of biological nomenclatures, the HUGO Gene nomenclature committee (HGNC) 

was created to assign every gene a unique symbol, however, not all genes have been covered and 

it will be difficult to cover all gene names used in the past and those to be used in future. Several 



5 

 

word-tokenizers were developed to account for entity name variants [37, 38] with varying 

degrees of success. 

The biomedical literature also relies heavily on the use of abbreviations [39] or acronyms, for 

example, Caenorhabditis elegans is commonly abbreviated to C. elegans; however, 49 other 

species have a name that can be abbreviated to this short form. Available tools to deal with this 

problem include ADAM [40], Abbreviation Sever [41], and AcroMine [42]. NCBI Taxonomy 

[43, 44] also contributes by assigning an accession number for phylogenetic and taxonomic 

terms from a variety of sources. Another problem in entity recognition is anaphora, an instance 

of an expression referring to another, which can be processed by linguistic rules and semantic 

analysis [45]. 

Studies have shown that biomedical researchers tend not to adhere to naming standards 

which makes the dictionary-based entity recognition less effective [46]. Existing terminology 

and ontologies are still widely used in TM (e.g. LINNAEUS [47]) as a quick reference of domain 

knowledge. Such ontologies include UMLS ,  GO [49], and BioThesaurus [50]. The ontologies 

can also be combined with general English synonym databases, e.g. WordNet [51], for better 

entity recognition [52]. Besides these existing resources, some terminology development systems, 

e.g. TerMine [53, 54], were also developed for term recognition using linguistic and statistical 

analysis. However, the employment of machine learning methods for biomedical ontology 

construction did not achieve a very good performance, with f-score below 50% [55, 56], because 

of the complex architecture, relevant term and relationship selection in an ontology. As a result, 

the combination of human-engineered ontologies and automatically deduced ontologies may be a 

better choice, because the results of manual curation provide validation data , while machine 

learning results provide guidance for curations [57].  
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Most of the machine learning algorithms applied in information retrieval can also be ported 

to entity recognition [58]. In addition, Conditional Random Fields [59] also gained popularity in 

ER. However there was also disagreement regarding the question of the relative importance of 

the selection of features and specific ER algorithm [60]. In spite of all the challenges, entity 

recognition in TM has actually reached a very high performance in some problems. In 

BioCreative II, the gene name recognition problem reached an f-score up to 87% [58]. 

BioCreative III extended the identification of biological entities to full text articles. This time, 

cross-species data was used for gene name normalization which increased ER complexity, thus 

the performance decreased accordingly [61]. However, The BioCreative competition has 

represented the trend of ER being applied in real life problems.  

1.2.3 Information Extraction 

The success on entity recognition has set a foundation for text mining to go further, leading to 

information extraction. Similar to discovering related articles in IR, Information extraction is 

concerned with the discovery of relevant facts. Until now, most information extraction research 

focused on entity relationship extraction such as protein-protein interactions (PPIs) [62], but 

there also has been many interests in event detection [63-65].  

The success of IE depends on a better understanding and automatic manipulation of 

biomedical language. Techniques from natural language processing (NLP) can be used to decode 

information in human language. NLP occurs at multiple levels: words, syntax, semantics and 

even pragmatics. For example, a solution to the polysemy problem requires a machine to discern 

the semantic features of the text at various levels. In the tokenization process of NLP, the 

morphological analysis of words is usually based on stemming [66, 67] because the meaning of a 
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word is carried predominantly by the stem or root. Popular NLP software include: Stanford NLP 

(http://nlp.stanford.edu/), GATE (http://gate.ac.uk), NLTK (http://nltk.sourceforge.net), 

MALLET (http://mallet.cs.umass.edu/). A comprehensive summary of the available NLP 

software is available in [68]. As biomedical literature shows apparent difference compared with 

general English texts, specific NLP tools working for the biomedical domain have been 

developed, e.g. MedPost [69], JULIE [38], dTagger [70]. In the BioCreative gene normalization 

task, many teams [71] integrated external resources, e.g. gene mention taggers ABNER [72] or 

LingPipe [73], into NLP to improve performance.  

Several methods are used for information extraction. The simplest way to detect relations is 

to collect texts or sentences in which the biomedical entities co-occur [74], assuming that if two 

entities are mentioned together in the literature, they should have some biological interaction 

relationship. This method usually requires analyzing the context of entity co-occurrence or 

finding interaction-relevant textual patterns. Rule based methods [75, 76] analyze the semantic 

and syntactic features of the text to generate extraction patterns and rules [77-79]. Syntactic 

information can also be converted into sentence parse trees to derive relationships between co-

occurred entities [80, 81]. The rule based method works naturally with NLP for semantic and 

syntactic processing. Expert knowledge can be easily incorporated into rules that are easy to 

understand, however facts not covered by rules are missed. The rule-based method can also work 

on negation relationships [82]. Compared with rule construction via manual curation, most 

machine learning methods train a model based on features extracted from corpora from 

information classification or extraction [83]. A method can be easily ported to different data sets. 

This leads to higher scalability but the learned features and models are not usually portable to 

different problems.  Most of the top ranked methods in BioCreative gene mention task used a 

http://nlp.stanford.edu/
http://gate.ac.uk/
http://nltk.sourceforge.net/
http://mallet.cs.umass.edu/
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machine-learning algorithm, similar to methods discussed for IR [33].  Other techniques from 

complex network theory have also been used successfully for this problem [84-86].  

1.2.4 Other Text Mining Areas 

In addition to the most popular IR, ER and IE studies, TM is also used in other biomedical 

relevant areas such as hypothesis discovery, and making novel discoveries based on known facts. 

The most representative hypothesis discovery study is Swanson’s serendipitous discovery of the 

connection between Raynaud’s disease and fish oil [87] which was clinically invalidated  three 

years later [88]. This led to the Swanson’s ABC model or so called Swanson Linking, which is a 

method to generate hypotheses of undiscovered knowledge based on known facts [89-91]. 

Another example is the study trends in the biological research topics based on publications [92], 

which showed the emergence of biological domains in time. 

1.2.5 Biomedical Text Mining Applications 

Many of the methods discussed in different areas of TM have been implemented on various 

biomedical applications. Term co-occurrence has been used in multiple gene and protein 

relationship studies [93, 94]. Some systems also provide online access to co-occurrence 

association analysis, such as PubGene [95], CoPub Mapper [96], and MedEvi [97].   

In the BioCreative challenges, several teams [58, 98, 99] made very impressive contributions 

to entity recognition and information extraction, especially relationship extraction (e.g. PPI), thus 

concluding that TM can be used to solve practical biomedical IE problems. Nonetheless, the 

performance of machine learning methods for relationship extraction is still under improvement 

[100, 101] for specific biomedical fields.  



9 

 

In addition relationship extraction, IE has also been used in other biomedical domains, such 

as subcellular location information search [102], amino acid mutation [103], nucleotide 

polymorphisms [104], physicochemical information [105], microRNA-gene association [106], 

gene-protein network [107], medication information extraction [108], knowledge database 

construction for cancer studies [109-111], biomedical images [112], diagnostic aids [113], and 

even Clinical question answering [114] etc.  

TM is becoming more attractive to automate biomedical information processing after being 

used to solve real biological problems specified by researchers as mentioned above or to provide 

support to expedite the biomedical database curation, e.g. in Flybase [33].  Research has shown 

that the potential of TM in database curation is very encouraging [115, 116]. For example, the 

curation of FlyBase records can get 20% faster with the application of an interactive mining tool 

[117]. Some systems integrate TM with manual annotation, such as Textpresso [118], 

GOAnnotator [119], and PreBIND [120]. However, such systems were not developed to replace 

manual curation but to speed up and standardize the curation process. Many think that manual 

curation will always be necessary [121] for precise database annotation.  

A collection of popular biomedical text mining tools is available from a paper presented at 

BioNLP [122]. In addition to the advances on TM for entity recognition and relationship 

extraction, BioNLP focused on modeling more complex regulatory pathways [63-65]. This 

indicates the trend to expand TM from entity-level to system-level. The recent BioNLP 

conferences were basically a relay of its previous focus, mostly PubMed based biomedical TM. 

However, in several papers published in the last conference, TM has applied on more extensive 

biomedical fields including drug studies (e.g. drug-drug interaction detection) and entity 

recognition for Electronic Medical Records (EMR) [123].    
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The fast growth of biomedical domains where TM has been applied to indicates its 

importance. Though machine learning algorithms in TM are highly portable, the domain 

dependent feature selection and specific external resource reference makes it very difficult to 

port a mining system from one domain to another. However, It is still possible that some general-

purpose functions of the existing mining tools can be applied to novel mining tasks [72] to gain 

efficiency and superior performance. Furthermore the combination of multiple existing TM 

systems has proved able to improve performance [58].  Another high-performing system [124] 

combined four independent IR systems and found that the fusion significantly outperformed 

individual systems. Finally the integration of data from multiple resources has also been proven 

to improve the performance of mining [33, 125-127].  

1.2.6 Text Mining on Full Text 

Most of the mining progress above is mostly based on PubMed abstracts. Although abstracts 

contain short descriptions that highlight the most relevant aspects of a given article, they only 

cover a small fraction of the information contained in full-text articles [128]. One statistical 

study claims that only 30% of curated PPIs can be found in the abstracts rather than the full text 

[129]. Some end users, e.g. researchers from pharmacology, need more detailed information 

which is usually presented in the full text, such as specific subject information of a clinical trial. 

These issues emphasize the need for full-text TM, which is drawing more interests. For example, 

a PubMed search using key terms “full text mining” in July, 2009 only returned 59 hits, with 7 

relevant. However, the same search gave back 369 hits in June, 2012. However, the comparably 

slower progress was mostly caused by access issues. 
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One study [130] compared abstracts with articles in three aspects: information distribution, 

syntax and the performance of mining tools. The results show significant difference in all three 

aspects, which indicates potential challenges in the transition of text mining from abstracts to 

full-text. Except for its complexity, full-text based text mining, with integration of additional 

essential information from tables, figures, and references, is expected to be more valuable in the 

near future as the number of electronically available full-text documents in open access 

repositories increases [131]. Though there is still no comprehensive free-access full text corpora, 

some efforts have appeared, e.g. PubMed Central and Highwire, as full-text article repositories 

[132]. 

Some preliminary TM studies checked the Information distribution [133, 134] of full text 

articles. The Open Text Mining Interface [135] made efforts until 2009 to provide a consistent 

format for text processing. In addition to these efforts, there has been some research on 

information extraction on full-text, such as BioRAT (information extraction) [136], @note (TM 

workbench) [137], Pharmspresso (pharmacogenomic IE) [138], KiPar (pathway kinetic 

parameter extraction) [139], BioText (figure extraction) [131]. These studies work in a specific 

biological domain and some of them [138, 139] achieve very promising precision and recall 

performance. BioCreative II.5 [98] was a challenge to identify interaction proteins, protein pairs 

and protein-protein interaction (PPI) relevant articles based on full-text articles. BioCreative III 

continued all three tasks from II.5 and tried to make a breakthrough. The last workshop 

(BioCreative’12 [140]) started to focus on the application of text mining in the curation of real 

word biomedical databases, which reflects the fast growth and increasing maturity of research in 

this field. 
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1.3 Review of Pharmacokinetics-Related Literature Mining  

For the pharmaceutical industry, TM systems are a valuable resource as part of drug discovery 

and target selection systems, and also for identifying adverse drug effect descriptions [141]. A 

statistical study [142] has shown the increasing need of TM  in drug development. For example, 

the importance of TM in pharmacogenomics is getting so much attention [143] that the Pacific 

Symposium on Biocomputing (PSB)  has dedicated one edition to pharmacology studies [144]. 

Though the focus of this thesis is PK parameter extraction, we will first review the study of TM 

in some drug related fields to illustrate how this type of information is handled by TM.  

1.3.1 Drug-Drug Interaction Mining 

Drug-drug interaction (DDI) is a situation in which a drug’s activity, in the aspect of 

pharmacodynamics, pharmacokinetics and drug efficacy, is changed by another drug if 

administered together. DDI discovery is a fairly new area but the application of TM has already 

shown some progress. One study discover two interacting drugs via the network of genes they 

are both connected with [145]. This DDI prediction is based on pharmacogenomics facts 

extracted with biomedical TM of Medline abstracts, from which predefined and normalized gene 

names, drug names and relationship terms are extracted at the sentence level (Figure 1.1 a). A 

semantic network was constructed for these extracted entities (Figure 1.1 b), which are used as 

features for a drug pair which is connected by only one gene. This paper utilizes random forest 

[84] as the classifier for all drug pairs and claimed it outperformed both logistic regression [85] 

and support-vector machine.  The classifier recognizes the combinations of relationships, drugs 

and genes that are most associated with the gold standard DDIs, correctly identifying 79.8% of 
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assertions relating interacting drug pairs and 78.9% of assertions relating non-interacting drug 

pairs. Another paper focuses on the metabolism-based interactions, which means the DDI is 

linked via related enzymes and transporters [146]. So instead of a common gene as shown in 

(Figure 1.1 a), here enzymes or transporters define the interaction network. The method in this 

second paper uses natural language processing and logic reasoning [86] (i.e. rule application). 

This study is based on Medline abstracts, and claims to detect 81.3% DDIs correctly. 

 

 

(a)                                                 (b) 

Figure 1.1 : Example of Entity Process for DDI Prediction [145]. 

Another type of DDI prediction strategy is to mine direct interaction statements from 

literature or pharmacological documents (e.g. drug labels). One such study worked on drug 

descriptions downloaded from the “Interactions” field in DrugBank [147]. A linguistic rule-
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based approach, combining shallow parsing and pattern matching, was applied in this study to 

extract DDIs from text. Example rules are listed in Figure 1.2. Unfortunately, this approach 

yielded poor results (precision = 48.89%, recall = 24.81%, F-measure = 32.92%). The authors 

argued that the UMLS MetaMap Transfer (MMTx) tool [148]  used in this paper is not powerful 

enough in NLP processing, not able to determine the syntactic type of a phrase, classifying it as 

an unknown phrase. Also its sentence clause splitting algorithm should be improved. This paper 

also discussed the impact of negation cases in DDI prediction. If not considered properly, 

negation DDIs can compromise the mining performance. Thus a DDI study should carefully 

classify such cases. This paper contributed an annotated drugDDI corpus 

(http://labda.inf.uc3m.es/DrugDDI/) which collects over 400 DDI sentences most about drug 

efficacy and pharmacokinetics.  

In follow-up work, the same group developed a supervised machine learning technique[149]. 

The new approach achieved a precision of 51.03%, a recall of 72.82% and an F-measure of 60.01% 

on the same drugDDI corpus. It is based on Shallow Linguistic Kernel (SLK) method, which has 

successfully been applied to the extraction of protein–protein interactions (PPIs) [150]. So this 

paper demonstrates that methods applied in PPI studies have the potential to be ported to DDI 

prediction. The SLK algorithm is basically implemented as a context-feature scoring method 

here. It contains two kernel functions for global context and local context. The global context 

kernel is designed to discover the presence of a relation between two entities by using 

information from the whole sentence. The local context kernel is based on the hypothesis that the 

contextual information of candidate entities is particularly useful for the verification of a 

relationship existing between them. In particular, windows of limited size around entities provide   

useful clues for the identification of the entities’ roles within a relation.  The scores from the 

http://labda.inf.uc3m.es/DrugDDI/
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SLK module were then fed to an SVM for DDI classification. This paper thus concluded that the 

ML approach is far more efficient than the pattern-based approach for tackling DDI extraction 

from texts.  

  

 

Figure 1.2 : Example of Lexical Patterns to Extract DDIs [147]. 

  

 Though the above machine learning method has shown superior performance on the drugDDI 

corps, rule based methods are still being applied and under improvement for DDI discovery as 

such methods have the potentiality to perform effectively on certain topics if rules are designed 

properly. For this purpose, a comprehensive repository of knowledge about drug mechanism was 

developed, the Drug Interaction Knowledge Base (DIKB) [151], with standard DDI evidence 

inclusion criteria. In DIKB, many types of evidence are defined, e.g. the criteria for PK DDI 
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study in Figure 1.3. Evidence is further classified into different levels. Based on DiKB, rules can 

be designed to make DDI assertions using levels of evidence (LOE) and different combination of 

LOEs as assertion criteria. Its effectiveness was tested using clinical records from PubMed 

search and drug labels which showed variant recall (0.88-1) and precision (0.8-1.0) for different 

prediction criteria tests [152].  

 

- 

Figure 1.3 : Example of Inclusion Criteria in DiKB [151] 

 

1.3.2 Kinetics Parameter Mining 

PK parameter mining has not been reported by other research groups so far. However, there have 

been studies addressing general kinetics parameter mining problems. Ordinary differential 

equations (ODEs) used for general biological kinetic system (e.g. enzyme kinetics) modeling are 

quite similar to those used in drug modeling. Thus, strategies for kinetics parameter mining have 

high potentiality to drug PK parameter mining.  
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One such TM system classifies documents regarding the question of whether or not they 

contain experimentally obtained parameters for kinetic models using a support vector machine 

[153]. This system is illustrated in Figure 1.4, which includes manual assisted SVM model 

training and automatic document classification. It works on PDF full text documents. A tool 

named PDFTOTEXT [154] was used to convert documents from PDF to ASCII formats. 

Classifying 791 pre-selected publications with SVM model yielded a precision of 60% at 50% 

recall. This system only focuses on the classification of relevant publications with the lack of 

automatic kinetic parameter extraction. 

 

 

Figure 1.4 : Work Flow of A Kinetics Mining System [153] 

 

Compared with mining kinetics data for general biological systems [153], KiPar is an IR 

application developed specifically for retrieving relevant documents with enzyme kinetic 

parameters for quantitative modeling of yeast metabolism [139]. This is a rule based system 
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relying on entity recognition. Instead of working on the relevance analysis of abstracts, KiPar 

searches PubMed and PubMed Centeral (PMC) using customized query patterns. Such query 

patterns are made of entities from relevant open resources, e.g. enzyme names from the KEGG 

enzyme database [155], gene names from the Gene Ontology [156], and kinetic parameters from 

the Systems Biology Ontology (SBO) [157]. Retrieved documents were then scored based on the 

relevant entities contained. Its retrieval performance was compared with basic Boolean search by 

using Entrez, which shows 36% improvement for abstracts (PubMed) and 100% for full text 

(PubMed Central).  

Research on kinetics mining has gone further from IR to IE today. One paper [158] presented 

a method of kinetics parameter extraction. In its name entity recognition (NER) step, POS 

tagging and orthographic feature detection were applied to labels describing kinetic parameter 

type, value and annotation for sentences (examples in Figure 1.5).  Then the labeled entities were 

associated using a set of matching rules to recognize and extract kinetics parameters and their 

related annotations. This tool shows an overall 76% precision and 87% recall in relevant 

sentence classification, and 75% precision and 90% recall in parameter recognition. Another 

similar rule and dictionary-based TM algorithm [159] for chemical and biological kinetics data 

relies on the identification of entities in the text and a rule-based linkage of these units. Its NER 

is based on dictionaries manually constructed according to expert knowledge. This method was 

tested using PubMed abstracts. A manual verification of the results yielded a recall between 51% 

and 84% and a precision ranging from 55% to 96%, depending on the category searched (e.g. 

enzyme, organism, or ligand). The results were stored in a database (KID kinetic Database) 

which is available via http://kid.tu-bs.de/ and the source code is also provided.  

 

http://kid.tu-bs.de/
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Figure 1.5 : Rule Pattern for A Kinetics Mining System [158] 

 

1.3.3 Pharmacokinetics Parameter Mining 

Until today, most of the drug-related TM still focused on relationships, especially in the 

prediction of drug-drug interactions (DDIs). TM for DDI prediction has been processed either for 

pathway analysis (i.e. association study between drugs and genes, enzymes or transporters) [145, 

146] or for extraction of direct DDI statements in text [147, 149]. Another potential DDI 

prediction strategy is based on drug PK modeling, which relies heavily on the availability of 

related PK parameters, most of which are still uncollected from scientific publications. As TM 

has been proved effective in biomedical data collection from previous studies, it should be 

applied for PK parameter extraction from literature. No TM research in this field exists yet. Thus 
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PK parameter mining serves not only as facilitation for DDI prediction study but also a 

meaningful span of TM to drug research area. 

Most closely related existing TM studies are kinetic parameter mining for biological systems. 

Some effective kinetics IR systems [139, 153] have been developed to classify relevant articles. 

Furthermore, some dictionary and rule based IE methods [158, 159] were also presented for 

automatic kinetic parameter extraction. As the kinetic system modeling has some similarity with 

PK modeling, i.e. the expression of Ordinary Differential Equations (ODEs), and expressions in 

the aspect of kinetic parameter symbols, numeric and units, the strategies used by kinetic mining 

can thus provide good reference to PK mining. Based on our observation, only one system [153] 

applied a machine learning (i.e. SVM) strategy in document classification, while the other three 

systems [139, 158, 159] each used a dictionary and rule based method for either classification or 

extraction. This situation may be caused by the lack of good training data for machine learning 

algorithms, while expert knowledge based rules can be developed without such limit. However, 

the rules can be really complex and need to be comprehensive enough to cover all relevant data 

and specific enough to filter out irrelevant data. Thus rules should be carefully developed and 

they can hardly be ported to another mining task.  

Kinetic IE systems [158, 159] only enumerate all extracted kinetics data as results. Though a 

performance test was provided based on a subset of extracted data or a group of artificial test 

data, they usually lack a mechanism to evaluate all of the extracted data on the population level. 

Thus it is hard to predict the influence of such mined kinetics parameters to the system modeling. 

Considering that the kinetics parameters were extracted from various systems, it is debatable 

whether such parameters fit one specific user defined biologic system model. Furthermore, 

despite the presentation of methods and results for kinetics parameter mining, these systems lack 
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a mechanism for user customized and guided data collection. Thus they have not reached the 

stage of being applied in real world automatic kinetic parameter data collection, though their 

assistance to certain kinetics database curation is very promising. 

Though existing kinetic mining systems provided valuable reference for PK parameter 

mining, none of them tried information extraction from tables that usually contain important 

kinetic information but too complex to be handled. This situation has inspired a discussion to 

standardize table structure [160], which proposes approaches turning human-readable tables 

from literature into structured digital tables on the Semantic Web (in the form of machine-

readable triples). Such machine-readable tables (produced by individual authors/curators/editors) 

can be automatically/semantically linked to each other and then can be easily mined by programs 

developed by other researchers (possibly in some other discipline). 

1.4 Thesis Overview 

This thesis focuses on exploring TM in the pharmaceutical area; specifically in the extraction of 

PK data from both abstracts and full-text articles. It covers most of the TM areas discussed above: 

ontology construction, information retrieval, information extraction, text mining of abstracts and 

full-text.  

1.4.1 Pharmacokinetics Ontology 

Biomedical literature mining usually involves heavy use of domain-specific terminology. 

However, the ambiguity of terms and heterogeneous description of studies by different 

researchers make the information extraction for drugs a very difficult job. One solution is to 
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recognize the key entities with the assistance of standardized terminologies and ontologies [47], 

which enable the consistent large scale extraction of relations ideally leading to a performance 

close to the reasoning process of human curators.  

For information retrieval purposes, we construct an entity template to classify relevant 

articles.  The performance of TM for drug PK parameters is based on correct recognition of drug 

names and experiment design terms. The coexistence of other drugs also needs to be tagged for 

syntactic analysis, and their interactions with the object drug should be considered to provide 

extra guidance to locate the target information. Thus, the construction of a PK ontology, as a 

comprehensive summary of terms and concepts in PK studies, should provide valuable reference 

to both the semantic and syntax analysis in the mining process.  

In this thesis, we collect data from multiple resources and link several existing biomedical 

ontologies to cover the essential knowledge structure for drug studies. We build a PK ontology, 

which is formalized in Protégé [161] and uploaded to BioPortal [162] website for public 

reference. It can be applied in text processing for feature selection, domain knowledge summary, 

template construction, and semantic tagging etc. Overall, this ontology serves as a quick 

reference of the domain knowledge and also a product of the research described in this 

dissertation.  

1.4.2 Text Mining on Abstracts 

Literature mining for PK parameters is highly unique. Firstly, important PK parameters (entities) 

are specifically defined. These PK parameters are usually available from different drug studies, 

which may vary by factors such as units, sub-populations, study designs, and dose regimens. 

Secondly, each PK study focuses on certain aspects of a drug’s PK features. Some key PK 



23 

 

parameters, e.g. concentration and clearance, are generally measured, while some others are not. 

So the retrieved information from publications can be incomplete for some PK parameters and 

abundant for others. Thirdly, as the mined PK numerical data is applied on drug PK models, the 

quality of mined data determines the performance of the modeling. Thus false positive findings 

need to be filtered from mined results as thoroughly as possible. Also, one barrier that literature 

mining faces is the relative lack of standards to evaluate the performance of mining strategies.  

Therefore, we tested the feasibility of PK numerical information extraction in published 

scientific literature abstracts before initiating further work [163]. For this purpose, we did some 

preparation work which include curation of PK data as a gold standard for model training and 

evaluation, as well as the construction of a PK ontology for drug PK studies.   

1.4.2.1 Manual Drug Pharmacokinetics Data Curation 

In PK TM using abstracts, it is difficult to evaluate performance because of the lack of existing 

drug PK data as a gold standard. Therefore, we manually curate PubMed abstracts for a test drug 

(Midazolam) to find relevant articles. The whole process is tedious and time consuming, a 

painful way to highlight how much we are in an urgent need to improve the performance of 

literature mining for drug studies. However, ultimately we curate high quality data which can be 

used as a gold standard for subsequent mining projects. The PK parameter data generated from 

this manual collection step, together with validated data from mining, is saved into a PK 

database as a result of this dissertation. However, such tedious manual curation can only work on 

a limited number of drugs, collecting PK data for all thousands of FDA drugs needs assistance of 

TM. 
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1.4.2.2 Abstract Pharmacokinetics Parameter Mining  

We develop a sequential mining strategy to discover PK relevant studies in abstracts, extract the 

PK parameter data, evaluate the results and remove false positives. This approach is tested by 

extracting clearance data for drug Midazolam. Firstly, an entity template library is built based on 

the PK ontology to retrieve pharmacokinetics relevant abstracts. Then a set of rules are designed 

to tag and extract PK data from the sentences. Because the extracted PK data are from various 

publications (studies) which adopt various experiment conditions (e.g. subject races, gender), 

their population means and between study variance are also estimated to be useful for PK 

modeling.  

1.4.3 Text Mining of Full Text Documents 

The main purpose of this dissertation is to collect drug PK data on a large scale, especially 

published PK numerical data which has not been documented in any databases. After mining on 

PubMed abstracts, we may still miss a large amount of available data in the full text literature, 

which usually contains much more PK information than abstracts. Thus full-text articles are also 

used as document resources for building the PK database. The full-text based mining pipeline, in 

addition to TM on abstracts, is the main product of this dissertation.   

1.4.3.1 Article clarification 

The proposed IR strategy is based on a manually constructed entity template. Such template can 

summarize the key features of a relevant article, such as the existence of certain PK parameters 

in the abstract. However, PK existence can also be determined from non-PK related studies, e.g. 

drug-drug interaction studies, or from a non-target drug PK studies. Thus the template-based IR 



25 

 

can achieve high recall, but comparatively low precision. A low precision means the inclusion of 

many false positive articles, which can bring too much noise to the subsequent full-text mining 

pipeline. So the IR step needs to improve on precision while not sacrificing recall.  For this 

purpose, we proposed a two-step IR system, combining template-based filtering, on both titles 

and abstract sentences, with a machine learning method, i.e. Conditional Random Field (CRF) 

[123], on filtered sentences from the first step.  

1.4.3.2 Article Collection 

The automatic retrieval of full-text articles still remains a challenge for text mining studies, due 

to lack of comprehensive article repositories. One solution is to collect full-text literature from 

open resources such as PubMed Central, Google Scholar, Highwire, and OVID, or using existing 

article retrieval systems such as AJAXSearch [164],  Open Search Server [165]. However, most 

vendors set a stringent limit on bulk article downloading. For now, the best solution would be to 

download a small number of articles for a drug at a time from an open resource. In this thesis, we 

use PubMed as the resource for article collection. To check the availability of full-text articles, 

we did a complete search and found that 106 (58%) out of 183 Midazolam PK relevant papers 

can be downloaded through PubMed external links or PubMed Central.  

1.4.3.3 Tabular Data Extraction 

To have a rough idea of PK data distribution in the full text, we browsed PK relevant articles for 

the drug Midazolam. It turned out around 60% of them have one or more numerical data tables, 

which summarize the PK study results. As PK information highly concentrated area, the table 

becomes an essential part of full text for the PK data extraction. However, there is little research 

on information extraction from tabular data, with the rare exception of the extraction of relevant 
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tables [166] or table captions instead of extracting specific data from tables. In this dissertation, 

we developed an effective solution of extracting tabular data. 

1.4.3.4 Pharmacokinetics Information Extraction from Full Text Documents 

The performance of information extraction from full text has been reported to be improved by 

finding relevant sentences first [167, 168]. So our strategy of TM of articles is to focus on 

sentences with PK information. As the full text shares high similarity with abstracts in aspects of 

entities and expressions for PK data in sentences, we can expect similar performance by adopting 

same mining strategies here as in abstract based feasibility test. After IE from full-text articles, 

we compared information content increase with IE from abstracts and tables.  

1.4.4 Pharmacokinetics Parameter Transformation 

One of the main purposes of this dissertation is to provide parameter data support for PK 

modeling, which is the central piece of model-based drug development. Such modeling divides 

the human body into multiple compartments according to a target drug's varying kinetics 

characteristics in its functioning path in human body. However, the mined numerical PK 

parameter data is mostly from clinical trials, which take the human body as a whole. Thus we 

propose a meta-analysis approach [169] to transform PK parameters from TM to be modeling 

compatible, which makes TM really meaningful in real world. 

1.4.5 Thesis structure 

The whole thesis is illustrated in figure 1.1. The data is from PubMed search, for both abstracts 

and full text articles. Chapter 2 covers PK ontology construction. Abstract based text mining is 
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presented in chapter 3, which also discusses approaches to clean up the PK parameter collection 

results. Text mining of full-text documents is presented in chapter 4.  The PK parameter 

transformation and database construction for PK TM are discussed in chapter 5 and 6 

respectively.  

 

Figure 1.6 : The Scheme of This Thesis. 
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Chapter 2.                      

PHARMACOKINETICS ONTOLOGY  

A well-annotated pharmacokinetics corpus and ontology can facilitate the development of text 

mining tools, data collection, and integration from multiple databases in pharmacokinetics. The 

comprehensive pharmacokinetics ontology we develop in this chapter serves this purpose. It can 

annotate all aspects of in vitro pharmacokinetics experiments and clinical pharmacokinetics 

studies. This work was a collective effort developed in a Dr. Lang Li’s lab.  

2.1 Pharmacokinetics Ontology Construction 

The PK Ontology is composed of several components: experiments, metabolism, transporter, 

drug, and subject (Table 2.1). Our primary contribution is the ontology development for PK 

experiments, and integration of the PK experiment ontology with other PK-related ontologies. 

Experiment specifies in vitro and in vivo PK studies and their associated PK parameters.  The PK 

parameters of the single-drug metabolism experiments include: Michaelis-Menten constant (Km), 

maximum velocity of the enzyme activity (Vmax), intrinsic clearance (CLint), metabolic ratio, and 

fraction of metabolism by an enzyme (fmenzyme) [170]. In the transporter experiment, the PK 

parameters include: apparent permeability (Papp), ratio of the basolateral to apical permeability 

and apical to basolateral permeability (Re), radioactivity, and uptake volume [171]. There are 

also multiple drug-interaction mechanisms: competitive inhibition, non-competitive inhibition, 

uncompetitive inhibition, mechanism based inhibition, and induction [172]. IC50 is the inhibition 
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concentration that inhibits to 50% enzyme activity; it is substrate dependent; and it doesn’t imply 

the inhibition mechanism. Ki is the inhibition rate constant for competitive inhibition, 

noncompetitive inhibition, and uncompetitive inhibition. It represents the inhibition 

concentration that inhibits to 50% enzyme activity, and it is substrate concentration independent. 

Kdeg is the degradation rate constant for the enzyme. KI is the concentration of inhibitor 

associated with half maximal Inactivation in the mechanism based inhibition; and Kinact is the 

maximum degradation rate constant in the presence of a high concentration of inhibitor in the 

mechanism based inhibition. Emax is the maximum induction rate, and EC50 is the concentration 

of inducer that is associated with the half maximal induction. 

Table 2.1 : PK Ontology Categories 

Categories Description Resources  

Pharmacokinetics 

Experiments 

Pharmacokinetics 

studies and parameters. 

There are two major 
categories: in vitro 

experiments and in vivo 

studies. 

Manually accumulated from text books and 

literatures. 

Transporters Drug transportation 
enzymes 

http://www.tcdb.org  

Metabolism 

Enzymes 

Drug metabolism 

enzymes  

http://www.cypalleles.ki.se/ 

 

Drugs Drug names  http://www.drugbank.ca/   

Subjects Subject description for 

a pharmacokinetics 

study. It is composed 
three categories: 

disease, physiology, 

and demographics 

http://bioportal.bioontology.org/ontologies/42056  

http://bioportal.bioontology.org/ontologies/39343 

http://bioportal.bioontology.org/ontologies/42067 
 

  

 

In vitro experiment conditions are also included in PK ontology. Metabolism enzyme 

experiment conditions include buffer, NADPH sources, and protein sources. In particular, 

protein sources include recombinant enzymes, microsomes, hepatocytes, etc. Sometimes, 

genotype information is available for the microsome or hepatocyte samples. Transporter 

http://www.tcdb.org/
http://www.cypalleles.ki.se/
http://www.drugbank.ca/
http://bioportal.bioontology.org/ontologies/42056
http://bioportal.bioontology.org/ontologies/39343
http://bioportal.bioontology.org/ontologies/42067
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experiment conditions include: bi-directional transporter, uptake/efflux, and ATPase. Other 

factors of in vitro experiments include pre-incubation time, incubation time, quantification 

methods, sample size, and data analysis methods. All this information can be found in the FDA 

website http://www.abclabs.com/Portals/0/FDAGuidance_DraftDrugInteractionStudies2006.pdf . 

In vivo PK parameters were summarized from two books [173, 174]. There are several main 

classes of PK parameters: Area under the concentration curve parameters (AUCinf, AUCSS, AUCt, 

AUMC), drug clearance parameters (CL, CLb, CLu, CLH, CLR, CLpo, CLIV, CLint, CL12), drug 

concentration parameters (Cmax, CSS), extraction ratio and bioavailability parameters (E, EH, F, 

FG, FH, FR, fe, fm), rate constants (elimination rate constant k, absorption rate constant ka, urinary 

excretion rate constant ke, Michaelis-Menten constant Km, distribution rate constants k12, k21, 

and two rate constants in the two-compartment model λ1, λ2; blood flow rate Q, QH), time 

parameters (tmax, t1/2), volume distribution parameters (V, Vb, V1, V2, Vss), maximum rate of 

metabolism (Vmax), and ratios of PK parameters that present the extend of the drug interaction, 

(AUCR, CL ratio, Cmax ratio, Css ratio, t1/2 ratio). 

We also account for two types of pharmacokinetics models that usually presented in the 

literature: non-compartment model and one or two-compartment models. There are multiple 

items that need to be considered in an in vivo PK study. The hypotheses include the effect of 

bioequivalence, drug interaction, pharmacogenetics, and disease conditions on a drug’s PK. The 

design strategies are very diverse: single arm or multiple arms, cross-over or fixed order design, 

with or without randomization, with or without stratification, pre-screening or no-pre-screening 

based on genetic information, prospective or retrospective studies, and case reports or cohort 

studies. The sample size includes the number of subjects, and the number of plasma or urine 

samples per subject. The time points include sampling time points and dosing time points. The 

http://www.abclabs.com/Portals/0/FDAGuidance_DraftDrugInteractionStudies2006.pdf
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sample type includes blood, plasma, and urine. The drug quantification methods include 

HPLC/UV, LC/MS/MS, LC/MS, and radiography. 

CYP450 family enzymes predominantly exist in the gut wall and liver. Transporters are 

tissue specific. Probe drug is another important concept in the pharmacology research. An 

enzyme’s probe substrate means that this substrate is primarily metabolized or transported by 

this enzyme. In order to experimentally prove whether a new drug inhibits or induces an enzyme, 

its probe substrate is always utilized to demonstrate this enzyme’s activity before and after 

inhibition or induction. An enzyme’s probe inhibitor or inducer means that it inhibits or induces 

this enzyme primarily. Similarly, an enzyme’s probe inhibitor needs to be utilized if we 

investigate whether a drug is metabolized by this enzyme. The information about the probe 

inhibitors, inducers, and substrates of CYP enzymes and all transporters were collected from  

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064982.h

tm, reviewed in the top pharmacology journal [175].  

Metabolism The cytochrome P450 superfamily (officially abbreviated as CYP) is a large and 

diverse group of enzymes that catalyze the oxidation of organic substances. The substrates of 

CYP enzymes include metabolic intermediates such as lipids and steroidal hormones, as well as 

xenobiotic substances such as drugs and other toxic chemicals. CYPs are the major enzymes 

involved in drug metabolism and bioactivation, accounting for about 75% of the total number of 

different metabolic reactions [176]. CYP enzyme names and genetic variants were mapped from 

the Human Cytochrome P450 (CYP) Allele Nomenclature Database (http://www. 

cypalleles.ki.se/). This site contains the CYP450 genetic mutation effect on the protein sequence 

and enzyme activity with associated references.  

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064982.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064982.htm
http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Redox
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Enzyme_substrate
http://en.wikipedia.org/wiki/Metabolism
http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Steroid
http://en.wikipedia.org/wiki/Xenobiotic
http://en.wikipedia.org/wiki/Toxic
http://en.wikipedia.org/wiki/Drug_metabolism
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Transport Proteins are proteins which serve the function of moving other materials within an 

organism. Transport proteins are vital to the growth and life of all living things. Transport 

proteins involved in the movement of ions, small molecules, or macromolecules, such as another 

protein, across a biological membrane. They are integral membrane proteins; that is they exist 

within and span the membrane across which they transport substances. Their names and genetic 

variants were mapped from the Transporter Classification Database (http://www.tcdb.org). In 

addition, we also added the probe substrates and probe inhibitors to each one of the metabolism 

and transportation enzymes (see prescribed description). 

Drug field was created  using drug names from DrugBank 3.0 [177]. DrugBank consists of 6,829 

drugs which can be grouped into different categories of FDA-approved, FDA approved biotech, 

nutraceuticals, and experimental drugs. Drug names are mapped to generic names, brand names, 

and synonyms. 

Subject includes existing ontologies for disease, physiology, and population from 

http://bioportal.bioontology.org. The PK ontology was implemented with Protégé [178] and 

uploaded to the BioPortal ontology platform. 

2.2 Utility of Pharmacokinetics Ontology  

2.2.1 Study Annotation 

Example 1: An Annotated Tamoxifen Pharmacogenetics Study 

This example shows how to annotate a pharmacogenetics studies with the PK ontology. We used 

a published tamoxifen PG study [179]. The key information from this tamoxifen PG trial was 

extracted as a summary list. Then the pre-processed information was mapped to the PK ontology. 

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/Proteins
http://en.wikipedia.org/wiki/Ions
http://en.wikipedia.org/wiki/Molecules
http://en.wikipedia.org/wiki/Macromolecules
http://www.tcdb.org/
http://bioportal.bioontology.org/
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This PG study investigates the genetics effects (CYP3A4, CPY3A5, CYP2D6, CYP2C9, 

CYP2B6) on the tamoxifen pharmacokinetics outcome (tamoxifen metabolites) among breast 

cancer patients. It was a single arm longitudinal study (n = 298), patients took SOLTAMOX
TM

 

20mg/day, and the drug steady state concentration was sampled (1, 4, 8, 12) months after the 

tamoxifen treatment. The study population was a mixed Caucasian and African-American. In 

Table 2.2, the trial summary is well organized by the PK ontology. 

 

Example 2 Midazolam/Ketoconazole Drug Interaction Study 

This was a cross-over, three-phase, drug interaction study [180] (n = 24) between midazolam 

(MDZ) and ketoconazole (KTZ). Phase I was MDZ alone (IV 0.05 mg/kg and PO 4mg); phase II 

was MDZ plus KTZ (200mg); and phase III was MDZ plus KTZ (400mg). Genetic variable 

include CYP3A4 and CYP3A5. The PK outcome is the MDZ AUC ratio before and after KTZ 

inhibition. Its PK ontology annotation is shown in Table 2.2 column three. 

 

Example 3 in vitro Pharmacokinetics Study 

This was an in vitro study [181], which investigated the drug metabolism activities for 3 

enzymes, such as CYP3A4, CYP3A5, and CYP3A7 in a recombinant system. Using 10 CYP3A 

substrates, they compared the relative contribution of 3 enzymes among 10 drug’s metabolism. 

Its PK ontology annotation is shown in Table 2.3. 
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Table 2.2: Clinical PK Studies 

Ontology Pharmacogenetics Trial Drug Interaction Trail 

 

Tamoxifen (TAM) Midazolam (MDZ, PO 4mg; IV 0.05mg/kg), 

Ketoconazole (KTZ, PO, 200, 400 mg) 

  

in-vivo in-vivo 

  

HPLC/MS HPLC/MS 

SOLTAMOX™, 20mg/day  MDZ PO, IV; KTZ PO 

month 1, 4, 8, 12 before and 0.5, 0.75, 1, 2, 4, 6, 9 hrs 

TAM and its metabolites conc MDZ and KTZ: AUC, AUCR, t1/2, and Cmax 

  

298 24 

Blood blood 

prior chemo, menopausal  

  

  

  

  

 inhibition 

Longitudinal three-phase crossover 

prospective, single arm prospective, single arm 

  

steady state  

  

  

  

CYP2D6, 2C9, 2B6  

CYP3A4/5 CYP3A4/5 

  

  

  

breast cancer healthy volunteers 

  

Caucasian/African American  

ESR1/ESR2  

 

Note: The annotations are aligned for each row. The left column is the ontology tree presentation. The 
central and right columns display their corresponding annotations from the paper. 

 

 



35 

 

Table 2.3 : in vitro PK Study 

Ontology in-vitro study 

 

MDZ, APZ, TZ, CLAR, TAM, DTZ, NIF, BFC, HFC, TEST, 

E2 

Compare metabolic capabilities of CYP3A4, 3A5, 3A7 

 

 

sodium phosphate, NADPH, methanol. 

 

 

WinNonlin 

4 fold, 10% methanol (TZ) 

5 min 

insect cell (CYP3A) 

N/A 

3min; 6 min 

HPLC, MS, Fluorimetry 

CYP3A4/5/7, P450 reductase, b5 

1mol, 6.6mol, 9mol 

BD Gentest, PanVera, PanVera 

 

CYP3A 

 

 

 

 

 

 

 

 

 

 

CL for individual substrates 

Km for individual substrates 

Vmax for individual substrates 

MDZ, APZ, TZ, CLAR, TAM, DTZ, NIF, BFC, HFC, TEST, 

E2 

 

 

 

CYP3A4, 3A5, 3A7 

 

 

 

Note: The annotations are aligned for each row. The left column is the ontology tree presentation. The 
central and right columns display their corresponding annotations from the paper. 
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2.2.2 Pharmacokinetics Corpus 

To illustrate the application of our PK ontology, a PK abstract corpus was constructed to cover 

four primary classes of PK studies: clinical PK studies (n = 60); clinical pharmacogenetic studies 

(n = 60); in vivo DDI studies (n = 218); and in vitro drug interaction studies (n = 208). The PK 

corpus construction process was a manual process that calls us to test various ML later on. The 

abstracts of clinical PK studies were selected from PubMed search results using the most popular 

CYP3A substrate, midazolam and pharmacokinetics as query terms. The clinical 

pharmacogenetic abstracts were selected based on the most polymorphic CYP enzyme, CYP2D6. 

These two selection strategies represent very well all the in vivo PK and PG studies, constituting 

about 50% of total CYPs in the human body. For drug interaction studies, abstracts were selected 

via a PubMed search using probe substrates/inhibitors/inducers (see section 2.1) for metabolism 

enzymes as query terms followed by manual screening. 

Once the abstracts were identified in four classes above, they were annotated manually by 

curators (3 masters and one Ph.D.) with different training backgrounds: computational science, 

biological science, and pharmacology. In addition a random subset of 20% of the abstracts that 

had consistent annotations among four annotators, were double checked and reviewed by two 

Ph.D. level scientists. 

A structured annotation scheme was implemented to annotate three layers of 

pharmacokinetics information: keyterms, DDI sentences, and DDI pairs. The DDI sentence 

annotation scheme depends on the keyterms; and DDI annotations depend on the keyterms and 

DDI sentences. Their annotation schemes are described as following. 

Keyterms include drug names, enzyme names, PK parameters, numbers, mechanisms, and 

change. These terms among different annotators were recognized by the following standard.   
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 Drug names were defined mainly on DrugBank 3.0. In addition, drug metabolites were 

also tagged, because they are important in in vitro studies. The metabolites were judged 

by either prefix or suffix: oxi, hydroxyl, methyl, acetyl, N-dealkyl, N-demethyl, nor, 

dihydroxy, O-dealkyl, and sulfo. These prefixes and suffixes are due to the reactions due 

to phase I metabolism (oxidation, reduction, hydrolysis), and phase II metabolism 

(methylation, sulphation, acetylation, glucuronidation) [182].     

 Enzyme names covered all the CYP450 enzymes. Their names are defined in the human 

cytochrome P450 allele nomenclature database, http://www.cypalleles.ki.se/. The 

variations of the enzyme or gene names were considered. Its regular expression is 

(CYP|450|1-26)(A-Z)(1-99|*1-99). 

 PK parameters were annotated based on the defined in vitro and in vivo PK parameter 

ontology. In addition, some PK parameters have different names, CL = clearance, t1/2 = 

half-life, AUC = area under the concentration curve, and AUCR = area under the 

concentration curve ratio. 

 Numbers such as dose, sample size, the values of PK parameters, and p-values were all 

annotated. If presented, their units were also covered in the annotations. 

 Mechanisms denote the drug metabolism and interaction mechanisms. They were 

annotated by the following regular expression patterns: inhibit(ing|s|ed|tion|or), 

catalyz(ing|es|ed), correlat(ing|es|ed|tion), metaboli(zing|zs|zed|sm|or), 

induc(e|es|ed|or|tion|ing), form(s|ing|ation|ed), stimulat(e|es|ed|ing|ion), 

activ(e|ate)(ated|ates|ating|ation), and suppres(s|ses|sed|sing|sion). 

 Change describes the change of PK parameters. The following words were annotated in 

the corpus to denote the change: strong(ly), moderate(ly), high(est|er), slight(ly), 

http://www.cypalleles.ki.se/
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strong(ly), moderate(ly), slight(ly), significant(ly), obvious(ly), marked(ly), great(ly), 

pronounced(ly), modest, probably, may, might, minor, little, negligible, doesn’t interact, 

affect(s|ed|ing), reduc(e|es|ed|tion|ing), and increase(s)(ing)(ed). 

The middle level annotation focused on the drug interaction sentences. Because two 

interaction drugs were not necessary all presented in the sentence, sentences were categorized 

into two classes: 

 Clear DDI Sentence (CDDIS): two drug names (or drug-enzyme pair in the in vitro 

study) are in the sentence with a clear interaction statement. 

 Vague DDI Sentence (VDDIS): One drug or enzyme name is missing in the DDI 

sentence, but it can be inferred from the context.  Clear interaction statement also is 

required. 

Once DDI sentences were labeled, the DDI pairs in the sentences were further annotated. 

Because the fundamental difference between in vivo DDI studies and in vitro DDI studies, their 

DDI relationships were defined differently. In in vivo studies, three types of DDI relationships 

were defined: DDI, ambiguous DDI (ADDI), and non-DDI (NDDI). Four conditions are 

specified to determine these DDI relationships. Condition 1 (C1) requires that at least one drug 

or enzyme name has to be contained in the sentence; condition 2 (C2) requires the other 

interaction drug or enzyme name can be found from the context if it is not from the same 

sentence; condition 3 (C3) specifies numeric rules to defined the DDI relationships based on the 

PK parameter changes; and condition 4 (C4) specifies the language expression patterns for DDI 

relationships. DDI, ADDI, and NDDI can be thus defined by C1 ˄ C2 ˄ (C3 ˅ C4). The priority 

rank of in vivo PK parameters is AUC > CL > t1/2 > Cmax. In in vitro studies, six types of DDI 

relationships were defined. DDI, ADDI, NDDI were similar to in vivo DDIs, but three more 
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drug-enzyme relationships were further defined: DEI, ambiguous DEI (ADEI), and non-DEI 

(NDEI). C1, C2, and C4 remained the same for in vitro DDIs. The main difference is in C3, in 

which either Ki or IC50 (inhibition) or EC50 (induction) were used to define DEI relationship 

quantitatively. The priority rank of in vitro PK parameters is Ki > IC50.  

Krippendorff's alpha [183] was calculated to evaluate the reliability of annotations from four 

annotators. The frequencies of key terms, DDI sentences, and DDI pairs are presented in Table 

2.4. Their Krippendorff's alphas are 0.953, 0.921, and 0.905, respectively. Please note that the 

total DDI pairs refer to the total pairs of drugs within a DDI sentence from all DDI sentences.  

The PK corpus was constructed by the following process. Raw abstracts were downloaded 

from PubMed in XML format. Then XML files were converted into GENIA corpus format 

following the gpml.dtd from the GENIA corpus [184]. The sentence detection in this step is 

accomplished by using the Perl module Lingua::EN::Sentence, which was downloaded from The 

Comprehensive Perl Archive Network (CPAN, www.cpan.org). GENIA corpus files were then 

tagged with the prescribed three levels of PK and DDI annotations. Finally, a cascading style 

sheet (CSS) was implemented to differentiate colors for the entities in the corpus. This feature 

allows the users to visualize annotated entities. A DDI Corpus was recently published by another 

team, as part of a text mining competition DDIExtraction 2011 (http://labda.inf.uc3m.es/ 

DDIExtraction2011/dataset.html). Their DDIs were clinical-outcome-oriented, not PK-oriented. 

They were extracted from DrugBank, not from PubMed abstracts.  

 

 

 

 

http://www.cpan.org/
http://labda.inf.uc3m.es/%20DDIExtraction2011/dataset.html
http://labda.inf.uc3m.es/%20DDIExtraction2011/dataset.html
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Table 2.4 : Annotation Performance Evaluation 

 

 
 

 

Keyterms  

Annotation 

Categories 

Frequencies Krippendorff's alpha 

Drug 8633  
 

 

0.953 

CYP 3801 

PK Parameter 1508 

Number 3042 

Mechanism 2732 

Change 1828 

Total words 97291 

 

DDI sentences 

CDDI sentences 1191  

0.921 VDDI sentences 120 

Total sentences 4724 

 
 

 

DDI Pairs 

DDI 1239  
 

 

0.905 

ADDI 300 

NDDI 294 

DEI 565 

ADEI 95 

NDEI 181 

Total Drug Pairs 12399 

 

2.2.3 A Drug Interaction Text Mining 

After PK corpus was constructed, we can further test the application of PK ontology by a text 

mining study on drug interaction. Prior to performing DDI extraction, the testing and validation 

DDI abstracts in our corpus was pre-processed and converted into the unified XML format [185]. 

The following steps were conducted: 

 Drugs were tagged in each of the sentences using dictionary based on DrugBank. This 

step revised our prescribed drug name annotations in the corpus. One purpose is to reduce 

the redundant synonymous drug names. The other purpose is only keep the parent drugs 

and remove the drug metabolites from the tagged drug names from our initial corpus, 

because parent drugs and their metabolites rarely interacts. In addition, enzymes (i.e. 

CYPs) were also tagged as drugs, since enzyme-drug interactions have been extensively 
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studied and published. The regular expression of enzyme names in our corpus was used 

to remove the redundant synonymous gene names. 

 Each of the sentences was subjected to tokenization, PoS tags and dependency tree 

generation using the Stanford parser [186].  

 nC2  drug pairs form the tagged drugs in a sentence were generated automatically, and 

they were assigned with default labels as no-drug interaction. Please note that if a 

sentence had only one drug name, this sentence didn’t have a DDI. This setup limited us 

considering only CDDI sentence in our corpus. 

 The drug interaction labels were then manually flipped based on their true drug 

interaction annotations from the corpus. Please note that our corpus had annotated DDIs, 

ADDIs, NDDIs, DEIs, ADEIs, and NDEIs. Here only DDIs and DEIs were labeled as 

true DDIs. The other ADDIs, NDDIs, DEIs, and ADEIs were all categorized into the no-

drug interactions. 

Then sentences were represented with dependency graphs [185] using interacting 

components (drugs) (Figure 2.1).  The graph representation of the sentence was composed of two 

items:  i) One dependency graph structure of the sentence; ii) a sequence of PoS tags (which was 

transformed to a linear order "graph" by connecting the tags with a constant edge weight). We 

used the Stanford parser [186] to generate the dependency graphs. Airola et al. proposed to 

combine these two graphs to one weighted, directed graph. This graph was fed into a support 

vector machine (SVM) for DDI/non-DDI classification.  More details about the all paths graph 

kernel algorithm can be found in [185]. 
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Figure 2.1 : Graph Kernel Approach 

DDI extraction was implemented in the in vitro and in vivo DDI corpus (see section 2.2.2) as 

test data separately. In extracting in vivo DDI pairs, the precision, recall, and F-measure are 0.67, 

0.79, and 0.73, respectively. In the in vitro DDI extraction analysis, the precision, recall, and F-

measure are 0.47, 0.58, 0.52 respectively. In our early DDI research published in the DDIExtract 

2011 Challenge [187], we used the same algorithm to extract both in vitro and in vivo DDIs at 

the same time, the reported F-measure was 0.66. This number is in the middle of our current in 

vivo DDI extraction F-measure 0.73 and in vitro DDI extraction F-measure 0.52. 
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2.3 Conclusions and Discussions 

The comprehensive PK ontology is available at http://rweb.compbio.iupui.edu/corpus/ontology/, 

It annotates both in vitro PK experiments and in vivo PK studies. Using our PK ontology, a PK 

corpus was also developed as described in section 2.2.2. This PK corpus is valuable at 

http://rweb.compbio.iupui.edu/corpus/, using it we extracted drug interactions relationship via 

text mining. This DDI text mining demonstrates how our PK ontology can facilitate the 

development of text mining tools. 

Just as general biomedical literature mining usually dealing with heavy use of domain-

specific terminology, PK numerical parameter collection also needs to recognize entities used in 

PK studies. As the essential knowledge structure for drug studies was summarized in our PK 

ontology, it can be applied in text processing for feature selection, domain knowledge summary, 

template construction, and semantic tagging etc. Overall, this ontology serves as a quick 

reference of the domain knowledge.  

In the feasibility test of PK parameter data collection (next chapter), we constructed an entity 

template to classify relevant articles for information retrieval purposes with the assistance of 

standardized terminologies in our PK ontology. Also, the performance of drug PK parameters 

extraction is based on correct recognition of drug names and experiment design terms. The 

coexistence of other drugs also needs to be tagged for syntactic analysis. Thus, our PK ontology, 

as a comprehensive summary of terms and concepts in PK studies, should provide valuable 

reference to both the semantic and syntax analysis in the drug PK related mining process.  

http://rweb.compbio.iupui.edu/corpus/ontology/
http://rweb.compbio.iupui.edu/corpus/
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Chapter 3.                                              

TEXT MINING OF PUBMED 

ABSTRACTS 

In this chapter
1
, we investigate the feasibility of extracting drug PK parameter data in 

numerical form using a sequential mining strategy. Firstly, an entity template library is built to 

retrieve pharmacokinetics relevant articles. Then a set of tagging and extraction rules are 

applied to retrieve PK data from the article abstracts. To estimate the PK parameter 

population-average mean and between-study variance, a linear mixed meta-analysis model and 

an E-M algorithm are developed to describe the probability distributions of PK parameters. 

Finally, a cross-validation procedure is developed to ascertain false-positive mining results. 

Using this approach to mine midazolam (MDZ) PK data, an 88% precision rate and 92% recall 

rate are achieved, with an F-score = 90%. It outperforms a support vector machine (SVM) 

based mining approach, which leads to an F-score of 68.1%. Repeating the methodology on 7 

additional drugs leads to similar performance. 

                                                   
1 This chapter was published as ref. 163. Wang, Z., et al., Literature mining on pharmacokinetics numerical data: 

a feasibility study. J Biomed Inform, 2009. 42(4): p. 726-35. 
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3.1 Midazolam Case Study Overview 

The goal here is to extract all pharmacokinetics (PK) related information for a given drug. We 

used midazolam (MDZ) as the test drug. The mining is performed on abstracts from PubMed. 

One example of a MDZ PK relevant abstract [123] is: 

To study the effects of cirrhosis of the liver on the pharmacokinetics of midazolam 

single IV (7.5 mg as base) and p.o. (15.0 mg as base) doses of midazolam were 

administered to seven patients with cirrhosis of the liver and to seven healthy control 

subjects… The elimination of midazolam was significantly retarded in the patients as 

indicated by its lower total clearance (3.34 vs. 5.63 ml/min/kg), lower total elimination 

rate constant (0.400 vs. 0.721 h-1), and longer elimination half-life (7.36 vs. 3.80 h). 

The bioavailability of oral midazolam was significantly (P less than 0.05) higher in 

patients than controls (76% vs. 38%)… 

The search engine of PubMed is not powerful enough to limit the search results to a specific 

topic, i.e. human PK study. So a further filtering step is necessary to remove irrelevant articles 

from PubMed search results, and keep the PK relevant abstracts which usually contain 

information of the following relevant key-term categories: 

 Subject type (race, age, sex etc.) and size 

 MDZ dose and administration route (oral, intravenous and etc.) 

 PK parameters, such as AUC (area under the concentration-time curve), half-life, 

bioavailability, clearance, and etc.  
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Besides the key-term categories above, we limit mining to PK data from healthy human subjects 

and for the target drug (i.e. no other factors involved such as drug inhibitor/activator) to comply 

with the requirements of drug PK study.  

Hence, in the example abstract, the literature mining tool should be able to extract “seven 

healthy control subjects” as subject, “IV (7.5 mg as base) and p.o. (15.0 mg as base)” as dose, 

“3.34 vs. 5.63 ml/min/kg” as total clearance, “0.400 vs. 0.721 h-1” as elimination rate, “7.36 vs. 

3.80 h” as half-life, and “76% vs. 38%” as bioavailability. To be more precise, the mining tool 

should be able to recognize which clearance value of MDZ refers to healthy subjects, e.g. for the 

total clearance data, “3.34 ml/min/kg” is from patients and “5.63 ml/min/kg” is from healthy 

subjects. 

For PK mining on abstracts, we developed a rule-based information extraction system. The 

architecture is shown in Figure 3.1. Abstracts are downloaded from PubMed after an initial query 

for a target drug, i.e. midazolam. Text is preprocessed such that it is divided into sentences, and 

different forms of the same terms are stemmed. The next step is entity recognition. It determines 

sentence relevance, and tags the stemmed sentence terms as various entity classes. At the end of 

this step, only the more relevant abstracts are left and well tagged. In the information extraction 

step, a set of extraction rules are manually created and implemented. Then the mined data are 

analyzed by a statistical model to detect and remove outliers, which are potentially false positive 

items.  
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Figure 3.1 : The Architecture of Abstract Based PK Mining 

 

3.2 Abstract Mining Methods 

3.2.1 Text Preprocessing 

Our PubMed search uses the drug name, e.g. midazolam, as the unique key-term in a query. The 

search results are downloaded with the XML format to get the structured abstract information. In 

the following mining process, only article title (<ArticleTitle>), abstract (<AbstractText>) and 

paper type (<PublicationType>) information is utilized from the XML format abstract.  

The goal of the preprocessing step is to split the abstract text into units of sentences. There 

are some existing tools to do this job (e.g. SentenceDetector [188], MxTerminator [189]). 

Considering the simple grammar of the abstracts, we applied a Perl module 

(Lingua::EN::Sentence) for sentence splitting. The Porter stemming algorithm [190] is used to 

deal with the common morphological and inflectional endings from words in English. After 

stemming, each word in the abstracts is normalized into a standard form. 
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3.2.2 Entity Recognition 

3.2.2.1 Entity Template Library 

PubMed search with just a drug name as key term usually returns a large number of abstracts, e.g. 

7,129 abstracts for midazolam. To increase the precision of the mined results, an abstract 

filtering step is necessary following text preprocessing. Firstly, as we limit the mining of PK data 

from healthy human subjects, the studies on diseased subjects should be removed. The human 

subject information (health status, race, weight…) is highly important and usually reported in 

pharmacokinetics studies. Most article abstracts state clearly whether the human subjects are 

healthy or diseased (patients). So if one abstract only mentions patients or diseased subjects, it is 

usually irrelevant; but if there is co-existence of healthy subject information (this is usually the 

control in clinical studies), it is still considered as subject relevant. For abstracts without any 

subject information, we kept them as relevant in case of data loss. Secondly, an entity template 

library is built upon the PK ontology for the further abstract filtering. It summarizes key factors 

in determining an abstract’s relevance. Table 3.1 is a library example, which contains a list of 

relevant key-terms and a list of forbidden terms. The terms are in the stemmed format. Because 

some relevant abstracts do not have human subject information, subject terms are not included in 

the key-term list. Thus, these articles can be kept as relevant for future full text mining purposes. 

In addition, the drug terms should correspond to the studied drug. For midazolam, such terms 

include “midazolam” and “mdz”.  
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Table 3.1 : Key Terms and Forbidden Terms 

Key Terms Forbidden Terms 

DRUG <drug terms> NTITLE mice 

mouse 

rat 

animal 

penguins 

pig 

horse 

human liver microsom 

review 

ROUTE oral 

orally 

introven 

administr 

i.v. 

intramuscular 

PK clearance 

pharmacokinet 

concentr 

bioavail 

auc 

elimin 

c(max) 

half-lif 

NTYPE review 

 

 

The entity template library is a representation model for the relevant abstracts. The PubMed 

search abstracts are further filtered by this library. An abstract is considered relevant if it 

contains at least one term from each of the key-term categories, which include drug 

administration routes (ROUTE), PK parameters and DRUG (Table 3.1); and the abstract is 

considered as irrelevant if it contains one or more forbidden terms in either <NTITLE> or 

<NTYPE> (Table 3.1).  As MDZ is primarily a CYP3A substrate, all of its DRUG key-terms are 

related to this metabolic enzyme. The <NTITLE> is the forbidden term list for article titles. 

These terms mostly represent animal and in-vitro studies (Table 3.1). The other forbidden term, 

<NTYPE>, is used to recognize the review articles. Since review articles contain PK data only 

from other publications, they don’t provide additional information. 
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3.2.2.2 Tagging Entities  

All information in the key-term categories is necessary for a drug PK study. Obviously, in order 

to extract all the PK data from the abstract, we need to properly recognize all these relevant 

terms in each sentence. Thus the quality of the PK ontology becomes very critical for mining.  

Subject Tagging 

The subject information usually contains all or part of the following four key components: 

size, description, race and subject types. <SUB_part : term>  is used to represent a term 

in each component, e.g. “seven healthy control subjects” can be tagged as “<SUB_N : 

seven> <SUB_D : healthy> control <SUB_T : subjects>”.  

Drug Tagging 

A drug name dictionary is built based on drug list from PK ontology. Thus, the drug 

entities in the abstracts can be correctly tagged, e.g. midazolam to <DRUG : midazolam>. 

Dosing Tagging 

The dosing tagging covers drug administration ways, and dosing units. The dose 

is located by searching the numerical data lying ahead of its unit. In sentences, the 

administration routes and units after numerical data are important dosing tags. As these 

tags are highly compact, they usually occur together. For example, the following two 

dosing related text segments 

 Midazolam oral (15 mg) and intravenous (0.05 mg.kg-1) was given  

 7.5 mg dose of midazolam was given orally 

are tagged as 

 <DRUG : Midazolam> <Dose_A : oral> (15 <Dose_U : mg>) and 

<Dose_A : intravenous> (0.05 <Dose_U : mg.kg-1>) was given  
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 7.5 <Dose_U : mg> dose of <DRUG : Midazolam> was given <Dose_A : 

orally>.  

PK Parameter Tagging 

Drug clearance is chosen as the test PK parameter data mining performance, since it has 

comparably more numerical data available in the abstracts. The important tags for the 

clearance relevant value and unit are, 

 clearance terms (T) : [systemic / oral ] clearance 

 Value (V)  

 Unit (U) examples : ml/min/kg; l/kg/h; ml/min; l/hr … 

As there are two types of clearance, systemic clearance and oral clearance, a type 

classification is needed in the following data analysis step. The clearance value is usually 

reported in both sample mean and standard deviation. The co-existence of the clearance 

key-terms and units is a unique identification, and the tagging is done by identifying them 

together in one sentence. For example, the phrase “the systemic clearance of midazolam 

was unchanged (37.7 +/- 11.3 l/h)” is tagged as “the <CLR_T : systemic clearance> of 

<DRUG : midazolam> was unchanged (<CLR_V : 37.7+/-11.3> <CLR_U : l/h>)”. 

After the tagging process, the relevant elements in each sentence are recognized. The tagged 

sentences in each abstract are kept for the following information extraction. All the untagged 

sentences are removed.  

3.2.3 Information Extraction 

In this stage, we need to extract the information from three prescribed tagging items: dosing, 

subject, and PK parameters. The subject and dosing information can be extracted easily given a 
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well tagged sentence. For example, given the tagged phrase “<SUB_N : seven> <SUB_D : 

healthy> control <SUB_T : subjects>”, the machine easily locates the subject information. 

Similarly, the tagged phrase “7.5 <Dose_U : mg> dose of <DRUG : Midazolam> was given 

<Dose_A : orally>” clearly shows “7.5mg orally” as the dosing information for midazolam. The 

tagged sentence “<DRUG : Midazolam> <Dose_A : oral> 15 <Dose_U : mg> and <Dose_A : 

intravenous> 0.05 <Dose_U : mg.kg-1> “ indicates a simple sequential parsing of information 

for oral dosing and intravenous dosing as “oral 15mg; intravenous 0.05 mg.kg-1”. 

PK parameter data extraction is more complicated. As multiple drugs are usually involved in 

the PK studies, one abstract sentence may contain PK data for both target drug and other drugs. 

Even if one sentence discusses the target drug only, the data can reflect its PK value change 

caused by other study drugs. The following sentence reflects this complexity, 

Rifampin significantly (P<.0001) increased the systemic and oral clearance of 

midazolam from 0.44+/- 0.2 L. h/kg and 1.56 +/- 0.8 L x h/kg to 0.96 +/- 0.3 L x h/kg 

and 34.4 +/- 21.2 L x h/kg, respectively. 

Two drugs, midazolam and rifampin, are mentioned in this sentence, and the clearance values 

contain both control and affected cases. The information extraction needs to make the correct 

decision that this sentence discusses midazolam, but not rifampin; and the control clearance 

values come first (0.44+/-0.2 for systemic clearance; 1.56+/-0.8 for oral clearance). There are 

two steps to discriminate the target drug. First, if the title or the occurrence frequency of term 

“midazolam” shows strong signal that the abstract is about midazolam but not rifampin, this 

sentence is most likely to be midazolam. Secondly, it is still possible that one clearance value is 

for rifampin for the sake of comparison. In order to deal with this case, a set of extraction rules 
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are created. The rules are explained in detail in the follow up example. After the tagging step, 

this sentence example is converted to 

<DRUG : Rifampin> significantly (P<.0001) <CHG : increased> the <CLR_T : 

systemic> and <CLR_T : oral clearance> of <DRUG : midazolam> from <CLR_V : 

0.44+/- 0.2> <CLR_U : L. h/kg> and <CLR_V : 1.56 +/- 0.8> <CLR_U : L x h/kg> to 

<CLR_V : 0.96 +/- 0.3> <CLR_U : L x h/kg> and <CLR_V : 34.4 +/- 21.2> 

<CLR_U : L x h/kg>, respectively. 

The tag “<CHG>” is an important one to show the change of clearance value caused by the co-

existence of other drugs. Hence, the “increased” case of <CHG> tag, the smaller value of 

clearance data is usually the control, i.e. study with no drug interaction effect, which should be 

extracted. Now the simple representation pattern for this sample sentence is “<DRUG1> <CHG> 

<CLR_T1> <CLR_T2> <DRUG> <CLR_V1> <CLR_V2> <CLR_V3> <CLR_V4>”. The rules 

to extract clearance information for this type of pattern are listed below, 

 Find clearance type <CLR_T1> <CLR_T2>. 

 Find value change type <CHG>. 

 Each value change involves two clearance values for one clearance type, hence there 

should be four clearance values (<CLR_T1_V1> to <CLR_V4>). 

 The clearance values for <CLR_T1> can be (<CLR_V1> <CLR_V2>) or (<CLR_V1> 

<CLR_V3>). Choose the pair with the smaller difference, and the smaller value in that pair is 

<CLR_T1>. For example, the systemic clearance is 0.44 +/- 0.2 L. h/kg.  

 The other two values are for <CLR_T2>. Similarly, the smaller value of the two is 

chosen for <CLR_T2>. For example, the oral clearance is 1.56 +/- 0.8 L x h/kg. 
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These extraction rules cover regular expressions of clearance data, considering single and 

multiple drug occurrences, different clearance types, and clearance value changes. 

3.2.4 Linear Mixed Model Meta-Analysis for Outlier Detections 

Because the mined PK parameter numerical data may contain some false positive values, an 

evaluation mechanism is needed to remove them as outliers. The population mean and variance 

of PK parameters are also requested to be estimated. We developed a linear mixed model meta-

analysis approach for this purpose. The PK parameter values are assumed to follow the normal 

distribution as illustrated in Eq. (1).  
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The first normal distribution is at the study level, in which 
k  (the sample mean of study k) has 

study-specific mean k , sample standard error 2

kse , where k = 1,…,K, indicates the studies. The 

second normal distribution is at the population level, in which k has the population mean , and  

2  is its between-study variance. The population and study level PK parameters are two 

common statistics concepts in the pharmacokinetics meta-analysis literature [191]. The 

population PK parameter refers to its population-average mean, and a study-specific PK 

parameter refers to its sub-population mean, in which the study was sampled from. In this paper, 

we assume that PK data from one paper is a study, which is denoted by k. 

In Eq. (1), 
k  and 2

kse  are observed data from the literature mining results. The unknown 

parameters , 2  and k  are estimated by the following expectation and maximization algorithm. 

The expectation step estimates k  by Eq. (2). 



55 

 

][]
11

[ˆ
22

1

22 




  

k

k

k

k
sese

     (2) 

The values of population mean   and population variance 2  are estimated in the maximization 

step by Eq. (3). The E-M iterative procedure stops when the estimated values are stable. 
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Based on the meta-analysis, the standard error of the estimated population mean is expressed in 

Eq. (4), 
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3.2.5 Validation and Classification 

Some PK parameters have multiple types, but the abstracts do not always state clearly which 

type a numerical data refers to, e.g. some MDZ abstracts just use a single word “clearance” to 

represent either systemic clearance or oral clearance. In order to classify the unknown clearance 

type, the probability functions are established from known oral and intravenous clearance data 

with prescribed linear mixed model. Denote them as, ],,|[ 22

POPOPO seP   and
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unknownk ,  is classified by Eq. (5).
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(5) 

Then a leave-one-out strategy is implemented to validate the classification results. For each 

classified data set, one single data is taken out and the rest go through the prescribed linear 

mixed model meta-analysis. If this left-out data is 2.5 standard deviations from the population 

mean, it is considered as an outlier. To save the computation time, the data are ranked first, and 

this leave-one-out process is conducted iteratively from both the bottom and the top of the 

ranked data until the left-out data is not considered as outliers. 

3.3 Abstract Mining Results 

3.3.1 Evaluation of Each Mining Step 

3.3.1.1 Entity Recognition 

In this thesis, midazolam (MDZ) is used to test our literature mining strategy. The key-term 

“midazolam” in PubMed search returns over 7,129 article records. After applying the entity 

template, out of the 7,129 PubMed abstracts, 393 abstracts are considered as MDZ PK relevant. 

Among those 393 abstracts, 170 are determined truly relevant after being manually checked by 

author and validated by a PhD pharmacist. Thus, precision is 43%. 
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3.3.1.2 Information Extraction 

From 393 abstracts, the information extraction returns 53 abstracts. 43 out of 53 abstracts contain 

true MDZ clearance data. Hence the precision improves to 81%. As actual MDZ clearance data 

in the 7,129 abstracts is unknown, we did not calculate its recall here but perform a thorough 

performance analysis in a separate section (3.3.2). The same information extraction rules are also 

applied directly to the starting 7,129 PubMed abstracts. It returns 120 abstracts, and a much 

lower precision, 36% (dashed lines in Figure 3.2). This analysis shows the importance and the 

power of the entity template step. 

 

 

Figure 3.2 : Precision Performance Analysis of the Machine Learning Algorithm in all 

MDZ Related Abstracts 

 

 

PubMed search keys “midazolam”: 
7129 abstracts 

Apply entity template: 
393 abstracts Precision = 170/393 = 43% 

Extract clearance:  
53 abstracts 

Evaluation:  
48 abstracts 

Precision = 43/53 = 81% 

Precision = 42/48 = 88% 

Machine Learning  Manual Checking 

170 PK relevant 

43 CL abstracts 

42 CL abstracts 

45 clearance 
(CL) abstracts 

Extract clearance:  
120 abstracts Precision = 43/120 = 36% 43 CL abstracts 
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3.3.1.3 Large Scale Evaluation  

Linear mixed model meta-analysis is implemented to classify the oral and systemic clearances, 

and remove the outlier data and abstracts. After this evaluation step, only 48 final abstracts are 

left, and 42 of them are true (precision 88%). The precision of the mining goes from 43% in 

entity recognition to 81% in clearance data extraction, and reaches 88% after evaluation (see 

figure 3.2). A comprehensive performance analysis on a constructed test data set is provided in a 

separate section (3.3.2). 

3.3.1.4 Midazolam Clearance Parameter Estimation and Outlier Detections  

MDZ PK clearance data from information extraction are shown in the first row of Table 3.2.  

The mined clearance data have three types: oral clearance, systemic clearance and clearance with 

unknown mechanisms. The values are normalized based on an estimated average human body 

weight 80kg, and verified by manually going through the abstracts.  False positive clearance data 

are labeled in red.  

The mined clearance data are then fed to the linear mixed-model meta-analysis to estimate 

the distributions for the systemic/oral clearance and remove the outliers. The calculated 

distributions are displayed in Figure 3.3.  The population mean  se of systemic clearance is 27.8

 1.0 L/Hour, and its between-study standard deviation is 7.31; oral clearance is 78.1  6.0 

L/Hour, and its between-study standard deviation is 32.8. 

Based on the distributions, the unknown type of clearance data were classified into oral 

clearance or systemic clearance, and outliers were removed. After the evaluation process, the 

final mined MDZ clearance data was shown in the second row of Table 3.2. The evaluation 

removes most of the false positive data. The left false positive data are comparable to the true 
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clearance data, and they cannot be identified as outliers. Some true MDZ clearance data, labeled 

blue in the first row of Table 3.2, are considered as outliers by the evaluation. Figure 3.4 shows 

all mined MDZ clearance data before evaluation and outlier removal (a), compared with the 

MDZ clearance data after outlier removal (b). Obviously the meta-analysis can efficiently 

classify the data and remove the outliers. 

 

Table 3.2 : Mined and Validated MDZ Clearance Data.  

The mined clearance data have three types: oral, systemic and unknown type. The false positive data 
was labeled red; the false negative data which was removed in the validation step was labeled blue. 

 
 

Mined 

Clearance 

Data 

(L/Hour) 

Oral Systemic Unknown 

0.72, 4.9, 

8.2, 31.98, 

42.6, 43.2, 

52.32, 

68.64, 
84.78, 

109.2, 

116.8, 

124.8, 137, 

152, 215.9, 

1289 

15.12, 18.6, 

22.98, 28, 

32, 33.06, 

33.6, 35.2, 

36.9, 37.7, 
77.28, 

84.78 

0.81, 1.14, 2.016, 2.11, 2.26, 2.4, 3, 4.6, 5.58, 6.6, 14.94, 

15.9, 16.75, 16.98, 19.02, 19.38, 19.5, 20.16, 21.12, 21.5, 

22.2, 22.56, 23.28, 23.3, 23.4, 23.5, 23.52, 23.664, 23.94, 24, 

24.8, 25.14, 25.2, 25.86, 25.92, 27.024, 27.78, 28, 28.2, 28.8, 

28.96, 29.904, 30.12, 30.64, 32.16, 33.78, 34.08, 36.77, 
36.96, 37.44, 37.92, 38.88, 39.17, 39.22, 40.8, 42.4, 45.12, 

45.6, 46.08, 51.2, 52.8, 53.8, 54.6, 54.72, 58.56, 59.04, 59.2, 

66.24, 78.6, 97.5, 99.36,  132, 144, 146, 166.56, 1281, 2272, 

3328, 5472, 17616 

Clearance 

After 

Evaluation 

(L/Hour) 

Oral Systemic 

42.4, 42.6, 43.2, 45.12, 

45.6, 46.08, 51.2, 52.8, 

53.8, 54.6, 54.72, 58.56, 
59.04, 59.2, 66.24, 68.64, 

78.6, 97.5, 99.36,  109.2, 

116.8, 124.8, 132, 137, 

144, 146, 152,  166.56 

14.94, 15.12, 15.9, 16.75, 16.98, 18.6, 19.02, 19.38, 19.5, 

20.16, 21.12, 21.5, 22.2, 22.56, 22.98, 23.28, 23.3, 23.4, 

23.5,  23.52, 23.664, 23.94, 24, 24.8, 25.14, 25.2, 25.86, 
25.92, 27.024, 27.78, 28, 28, 28.2, 28.8, 28.96, 29.904, 

30.12, 30.64, 32, 32.16, 33.06, 33.6, 33.78, 34.08, 35.2, 

36.77, 36.9, 36.96, 37.44, 37.7, 37.92, 38.88, 39.17, 39.22, 

40.8, 42.4, 45.12, 45.6, 46.08, 51.2 
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Figure 3.3 : Estimated Clearance Distribution 

The BLUE curve shows systemic clearance; the GREEN curve shows oral clearance. The 95% confidence 
interval is marked on each curve using vertical lines. 
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Figure 3.4 : MDZ Clearance Data 

(a) contains all mined MDZ clearance data before evaluation and outlier removal, and (b) contains the 
MDZ clearance data after evaluation outlier removal. The BLUE dots are true clearance data from MDZ 

PK relevant abstracts; the RED and GREEN dots are false MDZ clearance data, in which the red ones 
were removed by EM validation as outliers and green ones were not. 
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3.3.2 Performance Evaluation on Constructed Test Data 

3.3.2.1 Validation Data Generation 

The classical way to evaluate the performance of information retrieval is to check its recall and 

precision. In this case study, the quality of the entity template determines how well the MDZ PK 

relevant abstracts can be retrieved. However since the sample data set (over 7,000 abstracts) 

from PubMed search is too big to be handled manually for the recall and precision analyses, a 

subset of the abstracts are generated to estimate the performance of each literature mining step. 

To build such a subset, one more key-term “pharmacokinetics” is included into the PubMed 

search. This decreases the size of the result abstracts to 819, a reasonable number for the manual 

performance check. The results are shown in Figure 3.5. The manual inspection of the 819 

abstracts returns 164 PK relevant articles for drug MDZ. This figure shows the whole test design. 

The template based IR/IE was compared with SVM based IR/IE, and direct IE (more details are 

given in the following result sections). The template based IR/IE has shown competitive 

performance, precision and recall, in both IR and IE. This method can be applied in both relevant 

abstract collection and PK parameter extraction. However, the success of this method relies 

heavily on the quality of the manually constructed template. OIn the other hand, the SVM 100 IE 

results are also very competitive for an automated TM pipeline, from both a precision and recall 

viewpoint. It provides an effective substitution for PK parameter extraction even in the presence 

of no human expertise, under the assumption that a collection of positive and negative papers 

were given.  
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3.3.2.2 Entity Recognition 

After applying the entity template, 220 out of the 819 abstracts are left in which 150 abstracts are 

truly relevant. The recall of this information retrieval step is 91% and the precision is 68% 

(Table 3.3). To evaluate the power of this entity template, we compare the performance of 

template based abstract classification with an automatic classifier implemented using a support 

vector machine (SVM). Training data were established by dividing the 164 relevant abstracts 

into three groups with about 55 abstracts in each, then adding to each group 55 randomly 

selected irrelevant abstracts. The group which generates higher F-score was recorded as SVM50. 

We applied a two-step process to determine proper features for SVM. First, a chi-square based 

feature selection filter was used to retain all features with the p-value below threshold 0.05. Then, 

the remaining features went through a principle component analysis [32] for dimensionality 

reduction, which was set to keep a cumulative proportion 95% of the original features. The final 

features were fed into SVM for model training and classification. We also tried a second training 

data set (SVM100), which was made up of 100 randomly selected abstracts from the 164 

relevant articles and 100 randomly selected irrelevant abstracts. The SVM
light

 [192] was 

implemented with different kernels, and the best performance was shown in Table 3.3. SVM50 

achieved higher precision. To further evaluate the potential of SVM, a 3-fold cross-validation 

method was applied on the 819 abstracts, which shows an average precision of 0.841 and recall 

of 0.562. So after trainingWhen the SVM model is trained on unbalanced positive (2/3 of 164 

abstracts) and negative (2/3 of 655 abstracts) data sets, its precision can be further improved 

(from 0.692 to a mean of 0.7950.841). Comment [LMR1]: This is not clear on the 

table… where you show three fold results, one of 

which has 100%! The mean value of the 3 folds is 

84.1… So what are you reporting exactly? 
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3.3.2.3 Information Extraction 

For the clearance data, the manual inspection proves 39 out of the 164 relevant abstracts 

containing MDZ clearance numerical values (clearance relevant). Our information extraction 

step recognizes 45 abstracts as clearance relevant, in which 37 are true. Hence, the recall rate for 

clearance data extraction is 95% and the precision is 82%.  The same information extraction 

rules are also applied directly to the starting 819 abstracts (Error! Reference source not found.). 

Without the application of entity template, the precision drops from 82% to 38%, and F-score 

reduces from 88% to 55%.   
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Figure 3.5 : Recall and Precision Performance Analysis of the Machine Learning 

Algorithm in a MDZ Abstracts Subset 

Pubmed search keys  
“midazolam & pharmacokinetics” 

819 abstracts 

Apply entity template:  
220 abstracts  

Recall      = 150/164 = 91% 

Precision = 150/220 = 68% 

Extract clearance:  
45 abstracts 

Evaluation: 41 abstracts 

Recall      = 37/39 = 95% 

Precision = 37/45 = 82% 

Recall      = 36/39 = 92% 

Precision = 36/41 = 88% 

Machine Learning  Manual Checking  

164 relevant; 
39 clearance 

abstracts 

Precision = 164/819 = 20% 

150 relevant 

37 abstracts 

36 abstracts 

Extract clearance:  
103 abstracts 

Recall      = 39/39 = 100% 

Precision = 39/103 = 38% 39 abstracts 

SVM 50:  
159 abstracts  

Recall      = 110/164 = 67% 
Precision = 110/159 = 69% 

Extract clearance:  
29 abstracts 

Recall      = 26/39 = 67% 
Precision = 26/29 = 90% 

110 relevant 

26 abstracts 

SVM 100:  
277 abstracts  

Recall      = 142/164 = 87% 
Precision = 142/277 = 51% 

Extract clearance:  
45 abstracts 

Recall      = 32/39 = 82% 
Precision = 32/45 = 71 % 

142 relevant 

32 abstracts 

Evaluation: 79 abstracts 
Recall      = 37/39 = 95% 
Precision = 37/79 = 47% 37 abstracts 

Evaluation: 26 abstracts 
Recall      =24/39 = 62% 
Precision = 24/26 = 92% 24 abstracts 

Evaluation:  37 abstracts 
Recall      = 30/39 = 77% 
Precision = 30/37 = 81% 30 abstracts 
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Table 3.4 : Clearance Extraction With and Without Entity Template

Table 3.3 : Abstract Classification by Template and SVM on MDZ 

The training data of SVM (50) contains 50 randomly selected relevant abstracts and 50 irrelevant; the training 
data of SVM (100) contains 100 randomly selected relevant and 100 irrelevant. (TP, FP, FN, TN) stand for true 

positive, false positive, true negative, and false negative, respectively. 

MDZ-Relevance 

Method Total Query TP FP FN TN Precision Recall F-Score Accuracy MCC 

PubMed Query NA 819 164 655 NA NA 20.0% NA NA NA NA 

PubMed Query & 
Entity Template 

819 220 150 70 14 585 68.2% 91.5% 78.1% 89.7% 0.73 

SVM (50) 819 159 110 49 54 496 69.2% 67.1% 68.1% 74.0% 0.59 

SVM (100) 819 277 142 135 22 520 51.3% 86.6% 64.4% 80.8% 0.56 

 

Entity Template 228 113 104 9 10 105 92.0% 91.2% 91.6% 91.7% 0.83 

SVM (50) 228 84 68 16 46 98 81.7% 59.3% 68.7% 73.0% 0.47 

Entity Template 128 63 58 5 6 59 92.1% 90.6% 91.3% 91.4% 0.83 

SVM (100) 128 46 40 6 24 58 88.6% 61.9% 72.9% 77.0% 0.55 

 

SVM (3 fold) 

273 59 43 16 11 203 72.9% 79.6% 76.1% 90.1% 0.70 

273 44 35 9 19 210 79.5% 64.8% 71.4% 89.7% 0.66 

273 13 13 0 41 219 100% 24.1% 38.8% 85.0% 0.45 

 

 

Clearance-Relevance 
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3.3.2.4 Evaluation 

The meta-analysis evaluation removed most outliers and false positive values. After this step, the 

clearance data from 41 abstracts are left and 36 of the abstracts are true MDZ clearance relevant. 

The recall rate becomes 92% and the precision is improved to 88%. Similarly, without the entity 

template step, both the F-score and precision drop significantly (Error! Reference source not 

found.), from (90%, 88%) to (70%, 53%). 

3.3.2.5 Comparison of Midazolam Data Mining and Its Validation Analysis  

Figure 3.2 and Figure 3.5 show the PK information comparison between single PubMed search 

key-term (“midazolam”) and two key-terms (“midazolam” and “pharmacokinetics”). Though the 

Method Total Query TP FP FN TN Precision Recall F-Score Accuracy MCC 

PubMed Query +  

CL Extraction 
819 103 39 64 0 716 37.9% 100.0% 54.9% 92.2% 59.0% 

PubMed Query + 

Entity Template + 

CL Extraction 

819 45 37 8 2 772 82.2% 94.9% 88.1% 98.8% 87.7% 

PubMed Query + 

SVM (50) +                   

CL Extraction 

819 29 26 3 13 777 89.7% 66.7% 76.5% 98% 76.4% 

PubMed Query + 
SVM (100) +                   

CL Extraction 

819 45 32 13 7 767 71.1% 82.1% 76.2 97.7% 76.0% 

 

PubMed Query +  

CL Extraction + 

Outlier Evaluation 

819 79 37 42 2 744 46.8% 94.9% 62.7% 94.7% 64.6% 

PubMed Query + 

Entity Template + 

CL Extraction + 

Outlier Evaluation 

819 41 36 5 3 775 87.8% 92.3% 90.0% 99.0% 89.5% 

PubMed Query + 
SVM (50) +                   

CL Extraction + 

Outlier Evaluation 

819 26 24 2 15 778 92.3% 61.5% 73.8% 97.9% 74.4% 

PubMed Query + 

SVM (100) +                   

CL Extraction + 

Outlier Evaluation 

819 37 30 7 9 773 81.1% 76.9% 78.9% 98.0% 78.0% 
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PubMed search returns much more abstracts using a single key-term than using two key-terms 

(7129 vs. 819), only six more relevant abstracts are found in the single term search results (170 

vs. 164). The difference of the number of clearance relevant abstracts is also six (45 vs. 39). 

3.4 Abstract Mining Contributions 

3.4.1 Compare Entity Template with Automatic Abstract Classification 

To evaluate the power of this entity template, we compare its performance with SVM in both 

abstract classification and information extraction (Table 3.3, Error! Reference source not 

found.). The precision/recall is measured on information retrieval, finding relevant articles out of 

the test set of abstracts (Table 3.3). SVM (50) has slightly higher precision than our entity 

template in identifying MDZ relevant abstracts (69.2% vs. 68.2%), but worse recall (67.1% vs. 

91.5%). Hence SVM (50)’s F-score is lower than entity template (68.1% vs. 78.1%).  On the 

other hand, SVM (100) generates reduced precision, 51.3%, and improved recall, 86.6%. Its F-

score becomes even worse, 64.4%. Overall, the entity template out-performs SVM in recall, F-

score, accuracy and MCC score.  Thus we choose entity template over SVM as abstract 

classification method. However, in a scenario the sacrifice of missing PK data is affordable, 

SVM outweighs entity template by obtaining higher precision. To further explore the advantage 

of SVM in aspect of precision, we apply SVM50 and SVM100 on non-contaminated test data 

sets which have no intersection with training data (i.e. using complementary relevant abstracts 

mixed with same number of irrelevant abstracts). It turned out the precision is quite impressive 

(81.7% and 88.6%), but their overall performance still falls behind of entity template.  
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In clearance extraction using abstracts from entity template and SVM classification, the 

performance comparison (Error! Reference source not found.) shows a similar pattern as in IR 

results (Table 3.3) except the less recall of entity template compared with direct extraction. 

Extraction from entity template out-performs SVM in recall, F-score, accuracy and MCC score 

but SVM50 leads in precision. Though entity template based extraction shows a superior overall 

performance compared with direct extraction and SVM based extraction, the choice of a certain 

mining strategy largely depends on the purpose of mining. As SVM shows higher precision, it is 

preferred in the fast retrieval of a small set of relevant articles and PK parameter data. However, 

if the target drug has very sparse data published, this method might not work effectively. 

Similarly, the direct extraction method can retrieve PK data fast and provide a quick reference 

for the range of PK data. However, its lower precision limits its efficiency to provide a proper set 

of articles as reference for the target drug because a certain amount of further work is still needed 

for precise classification, especially when the target drug is well studied hence coming with a 

large number of publications. Thus for our PK parameter collection study, we prefer the method 

of entity template based extraction, which shows second highest precision and second highest 

recall. However, under the circumstances that no human expertise can be consulted to build the 

template, SVM 100 also shows competitive performance from both precision and recall which 

indicates a promising option as an automated TM pipeline. 

3.4.2 Information Content Comparison with DiDB 

To better evaluate our literature mining method, we compare the extracted MDZ clearance data 

with those from DiDB database. DiDB [8] is the most complete PK database so far, which is 

built manually. DiDB MDZ clearance data are downloaded and are compared with the mining 
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MDZ clearance data. Table 3.5 lists detailed comparisons. DiDB provides 11 PK relevant articles 

for MDZ. We read through their abstracts and found only six clearance data records from 

relevant abstracts for healthy subjects. While the PubMed mining returned 170 PK relevant 

articles for MDZ, in which more than 70 clearance data records were extracted from the abstracts. 

Therefore, the literature mining method yields a 70/6=11.6 times fold increase in information 

content, in addition to the benefits of the automatic data extraction.  

Table 3.5 : MDZ Clearance Comparisons among Known Data, DiDB, and Mining Results 

This table shows the number of PK relevant articles (“relevant article #”) available, and number of 
clearance data records (“# of abstract PK”) extracted from abstracts. 

 

 Manual DiDB Mining 
# of 

Abstract   

PK 

# of 

Relevant 

Article 

se  # of 

Abstract   

PK 

# of 

Relevant 

Article 

se  # of 

Abstract   

PK 

# of 

Relevant 

Article 

se  

Oral 

Clearance 

 

25 

 

170 
83.6

8.6 

 

2 

 

11 
58.3 16.8 

(88.4 7.3)† 
 

28 

 

170 
78.1

6.0 

Systemic 
Clearance 

 
50 

32.3
1.8 

 
4 

25.8 3.1  
59 

27.8
1.0 

† After removing an outlier (publication error) 

 

The true population mean and standard error ( se ) are benchmark, which come from 

manually accumulated clearance data from known relevant article abstracts. The population 

mean and its standard error are calculated for DiDB clearance data and the mined clearance data. 

For the oral clearance, the benchmark estimate is 83.6  8.6 (L/Hour), while the DiDB and 

mining estimates are 58.3±16.8 and 78.1±6.0 respectively. Comparing to the benchmark, the 

DiDB estimate is much more biased than our mining approach, 30.3% vs. 6.6%; and DiDB 

estimate’s SE is 2.8 times higher than our mining approach. For the systemic clearance, 

comparing to the bench mark, DiDB estimate’s bias = (32.3-25.8)/32.3×100% = 20.1%, and 
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mining estimate has a bias of 13.9%. DiDB estimate’s SE is 3.1 times higher than the SE of our 

mining estimate. 

One observation on the DiDB oral clearance data is the influence of the publication errors on 

the data analysis. PubMed PID 15470333 reported oral clearance for midazolam as 533 +/- 759 

mL/min by typo in the abstract. The correct value should be 1533 +/- 759 mL/min in the full text. 

In the meta-analysis of our text mining, the influence of such error is eliminated by the outlier 

detection. However, DiDB database suffers from this type of publication error, and we suspect 

that DiDB only reads the abstract sometimes. 

Table 3.5 shows that our literature mining approach collects 11 times more MDZ clearance 

data than the manually curated DiDB database contains. To test the generalization potential of 

our literature mining method, we tried it on 7 other Cytochrome P450 3A Subfamily drugs and 

extracted their clearance data from PubMed abstracts as for Midazolam. The same drugs were 

also searched in DiDB database (Sept, 2008), and clearance data was also analyzed. The 

comparison is shown in Table 3.6. Among 5 out of 7 drugs, comparing to DiDB, literature 

mining generated 1.83 to 4.0 fold more information contents in CL, and precision increased three 

folds and higher. Among those two drugs that DiDB out-performed literature mining, our 

approach only missed two abstracts in total. 

The impressive performance shows the great potential of text mining as a drug PK data 

curation tool. The high precision and recall score of our mining method even indicates the 

feasibility of TM based PK database construction. Furthermore, to make such a PK database 

more reliable, certain manual validation will be a very helpful supplement which makes existing 

relevant data repositories, e.g. DiDB, valuable reference.  
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Table 3.6 : CL Data Extraction on More Drugs: DiDB vs. Literature Mining 

Information Content Comparison 

Drug Name 

DiDB Mining Comparisons 

N  n 
 

p N n  p Coverage n-FC p-FC 

triazolam 37 6 16% 11 11 100% 100% 1.83 6.25 

alprazolam 44 8 18% 22 18 82% 100% 2.25 4.55 

nifedipine 41 5 12% 22 11 50% 100% 2.2 4.12 

nitrendipine 2 0 0% 5 3 60% N/A inf inf 

diazepam 3 3 100% 4 3 75% 100% 0 -0.25 

amlodipine 4 1 25% 5 4 80% 100% 4.0 3.2 

nitrendipine 2 2 100% 5 3 60% 100% 1.5 -0.40 

 
N: total number of reported abstracts in DiDB; and number of extracted abstracts from text mining. 
n: clearance relevant abstracts. 
p: precision = n/N. 
coverage: the percentage of DiDB clearance relevant abstract covered by text mining approach. 
n-FC: fold-change from DiDB to mining in clearance relevant abstracts, n. 
p-FC: fold-change from DiDB to mining in precision, p. 
 

3.5 Abstract Mining Conclusions 

In this chapter, an approach to mine MDZ PK data was presented with an 88% precision rate 

and 92% recall rate. A conventional data mining approach, SVM, is compared to this entity 

template approach. Though SVM shows higher precision, we prefer the higher recall and overall 

performance of our manually designed entity template for this type of data collection. This 

mining approach recollects 11 times more MDZ clearance data than a manual accumulated 

DiDB database has. Interestingly, it also identifies a publication error of midazolam clearance 

data in the DiDB database. In addition, we also established the first validation set for more 

general data mining methodology development for PK data. 

http://www.medicine.iupui.edu/flockhart/3A457.htm#61triazolam
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We further investigated this abstract mining approach in 7 more CYP3A substrate drugs. 

Among five out of seven drugs, comparing to DiDB, abstract mining generates 1.83 to 4.0 folds 

more information contents in CL, and precision increases from 3.2 to infinite folds higher. 

Among those two drugs that DiDB out-performs mining, our approach only misses totally two 

abstracts. Therefore, from the information content point of view, our data mining approach 

outperforms manual PK data curation. In the meantime, since we implemented statistical model 

based evaluation strategies for the mining data, our integrated approach can identify outliers for 

quality control (QC). As a side production of QC, we provide not only population PK parameter 

estimates of PK parameters, but also their variations estimates.  
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Chapter 4.                                              

TEXT MINING OF FULL TEXT 

DOCUMENTS 

The abstract mining provides a good starting point for the next step: mining drug PK data from 

full-text documents which usually contain much more PK numerical data (Error! Reference 

source not found.) as well as annotation information. We use articles, in addition to abstracts 

with no full-text available in PubMed, as the data set for drug PK data extraction. Drug 

Midazolam is still used as the test drug in this stage. 

4.1 Revised Information Retrieval 

One major modification in the IR step for full text mining is the criteria for determining 

relevance. In Chapter 3, for mining abstracts, we included abstracts about drug-drug interaction 

(DDI) studies as long as PK data was presented in the abstracts. However, PK data extraction 

from DDI studies usually needs to deal with complicated entity relationship recognition, and to 

avoid bias in the extracted PK data which comes from mismatch of PK parameters to subject 

drugs or the actual PK parameter values affected by interacting drugs. Therefore, we split DDI 

cases from this mining study.  In this section, we will just focus on non-DDI studies extracted 

from full-text articles.  
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The abstract IR strategy starts with a manually constructed entity template, which aims at 

high recall so no sparse PK data can be missed. Furthermore, we also need to remove as much 

noise as possible from false positive articles for the following full-text mining steps, as false 

positive articles will not only increase the complexity of article collection but also include 

unnecessary irrelevant data into the mining step. In our abstract mining study, we have compared 

the performance of entity template with SVM in abstract relevance classification for drug MDZ 

(Table 3.3). In the full-text mining, we combined the specificity of template-based filtering with 

the generality of a machine learning method as a two-step IR system, which can be more 

portable for new mining criteria.  

4.1.1 Text Pre-processing 

After evaluating text processing tools which can be applied in the biomedical field, such as 

Porter stemming, Perl module Lingua::EN::Sentence, Stanford NLP, UMLS MetaMap [193], 

NLM Lexical Variant Generation tool Norm [194], and RxNormNorm [195], we realized there 

are no existing tools that can process text efficiently as well as recognize PK related entities 

correctly. Thus we decided to apply the widely used Stanford NLP tool (http://nlp.stanford.edu/) 

together with our PK ontology for this purpose. The advantage of Stanford NLP is its 

comprehensive functions in text processing, which include tokenization, sentence split, part-of-

speech tagging, lemma recognition, name entity recognition, parsing etc. We also compared the 

template based IR for Porter stemming and the lemma annotation of Stanford NLP in SVM 

modeling, and it turns out the performance is comparable but lemma based template and filtering 

rules are easier for reading and understanding.  

http://nlp.stanford.edu/
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One concern in the text pre-processing step is the existence of special characters in text such 

as “&” and “*”. Usually such characters can be removed without affecting the mining results, 

however, the extraction of numerical data requires us to keep symbols which indicate the 

relationship between numbers such as “+/-“, “+-“, “/”. Special characters in text are processed as 

following: 

 rewrite <, >, <=, >=, +/- to Slst Slgt Slse Slge Spsm (for easier test manipulation) 

 replace “-“ ,“+”, and “/” with a blank space (e.g. “midazolam-ketoconazole”) unless it is 

followed by number (e.g. “mg min-1”, “ml.min-1 . kg-1 “) 

 remove all other punctuations as they can be special symbols in regular expressions 

Another concern is the entity abbreviation recognition. As most PK parameters use standard 

symbols (e.g. “clearance” to “CL”), this abbreviation recognition process is only applied on drug 

names, for example “Midazolam” is mentioned as “MDZ”, “Mid” and even “M” in the literature. 

This abbreviation recognition is quite specific, and the drug abbreviation format usually follows 

such a pattern: 1) its first appearance falls in a parenthesized expression right after the target drug 

name; 2) the abbreviation is made up of letters from the full drug name. So instead of using 

abbreviation analysis algorithm/tools mentioned previously (section 1.2.2), we developed a 

simple and fast drug name abbreviation detection tool by matching the above two abbreviation 

forms, which has been able to recognize all drug midazolam’s abbreviations correctly.     

4.1.2 Hybrid Information Retrieval Method 

We search PubMed using a target drug name, i.e. Midazolam, as the only query term. Then we 

apply a template library as a first filtering of the PubMed search results. Compared with the 

template library used in abstract mining, this template library is much less stringent and includes 
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simply the key PK terms (i.e. the target drug name and PK parameters) included in abstract 

template library to guarantee article coverage (high recall). Precision improvements are handled 

by further filtering steps. As titles usually contain critical information about the theme and scope 

of publications, the filtered abstracts were subsequently screened using the following rules 

applied to titles: 

1) remove abstracts with "author's transl" in title (no full text in English) 

2) remove abstracts with animal mentioned in title (even with human mentioned, it is assumed 

to be about animal studies) 

3) remove DDI studies if the title indicate clearly DDI relevance (see DDI rules in next 

paragraph; “control/comparison/correlation” are not used as DDI indicating terms), and 

target drug name is also mentioned in the title.  

4) if the title indicates in-vitro ("human hepatocytes"...), patient (cancer, tumor...), 

preterm/infants/children/neonates, or pregnancy studies, check if relevant terms, e.g. ill 

patients vs. healthy subjects, are also mentioned; if not, remove it. 

5) Keep the abstract only if target drug (e.g. midazolam/mdz) is mentioned in the title, with PK 

mentioned but without DDI.  

After applying rules above on abstract titles, all the rest abstracts are kept for sentence based 

analysis, including modeling and prediction studies (with key terms in title: model, hypothesis, 

prediction, predict, Bayesian, NONMEM, SimCyp...), and Pharmacodynamics studies (e.g. 

Electroencephalographic…). In this section, we will just work on non-DDI articles. Therefore, 

we need to summarize DDI patterns and design rules to detect DDI types of abstracts. Such 

patterns and rules were also used when working on abstract sentences.  

1) DDI patterns 
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a) effect of [drug/food] on [pk] of [mdz] (effect can also be “influence”) 

b) effect of [drug/food] on [mdz] ([pk]) 

c) [drug/food] effect on [mdz] 

d) Effect of [mdz] on (no other [drug/food] before [mdz]) 

e) Interaction between/of [drug/food] and [mdz] (vice-versa) 

f) ([pk]) interaction of [mdz] with [drug/food] (vice-versa) 

g) Drug interaction(s) 

h) [drug/food] | [mdz] | [induction/inhibition] (recognize induce, inhibit, inhibitory etc) 

i) [drug/food] impair/affect/influence/impact/reduce/increase [pk] of [mdz] (or [mdz] [pk]) 

j) Note: [pk] can be any PK parameters, such as clearance, elimination, bioavailability, 

concentration etc;  

2) Remove “[drug/food] [interaction|prediction|effect]” type of titles, ONLY if [mdz] does not 

appear in title 

3) Relevant standards ([mdz] only with [pk] mentioned, after going through rules above) 

a) [pk] of [mdz]  (kinetics, pk, elimination, absorption, half-life …) 

b) [mdz] [pk]   

 

Though titles contain key information about an article, the filtering process can be biased by 

focusing on key terms and rules only. This is why we made the filtering standards very specific, 

removing highly irrelevant abstracts while keeping all possibly relevant abstracts for the 

following sentence based retrieval classification. Similarly as title filtering, the abstract sentences 

were also filtered by a set of rules:  
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1) Relevant abstracts must contain at least one PK relevant sentence, containing both target drug 

name and PK parameters; trace back to previous sentences for a drug name if only PK 

parameters are mentioned in a sentence.  

2) Check the PK relevant sentences to make sure it is not about DDI. In addition to the DDI 

rules applied for titles, also consider: 

a) DDI specific key terms: inhibit, induct, ki, K(i), IC(50)…  

b) Words about PK change such as changes/measurements 

changes/increase/decrease/reduce/enhance/alter/affect/studied/assess/different/difference/

observe/determine/estimate/measure are allowed for relevant sentences if DDI terms, e.g. 

induction/inhibition, are not mentioned.  

 

The rule-based sentence filtering is very similar to the one used for title flittering, the same 

strategy is applied at different levels. The rule design principle is also the same, keeping high 

recall at first while improving precision gradually. We need to make sure the articles removed 

are highly irrelevant, so the filtering rules cannot be very stringent. For this reason, a big portion 

of remaining abstracts are false positive (irrelevant). Thus we will do a final filtering using a 

machine learning method to further classify these abstracts. One contribution of this final 

filtering is to uncover features missed which can be used for classification. The way to classify a 

relevant abstract is similar as the rule based sentence filtering, an abstract is considered relevant 

only if it contains relevant sentences and no DDI sentences. The difference in the last filtering 

which is that the relevant sentences are detected by Conditional Random Field (CRF) [123] 

modeling instead of applying rules.   
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CRF modeling was used as the machine learning algorithm for the last sentence filtering step. 

Compared with SVM, CRF can adopt variant features which can contribute to classification, and 

easily define multiple role of features and utilize feature relationship for classification. The 

features chosen for CRF modeling include: 

 Lemma of words 

 POS tag 

 NER tag 

 Above features of three adjacent words upstream and downstream  

Eventually, a classification model is trained on top of these features, which is label input 

sentences as PK relevant (PPKP) or irrelevant (NPKP). If any input sentence from an abstract is 

labeled as PPKP, the abstract is considered relevant. 

4.1.3 Results and Discussions 

We used Midazolam as test drug and also query term for PubMed search, which returned 9293 

abstracts. The first step, template based filtering, was able to trim down the data set to 645 

potentially relevant abstracts. By a manual check, these 645 abstracts contain 104 relevant ones 

and 541 irrelevant. Then we tested the hybrid IR method using these 645 abstracts. The 

performance is summarized in Error! Reference source not found.. By applying rule filtering 

alone, we were able to further screen out irrelevant articles and keep 218 potentially relevant one 

(103 true positive), which shows a precision 0.47 and recall 0.99. The following machine 

learning IR was tested on both CRF and SVM. The CRF model was trained on manually selected 

relevant and irrelevant sentences, 50 each. SVM was trained on 1/3 of known relevant abstracts 

with same number of randomly selected irrelevant abstracts from the 645 test abstracts. 
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Eventually, CRF was able to achieve a precision 0.59 and recall 0.99, while SVM shows a 

precision 0.57 and recall 0.77. So the hybrid IR of rule and CRF can gradually increase the 

precision with keeping a high recall, meeting our goal of keeping all relevant abstracts while 

removing as many irrelevant as possible.  

To show the power of the hybrid IR method, we compared it with IR using CRF or SVM alone. 

It turned out CRF alone can still keep high recall (0.98) but its precision dropped to 0.24, and 

SVM also keeps its recall (0.77) but its precision lowered to 0.31. We also combined all these 

three methods and checked its performance; however, it did not show any improvement partly 

because of the recall drop. As SVM has shown an advantage of achieving high precision in 

previous abstract mining study, we further tested SVM using 3-fold validation method. After 

being trained on unbalanced positive/negative data sets, it shows a mean precision 0.57 (s.d. 0.20) 

and recall 0.19 (s.d. 0.06). One fold can even reach a very high precision (0.75) but overall recall 

values are still quite low. The precision performance SVM shows here is quite similar as in 

previous abstract mining, however, there is wide variation among each fold. This situation was 

caused by the high similarity of TP and FP articles and the small size of test data, i.e. any small 

misclassification can change the performance a lot. For example, in one fold with precision 

=0.75, there is a TP=6 and FP=2, thus even the number just changes 1, the precision changes 

10%. So if several FP turns out to be very similar as TP and happen to fall into test data, they can 

cause big performance drop.  

Table 4.1 : Information Retrieval Performance 

Method Query  TP FP TN FN Precision Recall F-score Accuracy MCC 

Manual 645 104  541       

 
 
Hybrid 

Rule 645 103 115 426 1 0.47 0.99 0.64 0.82 0.60 

Rule+CRF 645 103 71 470 1 0.59 0.99 0.74 0.89 0.71 

Rule+SVM 645 80 61 480 24 0.57 0.77 0.65 0.87 0.58 

Rule+CRF 645 88 61 480 16 0.59 0.85 0.70 0.88 0.64 
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+SVM 

CRF 645 102 332 209 2 0.24 0.98 0.38 0.48 0.29 

SVM 645 80 182 359 24 0.31 0.77 0.44 0.68 0.32 

4.2 Article Collection 

After checking the existing article repositories (e.g. PubMed Central, Google Scholar, OVID etc) 

and consulting with publication management professionals, we reached a conclusion that the 

most effective article collection method for our study would be to download a small set of 

articles for one drug at a time, from an open resource such as PubMed. This situation is mostly 

determined by the limitation of publication copyright and the lack of a centralized and 

comprehensive article repository. Therefore, our strategy is to use PubMed searches, then crawl 

full-text links on the PubMed search result page, and to retrieve articles from a journal that has 

full-text article available. We have developed downloading modules for most popular 

pharmaceutical/biomedical journals linked to PubMed.     

The demo website of our PubMed based PDF article downloading tool is available at 

http://rweb.biostat.iupui.edu/zhipwang/pubmed_pdf/. Using the drug Midazolam as a test, the 

manual full-text downloading of the 104 relevant articles, collected 59 PDF files, a full-text 

availability rate of about 60% (59/104) for drug MDZ through PubMed search results. Our 

crawler was able to download all of the 59 articles in PDF format. To achieve similarly high 

retrieval rate for other drugs, we have included crawling modules for most drug study related 

journals. Furthermore, this tool also has very good scalability, easily including missed articles 

from a new journal by adding corresponding downloading modules for this journal.  

http://rweb.biostat.iupui.edu/zhipwang/pubmed_pdf/


83 

 

4.3 Tabular Data Extraction 

4.3.1.1 Pharmacokinetics Data Extraction from PDF Tables 

After the PDF articles were downloaded, a PDF processing tool, pdftohtml 

(http://pdftohtml.sourceforge.net/), was used to convert PDF files to XML format, which 

provides the physical position of each element/text of the PDF file. In turn, this position 

information was utilized to recognize a table segment. In addition to table index, most tables 

show significant position difference from the rest free text. We use this difference to recognize 

table segments from XML.   

One unique feature of PK relevant tables is that the frequency of numerical data in a row (i.e. 

numerical data ratio) is over 50%. After table segments are separated, our table data extraction 

algorithm analyzes the table element position, column/row distance distribution, and numerical 

data frequency to recognize and reconstruct the original PDF table into free text format. 

Meanwhile, each numerical datum in a table cell is mapped to its corresponding row/column 

label if it is PK related. The whole procedure is summarized in Figure 4.1.  

http://pdftohtml.sourceforge.net/
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Figure 4.1 : Table Data Extraction Procedure 

To test the performance of this method, we used midazolam (MDZ) as the test drug and 

compared its PK parameter data from tabular data mining with manually extracted data from the 

same set of articles. Among the 59 downloaded PDF files, 34 articles contain tables of PK 

parameters. There are 111 tables total in these articles, out of which 42 tables are PK relevant for 

drug MDZ (true positive). Our method was able to recognize and reconstruct 40 relevant tables 

correctly with just one false positive table included. So the table retrieval recall is 0.95 and 

precision is 0.98. 

To illustrate how the table was processed in our method, we used a table from PMID 

10073325 [196] as an example. This table was recognized and reconstructed correctly by table 

PDF to text by pdftohtml 

Recognize table section by combination of key table information, i.e. 

table index, text positions, numerical data ratio in text.  

Retrieve table text 

Separate table titles, headers, and rows by text vertical position and 
numerical data ratio. Separate table columns by text horizontal 

position, column distance/mid-point analysis.   

Re-construct table  

Extract PK parameter data by matching the column and row 
information of numerical data to table headers and row identifiers. 
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data extraction component, as show in Error! Reference source not found. below. In the table 

re-construction process, table headers, columns and rows are identified separately. Thus each 

numerical data can be mapped to its corresponding PK parameter by column and row position, for 

example, “0.64^a (0.12)” is correctly mapped to “Premenopausal CL”. 

 

Figure 4.2 : Table Reconstruction Example 

PK data extraction performance was tested using six types of PK parameters (AUC, V, T1/2, 

Cmax, CL, Tmax) as shown in Table 4.2. The actual PK parameter data of each parameter was 

manually extracted from all 42 PK-relevant tables. Then we can calculate the performance of the 

tabular data extraction for each PK parameter. Most parameters show a high precision and recall, 

varying from 0.82 to 0.99 with an average precision 0.94 and recall 0.88. The F-scores are 
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between 0.85 and 0.95, with an average value 0.91. Overall, this method of PK data extraction 

from tables has shown a strong performance.  

Table 4.2 : PK Parameter Extraction from Tables for MDZ 

PK 
manual 

extraction 

auto extraction 

recall precision 

 
F-score TP FP TN TN 

AUC 107 98 5 - 9 0.91 0.95 0.93 

V 45 44 3 - 1 0.97 0.93 0.95 

T1/2 77 64 8 - 13 0.83 0.88 0.85 

Cmax 70 58 2 - 12 0.82 0.96 0.88 

CL 127 114 1 - 13 0.89 0.99 0.94 

Tmax 52 45 5 - 7 0.86 0.9 0.88 

 

4.3.1.2 Information Content Comparison with Abstract 

In the previous section, we tested the ability of our table processing component to recognize and 

re-construct table segment from transformed PDF files. Furthermore, drug PK database can be 

extracted precisely upon proper table reconstruction. This method of PK data extraction from 

tables has shown a very promising performance. To evaluate the contribution of extracted tabular 

information, we compared PK clearance data obtained from tables with that from the previous 

abstract mining study (Table 3.5). Even though CL data was only extracted from 59 PDF files, 

we are able to get a higher number (127) of CL data compared with the 87 (28+59) CL data from 

abstract mining. The increased number of CL data has shown the necessity of tabular data 

extraction from articles. The necessity of full text mining can be better illustrated by analyzing 

the PK data distribution in different parts of an article, i.e. abstract, tables and text, as shown in 

next section.  
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4.4 Pharmacokinetics Information Extraction from Full 

Text 

4.4.1 Pharmacokinetics Data Distribution 

To evaluate the PK information distribution of full text in the view of PK mining, we manually 

checked the information content within full text to see if information increase is possible from 

full text mining. We did this evaluation on the downloaded 59 PDF articles for drug MDZ using 

same PK parameter categories as in Table 4.2.  The PK data distribution is summarized in Error! 

Reference source not found.. 

Table 4.3 : PK Parameter Distribution Statistics 

PK 

  
# of data in 
abstracts 

 
# of data 
in tables 

  
# of data in 

text  

# of 
articles  

with table 
# of articles 

w/o table 

AUC 4 107 5 0 3 

V 5 45 3 1 1 

T1/2 7 77 4 1 2 

Cmax 6 70 2 0 2 

CL 33 127 10 2 4 

Tmax 3 52 0 0 0 

 

The number of PK data in abstracts turned out to be around 4-25 times less than that from 

tables, which illustrates the importance of PK data extraction from tables. Beside abstracts and 

tables, the text of an article also contains PK data. There are only 24 pieces of additional PK 

parameter data from text of the 59 PDF articles. These PK parameters are from only 10 articles, 

four with tabular PK data and six without. Error! Reference source not found. listes the 
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distribution details of these PK parameters among the 10 articles. By comparing the number of 

PK data from abstracts and tables with that from text, the information gain of extending the 

mining scope from abstract and tabular data to text seems very limited. Furthermore, after 

considering the amount of false positive data potentially recruited by full text based mining, the 

value of this mining scope escalation becomes truly arguable.  

As summary, in articles with tabular PK data, when PK parameters are presented in full text, 

it is mostly in study result section which refers to PK data in tables. For articles without tabular 

PK data, we noticed the following phenomena: 1) PK parameters are well summarized and 

presented in abstracts, which means abstract based information extraction can collection most 

PK data for such articles; 2) some articles use one specific PK parameter to study the influence 

of different factors (e.g. genotype) to the subject drug. Such PK data can be illustrated in figures 

which cannot be extracted automatically yet; 3) some articles are studies for PK parameters out 

of the six PK categories chosen for information evaluation; 4) some articles are in image PDF 

format or secured, which keeps content of the files from being processed as free text; 5) Finally, 

articles that have novel PK parameters in text (other than abstracts and tables) are rare and the 

PK information content increase by including such articles is quite limited.  

4.4.2 Pharmacokinetics Clearance Data extraction 

Though abstracts and text of an article contain much less PK data than tables, the PK data 

extraction from all these three parts of an article is still evitable because PK data is very sparse 

for some drugs so any missing PK data is not affordable. For PK data extraction, we have 

worked on PubMed abstracts and PDF tables but not article text. However, article text is very 

similar to abstracts in aspects of entities and expressions of PK data in sentences. Also, we did 
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not notice big difference when processing free text converted from PDF articles compared with 

PubMed abstracts handling during the information content evaluation step above. Thus the same 

IE method applied in PubMed abstract mining can be ported to article text. 

To test the performance of PK extraction from articles, we still worked on the PK clearance 

data of drug MDZ. The clearance data was automatically extracted from the abstracts, PDF 

tables and PDF text of the known 104 PK relevant PubMed articles. The full text clearance 

extraction result was compared with the manually extracted data and mining data from abstract 

mining (Table 4.4). The number of clearance data from full text extraction is much higher than 

abstract extraction even on less number of articles, and the mean values are closer to the 

manually curated data.  

Table 4.4 : Summary of PK Clearance Data Extraction 

 Manual Abstract Extraction Abstract Extraction Full Text Extraction 

# of  
PK 

# of 
Abs 

 

se  

# of  
PK 

# of 
Abs 

 

se  

# of  
PK 

# of 
articles 

 

se  

Oral 
Clearance 

 
25 

 
 

170 

 

83.6  8.6 

 
28 

 
 

170 

 

78.1  6.0 

 
83 

 
 

104 

 

87.0 4.3 

Systemic 
Clearance 

 
50 

 

32.3  1.8 

 
59 

 

27.8  1.0 

 
80 

 

33.0 3.4 

4.5 Full Text Mining Conclusion 

In this part, we presented our solutions to four main challenges in full text mining for PK 

parameter data, i.e. retrieve abstracts with high relevancy, full article downloading, tabular data 

extraction and PK data extraction from full text. We were able to achieve promising performance 

in each test which indicates the potential of our method in PK parameter mining from literature.   
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Chapter 5.                                   

CONCLUSIONS AND FUTURE WORK 

5.1 PK Data Repository 

One of the main purposes of this dissertation is to provide parameter data support for drug PK 

modeling. However, the mined numerical PK parameter data is mostly from clinical trials, which 

cannot be applied directly in drug modeling. Thus we proposed a meta-analysis approach [169] 

to transform PK parameters from TM to be modeling compatible, which makes TM really 

meaningful for drug studies. It was performed with a multivariate nonlinear mixed model.  

By combining all the steps above, we developed a literature mining framework for PK 

parameter data extraction as shown in Figure 5.1. It is a pipeline made up of four automatic 

components: (1) information retrieval, which applies both ontology based name entity 

recognition (NER) and machine learning methods to classify PubMed search results; (2) article 

retrieval, which downloads full PDF articles through PubMed external links; (3) information 

extraction, which extracts PK data from both tables and free text of articles; and (4) PK data 

repository, which provides storage and query of the mined and transformed PK data.  
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Figure 5.1 : PK Text Mining Framework 

5.2 Contributions 

This thesis focused on applied computer science methods, mainly in the field of text mining and 

machine learning, for drug pharmacokinetics data collection. We compared the performance of a 

machine learning,  based fully automated TM pipeline with a manually-created template based 

TM pipelineone. The template- based TM shows a superior performance on most aspects. 

However, this method highly depends on human expertise to manually construct the template 

which fits specifically for a certain mining task---in this case, developed for the Midazolamn 

drug. Meanwhile, the SVM basedML mining strategy also shows a competitive performance, 

especially on precision, given the assumption that a positive and negative training data set is 

Comment [LMR2]: Again, add something about 

how a fully automated pipeline compares with the 

pipeline you prefer which includes a manually-

created template. What do you think the work shows 

about this comparison? What is the “value” of the 

expert data vs. a fully automated method? 
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available. The machine learning method can thus be used to extract a set of target data really fast 

which is especially valuable when a quick reference of the data range is needed. We explored the 

feasibility of TM on the extraction of drug PK parameter data from scientific abstracts and then 

articles. In abstract TM, our entity template based IR (F=0.78) and IE (F=0.90) method shows a 

superior overall performance when compared with the SVM based IR (F=0.68) and IE (F=0.79) 

method. In spite of overall performance, one method can be preferred over another depending on 

specific needs. In full-text TM, we compared the difference of PK data distribution in abstracts 

and articles. Then we proposed an effective solution for PK data extraction from tables of PDF 

articles.    

The contributions of our work also include a pipeline of numerical data extraction from both 

abstracts and full-text articles:  

 PK ontology for entity template construction 

 Comparison/Combination of NLP and machine learning algorithms for PK 

information retrieval 

 Full-text literature collection from open resources and publications 

 Tabular data extraction 

 Full text based PK information extraction 

We have demonstrated the efficiency of our method to collect PK data from the literature 

using test drug midazolam. Through a comparison with information from a manually constructed 

PK database, DiDB, our method has achieved higher precision and richer information content.  

Though One limitation of this method is the comprehensive TM performance evaluation 

using more drugs, partly because of the lack of more gold standard data. Thus most tests in this 

dissertation were based on single test drug midazolam. Though, we should expect similar 
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performance when applying our TM method on other drugs because most drug studies follow a 

similar way to present PK data, which makes the template and rules developed for drug 

midazolam potentially portable for other drugs,. Wwe still need more annotated literature data 

accumulation withfor more drugs to test this hypothesis, which is very time consuming 

considering the size of PubMed publications for individual drugs. Also, Another hypothesis we 

need to test is that the template was constructed on top of our PK ontology and corpus, which 

can summarizes most key elements in drug studies. In abstract TM, addition test drugs were 

actually used in PK clearance data mining, which showed various information increases 

comparing with DiDB.  

One Another limit of our method is the coverage of additional PK parameters. We have 

focused on PK clearance data in abstract TM, as well as testing of four additional PK parameters 

(AUC, t1/2, Cmax, Tmax) in full-text TM. However, to achieve optimal data extraction 

performance for a specific PK parameter, the extraction rules may need to be adjusted 

accordingly. This requires some manual work. Also, for some drugs that are not very well 

studied, the published data can be very limited. Thus the missed articles from IR step and missed 

PK data from IE step, even though in a very small number, are unaffordable. For such drugs, a 

direct extraction (Table 3.4) by skipping entity template and SVM should be more effective. 

5.3 Future Work 

In the full-text TM study, we have presented the results for test drug midazolam. To better 

demonstrate the power of our TM method, we will include more drugs to test its performance of 

IR, article retrieval, table processing, and IE.   

Comment [LMR3]: If it is so easy, why don’t you 

show more results with other drugs? This statement is 

testable, so you need to say why you did not test it on 

the dissertation. 
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To our knowledge, this is the first study to develop a literature mining based framework to 

extract numerical data from full text articles, which processes both plain text and tabular data. 

With the assistance of our mining pipeline, we should be able to construct a drug PK database 

effectively. We have built a website for our mined PK data and present it together with our 

existing drug information platform http://rweb.biostat.iupui.edu/DrugInteraction/. The PK data 

on this website is still quite sparse, we will apply our TM method to extract PK data for all the 

drugbank [9] drugs and promote it as a valuable tool for drug modeling studies.  As shown in the 

TM pipeline, we have tested all major parts and challenges in the pipeline. However, for 

additional drugs and PK parameters, we may need to improve the template and extraction rules 

accordingly. Also, we are recruiting morewith help from additional curators, we plan to validate 

results from each step of the TM pipeline, including IR, article retrieval, and data extraction. The 

validated data can be referred to design a new fully-automated machine learning method and 

improve our current template based method. On top of the PK parameter data extraction, we also 

need to collect key elements of a drug study, e.g. clinical trial design, using TM. Such 

information is very important to better justify the mined PK data. 

In the full text documentation based TM section, we adjusted our IR standards to eliminate 

DDI type of abstracts because the PK parameter data extracted from DDI studies are usually 

biased by interactions. However, the PK parameter data from DDI studies are also very useful 

for drug modeling, for example, in drug DDI prediction and validation. We have developed and 

applied a set of DDI rules in full text IR step. Such rules can be referred by DDI TM but still 

have rooms to improve. On the other hand, most DDI studies contain unbiased PK parameters in 

control sets. Such PK parameters are qualified data for our PK collection and should also be 

included in our PK database. Furthermore, the data classification and extraction of DDI studies 

http://rweb.biostat.iupui.edu/DrugInteraction/
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also depend on the training data accumulation and TM method improvements similarly as what 

we did in the PK data TM research. Thus the TM study presented in this dissertation sets a good 

base for our future DDI TM research.  
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Appendix I 

$PROB transformation from non-comp to two-comp  

$INPUT ID CF Dsn DV TIME DOSE MDV 

; the code is also available at 

; http://rweb.biostat.iupui.edu/nc2tc.ctl 

; data file is available at 

; http://rweb.biostat.iupui.edu/metanonmem.txt 

; TIME data item is used to index non-compartment parameters  

$ABBREV DERIV2=NO 

$DATA metanonmem.txt IGNORE=C 

$PRED 

; two compartment parameters 

TVV1=EXP(THETA(1))  

V1=TVV1*EXP(ETA(1))  

TVka=EXP(THETA(2))  

ka=TVka*EXP(ETA(2))  

TVke=EXP(THETA(3))  

ke=TVke*EXP(ETA(3))  

TVk12=EXP(THETA(4))  

k12=TVk12 

TVk21=EXP(THETA(5))  

k21=TVk21 

 

; Please refer to equation 5-8 in the paper for the transformation 

; lambda1 and lambda2 

ins = (ke+k21+k12)*(ke+k21+k12) - 4*ke*k21 

lam1 = .5*(ke+k21+k12+SQRT(ins)) 

lam2 = .5*(ke+k21+k12-SQRT(ins)) 

 

; Cmax for PO 

ka1 = ka-lam1 

ka2 = ka-lam2 

lam12 = lam1-lam2 

Tmax = LOG(ka/lam1)/(ka-lam1) 

coef = DOSE*CF*ka/V1 

term1 = (k21-lam1)*EXP(-lam1*Tmax)/(ka1*(-lam12)) 

term2 = (k21-lam2)*EXP(-lam2*Tmax)/(ka2*lam12) 

term3 = (ka-k21)*EXP(-ka*Tmax)/(ka1*ka2) 

PRED0 = coef*(term1+term2-term3) 

 

; Cmax for IV 

PRED1 = DOSE/V1 

 

; AUC 

PRED2 = DOSE*CF/(V1*ke) 

 

; Tmax 

PRED3 = LOG(ka/lam1)/(ka-lam1) 
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; Tf (T_1/2, fast) 

PRED4 = LOG(2)/lam1 

 

; Ts (T_1/2, slow) 

PRED5 = LOG(2)/lam2 

; CL 

PRED6 = V1*ke 

; Vd 

PRED7 = ke*V1/lam2 

 

; T1=0, cmax for PO; 5, cmax for IV; 1, auc; 2, tmax; 3, tf; 4, ts; 6, cl; 7, 

vd 

T1=TIME 

IF (T1.EQ.0) IPRE = PRED0; Cmax for PO 

IF (T1.EQ.5) IPRE = PRED1; Cmax for IV 

IF (T1.EQ.1) IPRE = PRED2; AUC 

IF (T1.EQ.2) IPRE = PRED3; Tmax 

IF (T1.EQ.3) IPRE = PRED4; Tf 

IF (T1.EQ.4) IPRE = PRED5; Ts 

IF (T1.EQ.6) IPRE = PRED6; CL 

IF (T1.EQ.7) IPRE = PRED7; Vd 

 

Y=IPRE*EXP(EPS(1)) 

IF (ins.LT.0)  Y = 0 

IF (IPRE.LE.0) Y = 0 

 

$THETA  

(0,3.38,10) ;V1 

(-10,0.494,5) ;ka 

(-10,-0.323,5) ;ke 

(-10,-1.3,5) ;k12 

(-10,-1.4,5) ;k21 

$OMEGA  

.0367 

.374 

.025 

$SIGMA  

0.0486 

 

; FOCE  

$EST METHOD=1 NOABORT SIG=5 MAX=9999 PRINT=10 POSTHOC 
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