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1 Introduction

Network backbones have been widely used to study the core structure and dynamics
of different complex systems, including brain networks [8]. Another key component
of network studies is the concept of shortest path, which plays an important role in
the optimization of communication. Here we present a preliminary study of the met-
ric backbone – the invariant sub-graph under distance closure that contains all edges
that contribute to any shortest path [7, 1] – in human brain structural connectivity of
two different cohorts: the Human Connectome Project (HCP) [3] and the Nathan Kline
Institute study (NKI) [5]. The HCP is a high-quality dataset of healthy young adults
and the NKI provides a community sample with a wide age range, which enables us
to track data trends across the lifespan. Ours is the first study of the metric backbone
of human connectome networks. Our preliminary results show that it comprises a sur-
prisingly small subgraph of the original networks, that its size decreases in the earlier
decades of human life, and that it accounts for a significantly outsized proportion of
brain connection cost.

2 Building Structural Connectivity Networks

To estimate structural connectivity for each subject in each dataset, diffusion mage-
netic resonanice images were preprocessed, resulting in maps of white matter tract ori-
entation [9]. Probabilistic tractography [2] was performed on these maps, rendering
streamline estimates of white matter anatomical architecture. Structural connectivity
was measured by counting the streamlines between brain regions, and normalizing for
region volume. Using an atlas with 200 functionally-associated regions [6] resulted in
a structural connectivity matrix with 200 nodes.



3 Extracting the Metric-Backbone

Following [7, 1], we compute the Metric-Backbone as the invariant subgraph under
distance closure, which is sufficient to compute all shortest paths. It contains all metric
edges of an original distance (or weighted) graph. An edge is metric if it is the shortest
distance between its two nodes, otherwise it is semi-metric because it breaks the triangle
inequality – there is a shorter distance between the nodes via an indirect path. A simple
s parameter allows us to discriminate these edges:

s(ei j) =
ei j

p(i, j)
(1)

where ei j denotes the (distance) weight of the edge between nodes i and j (the direct
distance between nodes), and p(i, j) is the shortest distance path between the same
nodes (the smallest sum of distance weights on a path between i and j). To obtain p(i, j)
for all edges we compute the all-pairs shortest path (APSP) problem . Edges with s = 1
define the metric backbone (they are invariant to distance closure [7]) and are sufficient
to compute any shortest path in original graph. Edges with s > 1 are semi-metric and
do not contribute to any shortest path. Moreover, s can vary widely for edges not on the
backbone, and characterizes how much they break the triangle inequality. For example,
the pairs of nodes with si, j > 2 means that at least one indirect path between i and j is
at least half as short as the direct distance between these nodes.

The brain structural connectivity adjacency matrices entries denote a proximity be-
tween nodes. To calculate the shortest paths as above we convert proximity to distance
via the nonlinear transformation 1

x − 1, after normalizing to the interval [0,1] as sug-
gested in [7].

4 Preliminary Results and Discussion

We study the characteristics of the metric backbone first in the adult HCP cohort, and
then compare the same network measures across the lifespan, in the NKI cohort. In this
preliminary work we present the results for the fraction of edges in the metric-backbone
and the fraction of the connection cost – here defined as the product of the length of the
streamline and the streamline count [4] – that it covers. In Figure 1 upper left panel
we present the distribution of the fraction of edges in the metric-backbone for the HCP
dataset, while in the upper right panel we present the same measurement across the
lifespan in the NKI data. The analysis reveals that the metric backbone is comprised of
very small subgraph of the original network – around 10−13%. In other words, there is
a lot of redundancy in these connectome networks, whereby only 10−13% are needed
to compute all shortest paths. Moreover, in the NKI dataset we observe a significant
decline in the size of the backbone in the first three decades (Spearman correlation
ρ =−0.374 and p−value= 1.929e−08). For the remaining lifespan there is no evidence
of any strong trend correlated with age (ρ = −0.063 and p− value = 0.299), that is,
the size of the backbone stabilizes after the first decades.

Interestingly, even though the metric-backbone comprises only a small fraction of
edges (≈ 11%), on average, it accounts for about half of the total connection cost. This



suggests that the metric backbone represents a significant “investment” in connecting
streamlines and thus that shortest paths are important for communication in brain net-
works. Our results are validated by null models constructed from a population of 1000
random connected subgraphs of the same original networks.

Fig. 1. Characteristics of the metric-backbones regarding the fraction of edges that they contain
and the fraction of connection cost that they support when comparing with the full networks. Left
panel corresponds to the HCP dataset, and the right panel to the NKI dataset.
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