
Agent-Based Model of Genotype Editing

Chien-feng Huang
Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Jasleen Kaur
Indiana University, Bloomington, IN 47406, USA

Ana Maguitman
Universidad Nacional del Sur, Bahı́a Blanca, Argentina

Luis M. Rocha∗
Indiana University, Bloomington, IN 47406, USA
∗To whom correspondence should be addressed: rocha@indiana.edu

Abstract
Evolutionary algorithms rarely deal with ontogenetic, non-inherited alteration of ge-
netic information because they are based on a direct genotype-phenotype mapping. In
contrast, in Nature several processes have been discovered which alter genetic infor-
mation encoded in DNA before it is translated into amino-acid chains. Ontogenetically
altered genetic information is not inherited but extensively used in regulation and de-
velopment of phenotypes, giving organisms the ability to, in a sense, re-program their
genotypes according to environmental cues. An example of post-transcriptional alter-
ation of gene-encoding sequences is the process of RNA Editing. Here we introduce
a novel Agent-based model of genotype editing and a computational study of its evo-
lutionary performance in static and dynamic environments. This model builds on our
previous Genetic Algorithm with Editing, but presents a fundamentally novel archi-
tecture in which coding and non-coding genetic components are allowed to co-evolve.
Our goals are: (1) to study the role of RNA Editing regulation in the evolutionary pro-
cess, (2) to understand how genotype editing leads to a different, and novel evolution-
ary search algorithm, and (3) the conditions under which genotype editing improves
the optimization performance of traditional evolutionary algorithms. We show that
genotype editing allows evolving agents to perform better in several classes of fitness
functions, both in static and dynamic environments. We also present evidence that
the indirect genotype/phenotype mapping resulting from genotype editing leads to a
better exploration/exploitation compromise of the search process. Therefore, we show
that our biologically-inspired model of genotype editing can be used to both facilitate
understanding of the evolutionary role of RNA regulation based on genotype editing
in biology, and advance the current state of research in Evolutionary Computation.

Keywords
RNA Editing, Genotype Editing, Genetic Algorithms, agent-based modeling, coevo-
lution, indirect genotype/phenotype mapping, dynamic environments, biologically-
inspired computing.

1 Introduction

Although RNA editing (Benne, 1993; Bass, 2001) seems to play an essential role in reg-
ulation and development of biological organisms, not much has been advanced to un-
derstand the potential evolutionary advantages, if any, that RNA editing processes may

c©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

have provided. Here we continue our study of the evolutionary advantages of geno-
type editing by testing an Agent-Based Model of Genotype Editing (ABMGE) against a siz-
able set of static and dynamic fitness functions. The model here presented marks a sub-
stantial departure from our previous Genetic Algorithm with Editing (GAE) (Huang
and Rocha, 2003; Rocha and Huang, 2004; Huang and Rocha, 2004). While the GAE
allowed a population of genotypes to evolve under fixed editing constraints, the more
realistic ABMGE here presented allows some editing parameters to co-evolve with the
phenotype solutions encoded in the genotypes of agents in the population.

In previous work we had already shown that the GAE, with appropriate editing
parameters, can outperform the traditional Genetic Algorithm (GA) (Holland, 1975) in
static (Huang and Rocha, 2003, 2004) and dynamic environments (Rocha and Huang,
2004). But for the GAE to outperform the GA, we needed to define good editing pa-
rameters by hand. Thus, while we showed that genotype editing can in principle be
beneficial in an evolutionary process, we did not show how such a process could on its
own discover the benefits of genotype editing. With the ABMGE presented in this pa-
per, we show, empirically, that most beneficial editing parameters can be co-evolved to
provide evolutionary advantages in both static and dynamic environments—without
much user intervention other than the usual length and variation parameters of GA
genotypes as well as length and variation parameters for editors. In (Huang and Rocha,
2005) we presented a preliminary study of the ability of the ABMGE to track chang-
ing extrema in dynamic environments using a simple mutation on editor parameters.
In (Rocha et al., 2006) we explored a new form of editor variation similar to genetic
crossover. Here we present a much more extensive study of the ABMGE using several
additional static and dynamic fitness functions, as well as larger-scale simulations with
longer runs for these environments.

Due to the larger scale of the study here reported, we present novel insights as
to how genotype editing allows agents to search fitness spaces differently from agents
with non-edited genotypes. We show that genotype editing is particularly useful in
dynamic environments when the fitness function changes drastically. We also present
new evidence to support the claim that genotype editing allows a wider exploration of
the fitness space without sacrificing exploitation of good areas of the genotype space.
The overall goal of our research is to gain a deeper understanding of the evolutionary
nature of genotype editing as well as to exploit its insights to improve evolutionary
algorithms and their applications to complex problems.

2 RNA Editing

Evidence for the important role of non-protein coding RNA (ncRNA) in complex or-
ganisms (higher eukaryotes) has accumulated in recent years. “ncRNA dominates the
genomic output of the higher organisms and has been shown to control chromosome
architecture, mRNA turnover and the developmental timing of protein expression, and
may also regulate transcription and alternative splicing” (Mattick, 2003).

RNA Editing (Benne, 1993; Bass, 2001), is a process of post-transcriptional alter-
ation of genetic information. Perhaps the most famous form of RNA editing operates
by deletion and/or insertion of bases in the messenger RNA (mRNA) molecules of or-
ganisms such as African Trypanosomes (Benne et al., 1986; Benne, 1993; Stuart, 1993).
Collectively these insertion and deletion process are called indels (Furey et al., 2004).
In this case, insertion/deletion editing is performed by small guide RNA’s (gRNA’s)
encoded mostly by what was previously thought of as non-functional or non-coding

2 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

a) b)

Figure 1: Schematics of insertion/deletion (a) and A-to-I substitution (b) RNA editing.

genetic material (Sturn and Simpson, 1990). 1 Guide RNA’s (reviewed in (Simpson,
1999) and (Stuart et al., 1997)) are usually small sequences (compared to pre-edited
mRNA’s) that are complementary to the region around the site to be edited. gRNA
molecules base-pair with mRNA regions to be edited and then insert, and sometimes
delete, uridines into the mRNA (for examples see (Bass, 2001)). This editing alters
the aminoacid chain encoded in the edited mRNA, sometimes extensively. Figure 1.a
shows an abstract description of this biological process.

To appreciate the effect of this process let us consider Figure 2. The first example
((Benne, 1993), P. 14) shows a massive uridine insertion (lowercase u’s); the amino acid
sequence that would be obtained prior to any editing is shown on top of the base se-
quence, and the amino acid sequence obtained after editing is shown in the gray box.
The second example shows how, potentially, the insertion of a single uridine can change
dramatically the amino acid sequence obtained; in this case, a termination codon is in-
troduced to create an open reading frame.

Ser Gly Glu Lys
AuGuuuCGuuGuAGAuuuuuAuuAuuuuuuuuAuuA
MerPhe Arg Cys Arg Phe Leu Leu Phe PheLeu Leu

CAGGAGGGCCGUGGAuAAG
LysGln Glu Gly Arg Gly ...

Gln Glu Gly Arg Gly STOP

Figure 2: U-insertion in the RNA of Trypanosomes.

Other types of RNA Editing are tRNA and Viral G-addition editing, and small nu-
cleolar RNA (snoRNA)-mediated nucleotide modification. But another common and
important type of RNA editing happens via base substitution. This type of RNA editing
exists in mitochondrial and chloropast RNA of many higher plants (with mostly C-to-U

1By non-coding genetic material we mean DNA not used to encode proteins (no open reading frame).

Evolutionary Computation Volume x, Number x 3

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

substitution) and, more importantly, in the genomes of higher eukaryotes such as mam-
mals (with A-to-I substitution)—for reviews see (Blanc and Davidson, 2003) and (Maas
et al., 2003). In this case, adenosine (A) is substituted for inosine (I) in double-stranded
pre-mRNA, via the enzyme adenosine deaminase acting on RNA (ADAR), sometimes also
known as RNA Editase (Chilibeck et al., 2006). In turn, inosine (I) is read as guanosine
(G) in translation. A scheme of RNA editing via A-to-I substitution is depicted in Fig-
ure 1.b. This type of RNA Editing is known to be very important in the development
of more complex organisms. For instance, the development of rats without the ADAR1
gene terminates midterm (Wang et al., 2000). This showed that A-to-I RNA Editing
is more prevalent and important than previously thought. This type of RNA editing
has also been identified in mammalian brains (Simpson and Emerson, 1996), includ-
ing human brains (Mittaz et al., 1997). Lomeli et al. (1994) discovered that the extent
of RNA editing affecting a type of receptor channels responsible for the mediation of
excitatory postsynaptic currents in the central nervous system, increases in rat brain
development. As a consequence, the kinetic aspects of these channels differ accord-
ing to the time of their creation in the brains developmental process. More recently,
Hoopengardner et al. (2003) found that RNA editing plays a central role in nervous
system function. Indeed, many edited sites alter conserved and functionally important
amino acids in protein sequences, some of which may play a role in nervous system
disorders such as epilepsy and Parkinson Disease. Furey et al. (2004) have also found
statistical evidence that a significant amount of nucleotide discrepancies in the human
genome are due to RNA Editing (both A to I/G substitution and the lesser known T to
C substitution).

The importance of RNA Editing is thus unquestionable, since it has the power to
dramatically alter and regulate gene expression: “cells with different mixes of (edit-
ing mechanisms) may edit a transcript from the same gene differently, thereby making
different proteins from the same opened gene.” ((Pollack, 1994), P. 78). Let us now
highlight some of the most salient features of RNA Editing, which are important for
our model:

• A mRNA molecule may be more or less edited according to the concentrations of
the editing operators it encounters. Thus, several different proteins encoded by
the same gene may coexist in an organism or even a cell, if all (or some) of the
mRNAs obtained from the same gene, but edited differently, are meaningful to
the translation mechanism. This way, genotype editing can be successfully used
for gene expression regulation from external or developmental cues (Rocha, 1995;
Mattick, 2003).

• Genotype editing is not equivalent to mutation. In all cells, prokaryotic and eu-
karyotic, RNA is derived from DNA. Changes in genetic information can occur in
a number of ways. For instance, when the DNA polymerase makes mistakes dur-
ing DNA replication or when the RNA polymerase makes mistakes during RNA
transcription. However, only changes that occur during DNA replication can be-
come permanent and inheritable mutations. If changes occur during transcription,
they get incorporated into that single transcript but not into other ones. Likewise,
edited mRNA transcripts are not allowed inheritable variation: what is inheri-
table, and subjected to variation, is the original non-edited gene (Rocha, 1995;
Rocha and Huang, 2004).

4 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

3 Modeling Genotype Editing

Genetic Algorithms (GA) (Holland, 1975) are based on an idealized model of Natural
Selection. GA operate on an evolving population of artificial organisms, or agents.
Each agent is comprised of a genotype (encoding a solution to some problem, typically
in binary symbol strings) and a phenotype (the solution itself). Evolution occurs by
iterated stochastic variation of genotypes 2 and selection of the best phenotypes in an
environment according to how well the respective solution solves a problem (or fitness
function). While idealized, GA capture the process of adaptation to an environment of
a population of agents under genetic variation and phenotypic selection. Table 1 lists
the steps of a simple genetic algorithm.

Table 1: GA Algorithm

1. Randomly generate an initial population of l agents, each consisting
of a genotype (a n-bit string).

2. Evaluate the fitness of each agent.
3. Repeat until l offspring have been created.

a. select a pair of parent agents for mating;
b. apply genotype variation operators (mutation and crossover);

4. Replace the current population with the new population.
5. Go to Step 2 until terminating condition.

In a traditional GA, the code between genotype and phenotype is a direct and
unique mapping3. In biological genetic systems, however, before a gene is translated
into the space of proteins it may be altered through interactions with other types of
molecules, namely RNA editors such as gRNA’s or the enzyme ADAR. Based upon
this analogy, Rocha (1995) proposed the expansion of the traditional GA with a pro-
cess of stochastic editing of genotypes, prior to them being translated into solutions. In
this model, genotype editing is performed by a small set of smaller genetic strings, the
editors, which stochastically base-pair with genotypes. Each editor is associated with
a different editing function, such as insertion, deletion or substitution of symbols into
the original genotypes. In each generation, before translation into the space of solu-
tions, each genotype has a certain probability (defined by the editor’s “concentration”)
of encountering an editor. When there is an encounter, if the editor matches some sub-
sequence of the genotype, the editor’s function is applied and the genotype is altered.

We have previously tested this artificial genotype editing system with a Genetic Al-
gorithm with Editing (GAE). In that model, the set of editors does not evolve and is the
same for every agent in the population (Huang and Rocha, 2003; Rocha and Huang,
2004; Huang and Rocha, 2004). Using various static fitness functions (Royal Road, Op-
timal Control, and Michaelwicz) we first explored the effects of several parameters of
the GAE model, such as the length of editor strings, their concentrations, editing func-
tions and the like (Huang and Rocha, 2003). We later studied these parameters more
extensively with many randomly generated experiments with additional static fitness
functions (e.g. the Shaffer F7 function) (Huang and Rocha, 2004). Finally, we tested

2Often known as chromosomes in evolutionary computation.
3Indirect mappings between genotype and phenotype have been modeled both in Evolutionary Compu-

tation (e.g. Kargupta (1996)) and Artificial Life (e.g. Dellaert and Beer (1994) and Rocha (2001)), but none of
these models explores the mechanism of genotype editing.

Evolutionary Computation Volume x, Number x 5

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

the advantages of genotype editing in dynamic environments, that is, when the fitness
function varies in time (Rocha and Huang, 2004).

With the GAE we have demonstrated that, with specific combinations of editor pa-
rameters, genotype editing can improve on the simple genetic algorithm’s (GA) search
performance on the various fitness functions tested. In particular, for the functions we
tested, we were always able to find editor strings which lead the GAE to outperform
the GA. The variety of functions tested allow us to establish that genotype editing,
with specific parameters, can improve the search performance on a series of evolution-
ary scenarios: fitness functions that are amenable to search, epistatic, multi-modal, and
dynamic. We have also showed that to be advantageous, the editing parameters must
lead to moderate editing frequency (the total number of genotype edits in a genera-
tion). Too much editing is deleterious, and too little does not improve upon the regular
GA.

However, to effectively study the evolutionary advantages of genotype editing,
we need a model that allows good editing parameters to evolve automatically with
the evolutionary search process. In summary, while with the GAE we showed that
genotype editing can in principle be beneficial in an evolutionary process, we did not
show how such a process could on its own discover the benefits of genotype edit-
ing. In the next section we present a model of genotype editing where beneficial edi-
tors can be co-evolved to provide evolutionary advantages in both static and dynamic
environments—without much user intervention other than the usual length and varia-
tion parameters of GA genotypes as well as length and variation parameters for editors.

4 Agent-based Model of Genotype Editing

In our previous models of genotype editing (the GAE model), the set of editors did
not evolve and was the same for every agent in the population (Huang and Rocha,
2003; Rocha and Huang, 2004; Huang and Rocha, 2004). In our novel Agent-based Model
of Genotype Editing (ABMGE), the agents in the population are defined by an artificial
genome that contains both coding and non-coding components. The coding component
encodes solutions to a particular fitness function or environment, while the non-coding
component defines a set of editors which act on the coding component. Let us refer to
the coding portion of the artificial genome as the codome, and to the non-coding portion
as the editome. In each generation, the coding component of an agent’s genotype, the
codotype may be stochastically edited by the agent’s non-coding editors, its editype, and
produce a solution/phenotype different from what is encoded. This way, the ABMGE
defines a different set of editors for each agent, and furthermore allows them to co-
evolve with solutions encoded in the genotypes of their respective agents. Figure 3
depicts an agent in the ABMGE; table 2 depicts its algorithm.

Notice that our agents possess functionally and operationally distinct codomes
and editomes—for instance with separate variation operations (more details below). It
would probably be more biologically realistic to extract both functions from a common
artificial genome (e.g. as defined by (Reil, 1999)). However, here we want precisely to
explore the influence of an editome in the evolutionary process, therefore we function-
ally separate it from the codome to better test its relative importance.

4.1 Co-evolving Codotype and Editype

The genome of our agents consists of a codome and an editome. The codotype of each
agent is a specific n-bit string, whereas the editype consists of a specific family of r
editors each defined by a m-bit string: (E1, E2, . . . , Er). The length of the editor strings

6 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

Table 2: The ABMGE Algorithm

1. Randomly generate an initial population of l agents, each agent consisting
of a codotype (a n-bit string) and an editype (a family of r editors (Ej , Fj , vj)).

2. Edit each agent’s codotype S: apply each editor Ej with probability vj ;
If Ej matches S at some position, edit S with function Fj

3. Evaluate the fitness of the edited genotype of each agent.
4. Repeat until l offspring have been created.

a. select a pair of parent agents for mating;
b. apply codotype variation operators (mutation and crossover);
c. apply editype variation operators (editor mutation and crossover).

5. Replace the current population with the new one.
5. Go to Step 2 until terminating condition.

Figure 3: Individual Agent in the ABMGE.

is defined much smaller than that of the codotype strings: m << n, usually an order of
magnitude. An editor Ej is said to match a substring, of size m, of a codotype string S
at position k if ei = sk+i, i = 1, 2, . . . ,m, 1 ≤ k ≤ n − m, where ei and si denote the ith

bit value of Ej and S, respectively. For each editor Ej there exists an associated editing
function Fj , that specifies how a particular editor edits the codotypes it matches. For
instance, when the editor matches a portion of a codotype string, a number of bits may
be inserted into or deleted from it.

If the editing function of editor Ej is to add one specific allele at sk+m+1 when Ej

matches S at position k, then all alleles of S from position k + m + 1 to n− 1 are shifted
one position to the right (the allele at position n is removed). Analogously, if the edit-
ing function of editor Ej is to delete an allele, an allele at sk+m+1 is deleted when Ej

matches S at position k. All the alleles after position k +m+1 are shifted in the inverse

Evolutionary Computation Volume x, Number x 7

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

direction (one randomly generated allele is assigned at position n). Finally, let the con-
centration of the editor family be defined by (v1, v2, . . . , vr); i.e., the concentration of
editor Ej is denoted as vj . Then the probability that S encounters Ej is given by vj . In
the remaining of this article, when we refer to an editor we mean a 3-tuple (Ej , Fj , vj).

In the previous GAE model, an agent’s genotype consisted entirely of a codotype—
every bit of the genotype was “functional” in that it was used to encode a phenotype.
Moreover, every agent in the population faced the same “post-transcriptional” editors
which were fixed at the start of each run. In other words, every agent possessed the
same fixed editype. In contrast, in the ABMGE, agents face individualized, heteroge-
nous post-transcriptional editors. Notice that while the editome is an additional por-
tion of the genome, it cannot be seen simply as another chromosome (in the sense used
in evolutionary computation), because it is not encoding a (phenotype) solution or a
part of a solution. Only the codome is used to encode phenotypic attributes. The
editome is, in this sense, “non-coding”; its role is to change genetic information on-
togenetically. In our model, the editome is used not to encode phenotypic attributes
(as a typical chromosome in evolutionary computation does), but rather to model the
post-transcriptional, pre-translation process of genotype editing.

As fit agents are selected for reproduction, their editypes propagate to the next gen-
eration together with their codotypes. Thus, codotypes co-evolve with editypes to deal
with a specific fitness function. Coevolutionary algorithms, methods by which multi-
ple populations of agents (or species) are adapting to each other, have been seriously
studied in the field of Evolutionary Computation (Ficici and Pollack, 2003; Panait et al.,
2004). They are popular augmentations of traditional evolutionary algorithms. In na-
ture, coevolution is the process of reciprocal genetic change of one species in response
to another. The reciprocal change observed in coevolution can be considered either as a
competitive arms race, or cooperative methodology where separate populations evolve
components of the solution (Potter and De Jong, 2000).

The ABMGE relies on a kind of co-evolution of editypes with codotypes encod-
ing solutions to an optimization problem. However, the algorithm does not rely on
distinct populations of agents, as it is typically done in coevolutionary algorithms. In-
stead, there is a single population of agents which possess genotypes with two types of
”genetic” information: solution-encoding codotypes, and editypes which perform non-
inheritable (ontogenetic) stochastic changes to the codotypes. Because codotypes and
editypes are tied together in an agent, they cannot evolve independently. In the sense
that they evolve jointly and in mutual dependence, we can think of codotypes and ed-
itypes as co-evolving4. Indeed, the co-evolution happens because an agent will not be
able to survive deleterious variation on either the codotype or the editypes. Changes
either to the codotype or editype must produce advantageous or neutral phenotypic
changes for an agent to survive.

In the progression of the ABMGE runs, as fitter agents are selected for reproduc-
tion, their editypes propagate to the next generation. Therefore, the ABMGE establishes
an automatic process for generating good editors for a particular problem, together
with good solutions for the problem. Instead of manually choosing specific editor pa-
rameters such as specific editor strings (as the GAE demands) one only needs to specify
the range of the editor parameters in the very beginning of the experiments.

4The Oxford English Dictionary defines the prefix co- when applied to verbs as pertaining to “a joint sub-
ject: as, co-engage to engage along with others, co-sustain to sustain jointly” and to adjectives and adverbs as
pertaining to mutual interaction as in “co-embedded embedded together, co-harmonious unitedly harmonious,
co-intersecting intersecting mutually;”.

8 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

A few additional observations are necessary to understand the ABMGE and the
implications of a genotype with separate codotype and editype:

• It is important to note that the “post-transcriptional” editing of codotypes is not
akin to mutation, because edits are not inheritable. Just like in biological organ-
isms, in our model, it is the unedited genotype (codotype plus editype) that is
reproduced, while agent fitness is calculated using the phenotype produced from
the edited codotype. Therefore, the unedited and edited codotypes can be viewed
as mimicking coding (functional) DNA and edited mRNA’s in biological organ-
isms, respectively—even though this model does not include a true DNA/RNA
distinction.

• Just like a mRNA molecule may be edited differently according to specific editing
molecules and their concentrations it encounters, in our model the same codotype
may be edited differently because editor concentration is a stochastic parameter
that specifies the probability of a given editor encountering the codotype before
translation. This means that the same agent, in distinct generations, may produce
different phenotypes. It also means that if the same codotype and even the same
genotype (codotype plus editype) is repeated in the agent population, the pheno-
types of the respective agents may be different.

• In Rocha’s formulation (Rocha, 1995), any bit-string editor function is possible, in-
cluding substitution. In the present work we use only insertion and deletion func-
tions. However, given that in our model there is no equivalent of the transcription
of RNA from DNA and we use a two-symbol encoding, what we are modeling is
a generic process of non-inheritable alteration of an agent’s genetic information
(codotype) via editing, before it is translated into a solution (phenotype)—not a
specific type of RNA Editing.

We should also notice that genotype editing as we study it here, is not the same
as the Baldwin effect as studied by Hinton and Nowlan (1987) and subsequent devel-
opments of their model. The phenotypes of our agents with genotype editing, do not
change (or learn) ontogenetically. In Hinton and Nowlan’s experiments, the environ-
ment is defined by a very difficult (“needle in a haystack”) fitness function, which can
be made more amenable to evolutionary search by endowing the phenotypes with time
to “learn” ontogenetically. Eventually, they observed, this learning allows genetic vari-
ation to discover, and genetically encode fit individuals. In contrast, genotype editing
does not grant agents more “ontogenetic learning time”; it simply changes inherited ge-
netic information before translation but the phenotype, once produced, is fixed. Also,
as we show below, it is advantageous in environments very amenable to evolution,
such as the Royal Road (sections 5.1.1 and 5.2.1) and De Jong functions (section 5.1.2),
which are the opposite of “needle in a haystack’.

4.2 Editype Variation

The variation operations of codotypes (mutation and crossover) operate just like in a
regular GA. Therefore, here we reserve detailed explanations only for the variation
operations of the editype. When two parents are selected for reproduction in our algo-
rithm (step 4 in table 2), in addition to variation of codotypes as it is commonly done in
GA, the editype is also subjected to variation. In the current implementation, we only
apply variation to the set of editor strings Ej , while the associated functions Fj and

Evolutionary Computation Volume x, Number x 9

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

concentrations vj remain unchanged; we will consider variation on these parameters
in future work.

We implemented editype mutation on editor bit-strings exactly as it is typically done
in codotype bit-strings: a bit-mutation probability, PEdMut, defines the probability that
each individual bit of an editor string is flipped in a given generation. In our model,
the editype bit-mutation probability PEdMut is independent from the codotype bit-
mutation probability: PMut. In (Huang and Rocha, 2005) we presented a preliminary
study of the ability of the ABMGE to track changing extrema in dynamic environments
using editype mutation only. In (Rocha et al., 2006) we introduced a form of editor vari-
ation similar to genetic crossover which we explore in much more detail here. Indeed,
in the present work we present a much more extensive study of the ABMGE with edi-
type mutation and crossover than previously done. We present longer and larger-scale
simulations with several additional static and dynamic fitness functions.

Editype crossover, is implemented as an exchange of editors between a pair of parent
agents. We start with two parent agents a1 and a2, with r1 and r2 editors in their
editypes, respectively. From this pair of parent agents, two offspring agents, a3 and
a4, are produced whose editypes also contain r1 and r2 editors, respectively. However,
x editors, chosen randomly from the editype of each agent, are swapped between the
parent agents to produce the offspring, where x is a random integer (sampled from a
uniform distribution) from the interval [1,MIN(r1, r2)]. Editype crossover occurs with
a probability PEdCross, which is independent from the typical codotype (one-point)
crossover which occurs with a probability PCross. Therefore, when two parents are
selected in step 4 of table 2, we may have that (1) no crossover of any kind occurs, in
which case the parents are reproduced as they are; (2) codotype crossover occurs with
no editype crossover; (3) editype crossover occurs with no codotype crossover; and (4)
both types of crossover occur. In future work we will explore making both types of
crossover dependent. See figure 4 for a depiction of agent variation mechanisms in the
ABMGE.

5 Testing the ABMGE

In our previous work, we have shown that the GAE, with appropriate editors, can out-
perform the traditional GA in static and dynamic environments (Huang and Rocha,
2003; Rocha and Huang, 2004; Huang and Rocha, 2004). With the simulations we
report here, we now show that the ABMGE is capable of co-evolving appropriate
editor parameters to provide evolutionary advantages in both static and dynamic
environments—without much user intervention. Thus, the ABMGE, unlike the GAE,
does not require a user to specify editing parameters in order to significantly outper-
form the traditional genetic algorithm.

5.1 Static Environments

The performance of evolutionary algorithms is typically evaluated by monitoring im-
provement of the solutions discovered by the population of evolving agents in each
generation. In many practical problems, a traditional performance measure is the “best-
so-far” curve that plots the fitness of the best individual that has been seen thus far
by generation n. We tested the behavior of the ABMGE with various fitness functions
which we have previously used to test the simpler GAE (Huang and Rocha, 2003; Rocha
and Huang, 2004; Huang and Rocha, 2004).

10 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

1 nl

Codotype 4

(,f22
)

E22

E24
(,f24

)

(,f12
)

E12

(,f13
)

E13

Editype4

1 nl

Codotype 3

E11
(,f11

)

Editype3

(,f23
)

E23
(,f21

)
E21

1 n
S11

S'11

(,f12
)

E12

E11
(,f11

)

(,f13
)

E13

x1

Edited Genotype

Codotype

Phenotype

Editype

Genotype

1 n

Codotype 1

1 n

Codotype 2

1 n
S21

S'21

(,f22
)

E22

E21
(,f21

)

(,f23
)

E23

(,f24
)

E24

x2

Edited Genotype

Codotype

Phenotype

Editype

Genotype

(,f12
)

E12

E11
(,f11

)

(,f13
)

E13

Editype1

(,f22
)

E22

E21
(,f21

)

(,f23
)

E23

(,f24
)

E24

Editype2

pEdCross

pCross

x = 2

pMut

pEdMut

pEdMut

a1

a2

a3

a4

Figure 4: Agent variation in the ABMGE for two selected parents with r1 = 3, r2 = 4, and x = 2.

5.1.1 Small Royal Road

The first fitness function tested is a miniature of the class of the “Royal Road” functions
(Forrest and Mitchell, 1993): the small Royal Road SRR1, as depicted in Table 3. This
function is defined by a set of schemata T = {t1, . . . , t8}. The fitness of a bit string
(codotype) S is defined as F (S) =

∑
t∈T ctσt(S), where each ct is the value assigned

to schema t as defined in Table 3; σt(S) = 1 if schema t exists in S and 0 otherwise.
The optimum fitness for SRR1 is ascribed to a single string with 40 1’s, and its value
is 10 × 8 = 80. This Royal Road function is selected as a testbed because it serves
as an idealized fitness environment with a single optimum, particularly amenable to
evolutionary search .

Table 3: Small royal road function SRR1

t1 = 11111***********************************; c1 = 10
t2 = *****11111******************************; c2 = 10
t3 = **********11111*************************; c3 = 10
t4 = ***************11111********************; c4 = 10
t5 = ********************11111***************; c5 = 10
t6 = *************************11111**********; c6 = 10
t7 = ******************************11111*****; c7 = 10
t8 = ***********************************11111; c8 = 10

We contrasted the traditional GA with two versions of the ABMGE: with and with-

Evolutionary Computation Volume x, Number x 11

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

out editype crossover 5. Our experiments with SRR1 use binary tournament selec-
tion (Goldberg and Deb, 1991), a population of 40 agents over 200 generations for 50
runs—in every run, all parameters are randomly re-generated. Codotype variation (in
both the ABMGE and the simple GA) is implemented with one-point crossover and
mutation rates of PCross = 0.7 and PMut = 0.005, respectively—the best values we
previously found for the GA (see section 7). For the editome parameters (of the AB-
MGE), we employ the guidelines discovered in (Huang and Rocha, 2004) to randomly
generate editor families. The size of the editor family r for each agent is randomly sam-
pled from {1, · · · , 5}; the editors are generated as randomized bit-strings Sj of size m
also randomly sampled from {2, · · · , 4}; the editor concentration is randomly generated
from [0,1]; and the editor function inserts or deletes a number of bits randomly chosen
from {1, · · · , 3} (which are fixed once the editor is generated).

20 40 60 80 100 120 140 160 180
10

20

30

40

50

60

70

80

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

Royal Road − Static − 200 Generations

GA
ABMGE without crossover
ABMGE with crossover (PC = 0.5)

Figure 5: Performance of GA, ABMGE without editype crossover, and ABMGE with editype
crossover (PEdCross = 0.5) on SRR1.

We conducted our experiments on SRR1 for various values of editype variation:
PEdMut ∈ {0.01, 0.05} and PEdCross ∈ {0, 0.3, 0.5, 0.7, 0.9}. Figure 5 depicts the results
for both PEdMut = 0.05 and PEdCross = 0, which we refer to as ABMGE without ed-
itype crossover, as well as PEdCross = 0.5, which we refer to as ABMGE with editype
crossover. One can see that the averaged best-so-far reached by both versions of the
ABMGE is much closer to 80 (the maximum) than what the traditional GA obtains at
the end of the experiments, and significantly better for the ABMGE with both editype
mutation and crossover. This was observed for all values of PEdCross tested.6 The AB-
MGE, with randomly generated editypes clearly outperforms the GA. This means that

5The parameter settings used in this subsection are applied to all the other functions tested in this article,
unless otherwise specified.

6The value of the averaged best-so-far performance metric is calculated by averaging the best-so-fars (the
fitness of the best individual that has been seen thus far by generation n) obtained at each generation for all
runs, where the vertical bars overlaying the metric curves represent the 95-percent confidence intervals. This
applies to all the experimental results obtained in this paper.

12 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

the ABMGE is capable of automatically discovering advantageous editors from ran-
domly generated ones. Table 4 shows the editype of an agent at the end of a ABMGE
run for SRR1—this editype is very prevalent in the population at the end of that run.

Table 4: Parameters of a 3-editor editype of an agent at generation 200.

editor 1 editor 2 editor 3
length 5 3 5
alleles {1, 1, 0, 1, 0} {0, 1, 0} {1, 1, 1, 1, 1}

concentration 0.4151 0.7103 0.5090
function delete 2 bits delete 3 bits add 3 bits

5.1.2 De Jong Function F3

De Jong’s function F3 (De Jong, 1975) is defined as:

f(x) =
N∑

i=1

integer(xi), (1)

where x = [x1, x2, . . . , xN]T , −5.12 ≤ xi ≤ 5.12 for 1 ≤ i ≤ N .7 A two-dimensional
sketch of this function is presented in Figure 6. As can be seen, this function is a simple,
unimodal step function where we can expect the global optimum to be easily located.
Thus to contrast the performance of the GA with the ABMGE, we need to compare the
mean function evaluations required for locating the optimum, rather than the actual
maximum value attained.

20
40

60
80

100

X

20406080100

Y

-10

-5

0

5

10

Z

20
40

60
80

100

X

2040

Figure 6: Two-dimensional De Jong function F3. The X and Y-axis represent the parameters x1

and x2 used to compute f(x), which is represented on the Z-axis

In our tests for this function, five variables (N=5) are used. Each variable is en-
coded using 10 bits. The 5 blocks of 10 bits each are then concatenated to form a string
of length 50. For both the GA and ABMGE we use a population of 50 agents over
200 generations for 100 runs. For the editypes of the agents in the ABMGE, we tested

7The original version of De Jong function F3 is
∑5

i=1
integer(xi), and the goal was to minimize f(x).

This function was modified here to be consisting with the maximization goal of all other functions used

Evolutionary Computation Volume x, Number x 13

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

three different range scenarios for the size of the family of the editors, r: (i) {1, 2}, (ii)
{1, · · · , 5}, and (iii) {1, · · · , 8}. Again, we tested the ABMGE with (PEdCross = 0.5) and
without (PEdCross = 0) editype crossover. In either case, we used (PEdMut = 0.05).
The values of the other parameters remain the same as those used for the Royal Road
testbed SRR1 in subsection 5.1.1.

Table 5: Mean and standard error function evaluations to the optimum with De Jong’s
function F3.

Algorithm Editype Parameters Mean (Std. Err.) eval. to optimum
GA N/A 3237.25 (194.15)

ABMGE No Crossover and r ∈ {1, 2} 1422.96 (178.37)
ABMGE No Crossover and r ∈ {1, · · · , 5} 898.74 (172.19)
ABMGE No Crossover and r ∈ {1, · · · , 8} 586.62 (72.82)
ABMGE Crossover and r ∈ {1, 2} 770.09 (122.77)
ABMGE Crossover and r ∈ {1, · · · , 5} 329.15 (50.75)
ABMGE Crossover and r ∈ {1, · · · , 8} 252.68 (46.98)

Table 5, shows the mean function evaluations required for locating the optimum
for the GA and the ABMGE for the three editype family size ranges tested (the stan-
dard errors are shown in the parentheses). By contrasting these cases, it is obvious that
the ABMGE significantly outperforms the GA in amenable search spaces such as the
one defined by De Jong’s function F3 and the Royal Road of section 5.1.1. Furthermore,
the ABMGE with both editype mutation and crossover significantly outperforms the
ABMGE without editype crossover in this type of function, for the same editype pa-
rameters. Figure 7 depicts the GA against the ABMGE with and without crossover, for
the same size of editor families r ∈ {1, · · · , 8}.

5.1.3 The Optimal Control Test Problem
Optimal Control problems often arise in many different fields of engineering and sci-
ence. This class of problems has been well studied from both theoretical and compu-
tational perspectives. The models used to describe optimal control problems almost
always involve nonlinearity in nature. This often results in the existence of multiple
local optima in the area of interest. (See (Hager and Pardalos, 1998) for a sample of the
available material and applications.) In this subsection we employ an artificial optimal
control problem designed in (Huang, 2002). The constraints of the artificial optimal
control problem are:

d2z(t)
dt2

+ sin(z(t))
dz(t)
dt

+ sin(t)cos(z(t))z(t)3 = sin(t)u2
1 + cos(t)u2

2 + sin(t)u1u2,

z(t0) = 2, ż(t0) = 2, t ∈ [0, 1]. (2)

The goal is to maximize z(tf)2 by searching for two constant control variables, u1

and u2 (−5 ≤ u1, u2 ≤ 5). A sketch of this function is displayed on the left side of
Figure 8. There are clusters of spikes at two corners of the search space, and a hill that
occupies most of the space. The magnified view on the right side of Figure 8 shows
a clearer view of the height and area of the hill. As can be seen, the height of the
hill is much lower than that of the spikes. Nonetheless, since it occupies most of the

14 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

Figure 7: Averaged best-so-far performance on De Jong function F3 for r ∈ {1, · · · , 8}.

search space, one can expect that most of the population individuals in an evolutionary
algorithm would be attracted to the hilltop, which would thus miss the higher fitness
peaks. Compared to the functions used in sections 5.1.1 and 5.1.2, the search space of
this fitness function is characterized by hard-to-find optima.

The whole schematic

20
40

60
80

100
X

20

40

60

80

100

Y
0

50
100

150
Z

20
40

60
80X

The hill area

20
40

60
80

100

X 20

40

60
80
100

Y
0

10

20

30

Z

20
40

60
80

X

Figure 8: The optimal control test function. The X and Y axes represent u1 and u2 which are
used to compute z(tf)2, which is plotted on Z-axis.

In our tests, each of the two variables is encoded by 50 bits, and thus each indi-
vidual is a binary string of length 100. For both the GA and ABMGE we use a popu-
lation of 50 agents over 200 generations for 100 runs. We again contrast the GA with
the ABMGE, with and without editype crossover, using the same parameters for the
codotypes as the GA. The editype parameters are the same employed in the previous
subsections, except that three different sizes of the family of the editors for each agent

Evolutionary Computation Volume x, Number x 15

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

were examined: r ∈ {1, 2}, {1, · · · , 5}, and {1, · · · , 10}. In all three cases, both versions
of the ABMGE significantly outperformed the GA. Figure 9 depicts the averaged best-
so-far performance for the GA against the most favorable ABMGE range scenario for
size of editor families r ∈ {1, · · · , 10}.

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

Optimal Control − Static − 200 Generations

GA
ABMGE without crossover
ABMGE with crossover (PC = 0.5)

Figure 9: Best-so-far performance on the optimal control problem for r ∈ {1, · · · , 10}

While there is no significant difference between the two versions of the ABMGE
(with and without editype crossover), both quite significantly outperform the GA. We
also examined how often a given algorithm reached the harder to find peaks in the
search space. The best-so-far value reached by the GA at the end of 200 generations is
only 27.01 (the fitness at the center hilltop) for nearly 60 out of 100 runs. In contrast,
the ABMGE explores more of the search space and extends the best-so-fars to higher
ranges, showing that it tended to find the higher peaks more often than the GA. Indeed,
even in the least favorable editype size range scenario (r ∈ {1, 2}), the ABMGE is only
caught in the center hilltop in 20 out of 100 runs. This can be seen in the histograms of
best-so-far reached at the end of 200 generations for the 100 runs, depicted in Figure 10.

5.1.4 Modified Schaffer’s Function F7

In addition to the more amenable Small Royal Road SRR1 and De Jong F3 fitness func-
tions, as well as the relatively simple Optimal Control Test problem of the previous
section, we also tested the much harder, multimodal modified Schaffer’s function F7

(Huang, 2002) :

f7(x) = 2.5− (x2
1 + x2

2)
0.25[sin2(50(x2

1 + x2
2)

0.1) + 1] (3)

where −1 ≤ xi ≤ 1 for i = 1, 2. A sketch of this function is displayed in Figure 11.
To attain the global optimum (2.5) at the center of the search space, the population has

16 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

50 100 150
0

20

40

60

80

100

120

140

Generation

Av
era

ge
d b

es
t−s

o−
far

s

(a) Best−so−far performance

GA
ABMGE

0 50 100 150
0

10

20

30

40

50

60
(a) GA

Best−so−far at the end of each run
Nu

mb
er

or
run

s

0 50 100 150
0

10

20

30

40

50

60
(b) ABMGE

Best−so−far at the end of each run

Nu
mb

er
or

run
s

Figure 10: Distribution of best-so-fars for the GA and the ABMGE without editype crossover
for the optimal control problem, for r ∈ {1, 2}

to move across many deep wells and high barriers. Since there are many local optima
in the search space, the population of an evolutionary algorithm can easily converge to
any of them. The multimodality of the problem is hence expected to present substantial
difficulty to evolutionary search.

20
40

60
80

100
X 20

40
60

80
100

Y

-4

-2

0

2

Z

20
40

60
80X

Figure 11: Modified Schaffer function F7.

Each of the two variables of F7 is encoded by 50 bits, and thus each individual is a
binary string of length 100. We contrasted the traditional GA with two versions of the
ABMGE: with and without editype crossover. We used the same parameters as before
with an agent population size of 50 agents, and three different sizes of the family of the
editors for each agent were examined: r ∈ {1, · · · , 5}, {1, · · · , 10}, and {1, · · · , 20}, and
we computed statistics for 100 runs. We conducted our experiments for various values
of editype crossover probability PEdCross ∈ {0, 0.3, 0.5, 0.7, 0.9}.

Evolutionary Computation Volume x, Number x 17

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

The ABMGE significantly outperformed the GA for all cases, except when r ∈
{1, · · · , 5}, in which case the two were statistically indistinguishable. However, for
larger editypes ({1, · · · , 10}, and {1, · · · , 20}), the ABMGE very significantly outper-
formed the GA. Figure 12 depicts the results for r ∈ {1, · · · , 20}, PEdMut = 0.05, and
PEdCross = 0.5. One can see that the averaged best-so-fars reached by both versions of
the ABMGE clearly outperform the traditional GA, and the ABMGE with both editype
mutation and crossover also significantly outperforms the ABMGE without editype
crossover. This was observed for all values of PEdCross tested.

20 40 60 80 100 120 140 160 180
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

Schaffer − Static − 200 Generations

GA
ABMGE without crossover
ABMGE with crossover (PC = 0.5)

Figure 12: Performance of GA, ABMGE without crossover, and ABMGE with crossover
(PEdCross = 0.5) on F7.

5.1.5 Schwefel’s Function
In this section we tested a multimodal deceptive function – Schwefel’s function (Schwe-
fel, 1981):

f(x) =
N∑

i=1

xi sin(
√
|xi|), (4)

where −500 ≤ xi ≤ 500 for i = 1,...,n. A plot of this function is displayed in Figure 13.
Schwefel’s function is deceptive in the sense that the global maximum is geomet-

rically distant, over the parameter space, from the next best local optima. Therefore,
the agents in the population of an evolutionary algorithm are potentially prone to con-
vergence in the wrong direction. The deceptiveness of the problem is thus expected to
present substantial difficulty to evolutionary search.

We illustrate the search performance by using two variables for the Schwefel func-
tion. Each of the two variables is encoded by 50 bits; each individual is thus a binary
string of length 100. We contrasted the traditional GA with two versions of the ABMGE:
with and without editype crossover. We used the same parameters as before except the
agent population size is 30 agents, and the size of the family of editors for each agent

18 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

20

40

60

80

100

X

20406080100

Y

-1000

-500

0

500

1000

Z

20

40

60

80

100

X

20406080100

Y

Figure 13: Modified Schwefel function.

used was: r ∈ {1, · · · , 10}, and we computed statistics for 100 runs. We conducted our
experiments for editype crossover probability PEdCross = 0.5.

The results of these runs are depicted on figure 14, where one can see that the av-
eraged best-so-far reached by both versions of the ABMGE outperforms the traditional
GA, though the two versions of the ABMGE were statistically indistinguishable. This
indicates that both versions of the ABMGE can achieve better search performance than
the GA in the deceptive Schwefel function.

0 100 200 300 400 500 600 700 800 900 1000
500

550

600

650

700

750

800

850

Generation

A
ve

ra
g
e
d
 b

e
st

−
so

−
fa

rs

Schwefel − Static − 1000 Generations

GA
ABMGE without crossover (PM = 0.05)
ABMGE with crossover (PM = 0.05, PC = 0.5)

Figure 14: Performance of GA, ABMGE without crossover, and ABMGE with crossover
(PEdCross = 0.5) on Schwefel’s Function.

5.2 Dynamic Environments

We know that some biological organisms, namely parasites that go through dramatic
environmental changes, use RNA editing to their advantage to regulate gene expres-

Evolutionary Computation Volume x, Number x 19

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

sion, thus achieving profound phenotypic plasticity to different environments (Rocha,
1995; Rocha and Huang, 2004). We have shown that our previous model of genotype
editing, the GAE, can provide a means for artificial agents with genotypes to gain
greater phenotypic plasticity in dynamic environments (Rocha and Huang, 2004). In
those experiments, by linking changes in the environment with genotype editing pa-
rameters such as concentrations of editors, the artificial agents were shown to use geno-
type editing to their advantage, namely by allowing them to regulate their phenotypes
contextually (Rocha, 1995).

While in (Rocha and Huang, 2004) we showed that genotype editing can be used to
provide phenotypic plasticity in a few dynamic environments, the GAE does not pro-
vide an automatic mechanism to discover good editor families to enable such plasticity.
In the experiments we describe below, instead of arbitrarily linking editor concentra-
tions to changes in the environment, as we did with the GAE (Rocha and Huang, 2004),
we simply let the co-evolution of editypes and codotypes of the ABMGE operate auto-
matically in dynamic environments.

Evolutionary optimization in static environments, such as those of the previous
subsection, involve the search of the extrema of functions. For dynamic environments,
where the fitness function changes in time, the interest is not so much to locate the
extrema but to follow it as closely as possible. This section compares the extrema-
tracking performance of the traditional GA and our two versions of the ABMGE: with
and without editype crossover. To perform this study we adapted the static fitness
functions used above to a dynamic setting.8

5.2.1 Oscillatory Small Royal Road: drastic environmental changes
Consider another Small Royal Road function, SRR0, in which each schema is com-
prised of all 0’s rather than 1’s as SRR1 of section 5.1.1, but with all other parame-
ters the same as SRR1. Our first dynamic fitness function, the oscillatory royal road
(ORR), oscillates between SRR1 and SRR0 at every p generations. Because SRR0 and
SRR1 are maximally different, we are able to study the effects of drastic environmental
changes when we oscillate between them: as the agent population adapts to one of the
fitness landscapes, the environment changes drastically to the other one.

The parameters of the dynamic environment simulations using ORR are the same
as those used for the static SRR1 of section 5.1.1. In addition to various editype
mutation and crossover probabilities, we tested different oscillation periods: p ∈
{50, 100, 200, 250}. Figure 15 depicts the results for PEdMut = 0.05 and PEdCross = 0.5
and period p = 100 for the first 1000 generations of a simulation of 50 runs for 4000
generations; Figure 16 depicts that last 1000 generations of this same simulation, and
Figure 17 depicts the entire simulation.9

It is clear that it is difficult for a population to re-adapt to an entirely new en-
vironment, as the best-so-far solution significantly declines when the environment
changes. The traditional GA, as time progresses degrades its performance even when
the first fitness environment (SSR1) returns. Indeed, at the end of 4000 generations for
p = {50, 100, 200} its performance on both environments eventually reaches the same
level (close to 40 for p = 50 and p = 100, and close to 50 for p = 200). This means that

8Notice that the best-so-far measurement we used in stationary environments is problematic in dynamic
environments since it has to be assured that the best solution found thus far is the best solution for the
current environment. Therefore, the best-so-far solution we track is re-evaluated whenever a change in the
environment occurs.

9Results for periods: p = {50, 200}, various details and separate plots for each algorithm are available as
supplemental materials on line at http://informatics.indiana.edu/rocha/editing.

20 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

First 1000 Generations for Royal Road− Dynamic − 4000 Generations, Oscillations 100 , runs 50

GA
ABMGE without crossover
ABMGE with crossover (Edtr Pc=0.5)

Figure 15: Performance of GA, ABMGE without crossover, and ABMGE with crossover
(PEdCross = 0.5) on ORR, p = 100, for the first 1000 generations of a simulation of 50 runs
and 4000 generations.

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
0

10

20

30

40

50

60

70

80

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

Last 1000 Generations for Royal Road− Dynamic − 4000 Generations, Oscillations 100 , Runs 50

GA
ABMGE without crossover
ABMGE with crossover (Edtr Pc=0.5)

Figure 16: Performance of GA, ABMGE without crossover, and ABMGE with crossover
(PEdCross = 0.5) on ORR, p = 100, for the last 1000 generations of a simulation of 50 runs
and 4000 generations.

the GA ultimately converges to a population with a balanced combination of schemata
of all 1’s and schemata of all 0’s.

As for the ABMGE, interestingly, the version with both editype crossover and mu-

Evolutionary Computation Volume x, Number x 21

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

Figure 17: Performance of GA (a), ABMGE without crossover (b), and ABMGE with crossover
(PEdCross = 0.5) (c) on ORR, p = 100, for a simulation of 50 runs and 4000 generations.

22 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

tation performs best on the first fitness environment (SSR1), and every time it repeats,
but it performs very poorly on the second environment—even worse than the GA as
generations progress. In contrast, the ABMGE version with editype mutation alone, is
almost as good as the other version on the first environment, but much better on the
second environment where it progressively improves its performance—well beyond
that of the regular GA. Therefore, editype mutation alone seems to offer a much more
flexible agent architecture in drastic environmental changes, far outperforming the tra-
ditional GA. Indeed, the ABMGE with editype mutation alone, is capable of producing
agents which do well on both dramatically different fitness landscapes—as opposed to
the GA agents which get worse and worse and settle to agents that are mediocre in both
fitness landscapes.

While Editype crossover, as here implemented, does not allow agents to adapt to a
drastic environmental change, unlike the GA, it is capable of recovering its performance
once the environment changes back to the first state. This seems to indicate that, in this
case, the editype preserves a kind of memory of the first environment it encounters,
where it gets fixed. Whereas editype mutation alone provides flexibility as agents move
from one environment to the next, editype mutation plus editype crossover does not
render this flexibility, but it allows the performance on the first environment to remain
high every time it repeats. In future work, we intend to investigate why this happens
as well as other forms of editor variation.

5.2.2 Dynamic Schaffer Function DF7

The ORR implements a drastically changing environment. In general, when we study
dynamic environments, we consider less drastic changes. Angeline (1997) and Bäck
(1998) reported a study of dynamic problems with three different modes of severity of
changes. We use this idea to build a dynamic version of the modified Schaffers function,
DF7, based on the static Shaffer function F7 (equation 3) used in section 5.1.4 but now
controlled by a parameter s that specifies the severity of fitness change:

df7(X) = 2.5− (X2
1 + X2

2)0.25[sin2(50(X2
1 + X2

2)0.1) + 1] (5)

where Xi = xi + δs(t), −1 ≤ xi ≤ 1 for i = 1, 2. t is used as an index for the environ-
mental state, whenever the environment changes (e.g., every p = 100 generations), t is
increased by 1. Finally, we implemented two methods to iteratively change the fitness
function via the δs(t) update function, for a given constant severity s. The first method
uses a linear update function (which we tested for s = {0.1, 0.5, 1}):

δs(0) = 0,

δs(t) = δs(t− 1) + s. (6)

The second method uses a jumping dynamics update function (which we tested
for s = {0.1, 0.5}):

δs(0) = 0,

δs(t) = (−1)t · s · (t + 1)/2, t odd
δs(t) = (−1)t · s · t/2, t even (7)

A plot of this jumping dynamics update function is displayed in Figure 18 for
severity s = 0.5. Here we only depict the results for the jumping dynamics update

Evolutionary Computation Volume x, Number x 23

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

delta=1.5

20406080100X 2040
6080100

Y

-2-1
01
2

Z

20406080

delta=−2

20406080100X 2040
6080100

Y

-2-1
01
2

Z

20406080

delta=1

20406080100X 2040
6080100

Y

-2-1
01
2

Z

20406080

delta=−1.5

20406080100X 2040
6080100

Y

-2-1
01
2

Z

20406080

delta=.5

20406080100X 2040
6080100

Y

-2-1
01
2

Z

20406080

delta=−1

20406080100X 2040
6080100

Y

-2-1
01
2

Z

20406080

delta=0

20406080100X 2040
6080100

Y

-2-1
01
2

Z

20406080

delta=−.5

20406080100X 2040
6080100

Y

-2-1
01
2

Z

20406080

Figure 18: The jumping dynamic Schaffer function F7 (severity = 0.5).

function with severity s = 0.1 10. But the results were quite comparable to what we
obtained for other values of severity and update function tested. The ABMGE param-
eters of the dynamic environment simulations using DF7 are the same as those used
for the static F7. We tried various editype mutation and crossover probabilities, for
fitness function update periods: p = {50, 100, 200}. Figure 19 depicts the results for
PEdMut = 0.05 and PEdCross = 0.5, editype editor family size r ∈ {1, · · · , 20}, and
period p = 100 for 1000 generations.

Both versions (with and without editype crossover) of the ABMGE significantly
outperform the GA in this dynamic environment. However, given the confidence
intervals, there is not a significative difference between the versions of the ABMGE.
Therefore we cannot establish if editype crossover is beneficial as an editype variation
mechanism on dynamic, multi-modal environments, or if mutation alone is preferable.
But in all the tests we ran with the dynamic Schaffer DF7 function, with the various
parameters described above, the ABMGE significantly outperformed the GA.

5.2.3 Dynamic Optimal Control Function
In this subsection we test the ABMGE in a dynamic version of the optimal control prob-
lem studied in section 5.1.3. The constraints of the dynamic optimal control fitness func-
tion (DOC) are defined by equation 2 in section 5.1.3, except that here the control vari-

10Ramos et al. (2006) recently presented a study of this dynamic function with an evolutionary swarm
algorithm.

24 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

100 200 300 400 500 600 700 800 900
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

Schaffer − Dynamic (severity 0.1) − 1000 Generations

GA
ABMGE without crossover
ABMGE with crossover (PC = 0.5)

Figure 19: Performance of GA, ABMGE without crossover, and ABMGE with crossover
(PEdCross = 0.5) on DF7. Simulation depicted uses jumping dynamics update function with
period p = 100.

ables are defined by: Ui = ui + δs(t), −1 ≤ ui ≤ 1 for i = 1, 2, where δs(t) is the fitness
update function defined by either the linear or jumping dynamics of formulas 6 and 7
respectively. So far, we have only tested the DOC with the linear update function (6),
which we tested for severity s = {0.1, 1}. A sketch of the DOC n for δs = 0, 3, and 7 is
illustrated on Figure 20.

In this subsection, each of the two variables is encoded by 50 bits, and thus each
individual is a binary string of length 100. We again contrast the traditional GA with
the ABMGE with and without editype crossover, using the same parameters as those
used for the Dynamic Schaffer function in section 5.2.2, except editype editor family
size r ∈ {1, · · · , 10}. Figures 21 and 22 display the averaged best-so-far performance
for severity s = 0.1 and s = 1, respectively.

Our results show that the genotype editing is again advantageous in tracking the
extrema of the search space as they change in time. Indeed, both versions of the AB-
MGE quite significantly outperfom the GA. However, editype crossover in this dy-
namic environment is detrimental: the ABMGE without editype crossover (using edi-
type mutation alone) is significantly better than the ABMGE with editype crossover.

5.2.4 Dynamic Schwefel’s Function
Using the same methodology used for the DF7 and DOC (sections 5.2.2 and 5.2.3), we
also tested a dynamic version of the Schwefel function described in section 5.1.5. So
far, we have only tested the Dynamic Schwefel’s Function (DSF) with the linear update
function (6), which we tested for severity s = {30, 50} and update period p = {50, 100}.
Here we only depict the results for s = 50 and p = 50 for 1000 generations with pop-
ulation size of 30 agents (Figure23). The results for other cases are quite similar, tough
shorter update periods are slightly more favorable for the ABMGE. As it can be seen,
the ABMGE significantly outperforms the GA in a majority of different fitness periods

Evolutionary Computation Volume x, Number x 25

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

Figure 20: Linear dynamic optimal control function: a) δs = 0, b) δs = 3, and c) δs = 7.

(14 out of 20), though the GA does outperform the ABMGE in a few (3 out of 20). Fur-
thermore, there are 3 periods (out of 20) where neither one significantly outperforms
the other. Finally, there seems to be no significant difference between the two types of
ABMGE tested (with and without editype crossover).

6 Exploration vs. exploitation and genotype editing

To understand how genotype editing operates in the search process, we looked at the
distribution of fitness values in a population for both the GA and the ABMGE (with
mutation and without crossover). The study we present in this section looks only at the
Dynamic Schwefel function tested in section 5.2.4 11.

Figure 24 depicts the distribution of fitness values for the GA in the simulation
depicted in section 5.2.4, for the first 100 generations, but only for a single run of the
GA. The fitness update occurs between generation 49 and 50. This figure shows that just
before the fitness function changes, the population has converged on almost a single
value of fitness: most agents are identical and produce the same fitness value. As
the fitness function changes (generation 50), the population of identical agents is now
almost exclusively formed by very low fitness agents.

Figure 25, similarly, depicts the distribution of fitness values for the ABMGE (with-
out crossover) for the same environment, again only for a single run of the ABMGE. In

11This dynamic function is the least favorable of those we tested for the ABMGE

26 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

0 100 200 300 400 500 600 700 800 900 1000
20

40

60

80

100

120

140

Generation

A
ve

ra
g

e
d

 b
e

st
−

so
−

fa
rs

Optimal Control Dynamic, Severity = 0.1, Update frequency = 100, generations=1000, runs=100

GA
ABMGE without crossover
ABMGE with crossover (Edtr Pc=0.5)

Figure 21: Performance of GA, ABMGE without crossover, and ABMGE with crossover
(PEdCross = 0.5) on the DOC function. Simulation depicted uses a linear update function with
period p = 100, severity s = 0.1, for 1000 generations.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

Generation

A
ve

ra
ge

d
be

st
−

so
−

fa
rs

Optimal Control Dynamic, Severity = 1, Update frequency=100, generations=1000, runs=100

GA
ABMGE without crossover
ABMGE with crossover (Edtr Pc=0.5)

Figure 22: Performance of GA, ABMGE without crossover, and ABMGE with crossover
(PEdCross = 0.5) on the DOC function. Simulation depicted uses a linear update function with
period p = 100, severity s = 1, for 1000 generations.

this case, we can clearly see that the distribution of fitness values of the population of
agents is much more spread out. Because genotype editing is a stochastic process, even
identical agents (with the same codotype and editype) will produce different pheno-

Evolutionary Computation Volume x, Number x 27

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Generation

A
ve

ra
g

e
d

 b
e

st
−

so
−

fa
rs

Schwefel − Dynamic − 1000 Generations ,Severity 50, Update Frequency 50 ,Runs 100

GA
ABMGE without crossover
ABMGE with crossover (Edtr Pc=0.5)

Figure 23: Performance of GA, ABMGE without crossover, and ABMGE with crossover
(PEdCross = 0.5) on the DSF. Simulation depicted uses a linear update function with period
p = 50, severity s = 50, for 1000 generations.

−1000 −500 0 500 1000
0

10

20

30
Generation 0

−1000 −500 0 500 1000
0

10

20

30
Generation 49

−1000 −500 0 500 1000
0

10

20

30
Generation 50

−1000 −500 0 500 1000
0

10

20

30
Generation 99

Figure 24: Fitness distribution for a single run of the GA on the DSF for 100 generations. Simu-
lation depicted uses a linear update function with period p = 50, severity s = 50.

types. This way, and as initially predicted by Rocha (1995), we can see that genotype
editing leads evolutionary agents to search their fitness space with a stochastic ”cloud”
of phenotype solutions, rather than a single phenotype. However, even though each
agent can produce a different phenotype per generation, only one genotype is inher-
ited and subjected to variation. If the genotype is repeated in the population, different
phenotypes can exist in the population which are produced from the same genotype.
This way, as can be seen in the figure, as the fitness function changes (generation 50),
even in the new environment, the population of agents is capable of producing a few
higher fitness phenotypes.

We can see that, with its stochastic phenotypic diversity, the ABMGE is perma-

28 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

−1000 −500 0 500 1000
0

2

4
Generation 0

−1000 −500 0 500 1000
0

2

4
Generation 49

−1000 −500 0 500 1000
0

2

4
Generation 50

−1000 −500 0 500 1000
0

2

4
Generation 99

Figure 25: Fitness distribution for a single run of the ABMGE on the DSF for 100 generations.
Simulation depicted uses a linear update function with period p = 50, severity s = 50.

nently exploring more of the search space than the GA. Evolution naturally leads the
search to exploit areas of the codotype space which tend to result in good phenotypes,
but given the stochastic ”expression” of phenotypes, one single genotype (codotype
plus editype) can explore different areas of the phenotype fitness space. Indeed, because
the same codotype can result in different phenotypes, the ABMGE can exploit a fixed,
good area of the codotype space, while producing different phenotypes—which is only
possible because the ABMGE instantiates an indirect, stochastic genotype/phenotype
mapping. Thus, the ABMGE seems to achieve a better exploitation/exploration bal-
ance than the GA—which is particularly useful in changing environments. This can be
clearly seen when we calculate the distribution of fitness values for both algorithms,
for all the 100 runs of our simulation in section 5.2.4. Figure 26 depicts the distribution
of fitness values for 100 runs of the GA for 200 generations, and figure 27 depicts the
same for the ABMGE. It is obvious from these figures that the ABMGE explores more
of the fitness space due to its stochastic phenotype ”expression”12. Furthermore, as can
be seen in figure 23, the ABMGE statistically and significantly tends to find solutions
with higher fitness.

7 Editing and Variation

Our study is an effort to understand the effect of genotype editing on equivalent geno-
types. In other words, our approach was to investigate the behavior of genotypes with
and without editypes by fixing all codotype parameters. However, it could be the case
that the observed benefits of genotype editing result simply from the benefits of addi-
tional variation. As we discussed in section 6, it is clear that the search process instan-
tiated with genotype editing is quite distinct from mere additional variation. While
edits allow a wider exploration of the search space, the various phenotypic solutions
produced by genotype editing are not directly inherited. It is the unedited codotype
that is inherited (together with its editype).

In the ABMGE, if the phenotypes stochastically produced from the same genotype
tend to be weak solutions, the genotype will disappear from the population. But, if the
genotype tends to lead to good phenotypes, even producing a few weak phenotypic

12Videos of the distributions of fitness values as they change in time, for the simula-
tions depicted in the figures in this section and for other simulations, are available online at
http://informatics.indiana.edu/rocha/editing.

Evolutionary Computation Volume x, Number x 29

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

−1000 −500 0 500 1000
0

5

10

15
Generation 0

−1000 −500 0 500 1000
0

500

1000
Generation 49

−1000 −500 0 500 1000
0

100

200
Generation 50

−1000 −500 0 500 1000
0

500

1000
Generation 99

−1000 −500 0 500 1000
0

1000

2000
Generation 100

−1000 −500 0 500 1000
0

200

400

600
Generation 149

−1000 −500 0 500 1000
0

200

400
Generation 150

−1000 −500 0 500 1000
0

500

1000

1500
Generation 199

Figure 26: Fitness distribution for 100 runs of the GA on the DSF for 200 generations. Simulation
depicted uses a linear update function with period p = 50, severity s = 50.

variations, the genotype may remain in the population—especially if it is repeated. In
this sense, we think of genotype editing as a stochastic production of various pheno-
types, which are nonetheless produced from and constrained by a single genotype.
In contrast, any variation of the codotype is inherited. In a GA without editype, any
variation is inherited leading to a parallel, unconstrained search. Therefore, in an evo-
lutionary search, excessive variation is typically deleterious.

In any case, to address the question of whether the benefits of editing are similar
to increased variation, we conducted some preliminary tests that we summarize here.
We present this study solely for the static and dynamic Small Royal Road test function.
We plan to expand on this topic in future work, where we will expand the study with
additional fitness functions and larger search spaces.

When we originally selected the appropriate codotype mutation rate used in the
Small Royal Road (section 5.1.1) tests, we selected the best variation parameters we
found for the GA: PCross = 0.7 and PMut = 0.005. Figure 28 depicts three runs of the
GA with three distinct values of PMut as well as the same run of the ABMGE without
editype crossover shown in (section 5.1.1). All other parameters remain the same. As it
can be clearly seen, the best performance of the GA is observed with the parameters we
used, which lead to a lower performance than the ABMGE in the same circumstances.

In the dynamic environment of the Oscillatory Small Royal Road (ORR)(section
5.2.1), we observed that a higher (but not excessive) mutation rate was beneficial for
the GA, though still inferior to the ABMGE. Recall that the ORR alternates between
two maximally different Small Royal Road functions, SRR1 and SRR0, every period
of p generations (see section 5.2.1). In figures 29 and 30 we use the ORR with p = 100

30 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

−1000 −500 0 500 1000
0

10

20

30
Generation 0

−1000 −500 0 500 1000
0

50

100
Generation 49

−1000 −500 0 500 1000
0

50

100

150
Generation 50

−1000 −500 0 500 1000
0

20

40

60
Generation 99

−1000 −500 0 500 1000
0

20

40

60
Generation 100

−1000 −500 0 500 1000
0

10

20

30
Generation 149

−1000 −500 0 500 1000
0

10

20

30
Generation 150

−1000 −500 0 500 1000
0

10

20

30
Generation 199

Figure 27: Fitness distribution for 100 runs of the ABMGE on the DSF for 200 generations.
Simulation depicted uses a linear update function with period p = 50, severity s = 50.

to contrast the performance of the ABMGE without editype crossover, which we had
already reported in section 5.2.1, with two versions of the GA with distinct mutation
rates: PMut = 0.005, 0.05 13.

Figure 29 depicts the first 1000 generations and figure 30 depicts the last 1000 gen-
erations. It is clear that the ABMGE far outperforms both versions of the GA in the first
period (100 generations), and every time the first fitness function (SRR1) repeats. We
can also see in figure 29 that the GA with lower mutation is better than the one with
higher mutation in the first period, but as the environment oscillates, higher mutation
is beneficial for the GA, allowing the population to recover more effectively. Indeed,
in the first few oscillations, the GA with higher mutation even outperforms the AB-
MGE in the second Royal Road environment (SRR0). But as the evolutionary process
continues, the ABMGE catches the higher mutation GA in its most adverse oscillation
period (SRR0)—see figure 30. This shows that the co-evolution of codotype and ed-
itype in the ABMGE allows the population of agents of the ABMGE to perform best
in both states of the oscillating environment. A higher mutation is beneficial for the
GA, but (in this environment) every time the environment oscillates, its agents have to
cope with the new environment all over again. In contrast, the ABMGE recovers very
quickly every time its first fitness function presents itself, and is capable of eventually
responding well to the second fitness function. This seems to indicate that the intro-
duction of an editype, in this fitness environment, grants a kind of evolved memory of
previous environments which the GA does not attain.

We will explore the results described in this section much further in subsequent

13The results for PMut = 0.5 where quite inferior, so we do not display or discuss them.

Evolutionary Computation Volume x, Number x 31

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

0 20 40 60 80 100 120 140 160 180 200
10

20

30

40

50

60

70

80

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

Royal Road − Static − 200 Generations ,Runs 50 ,Size 40

GA Pm 0.005
GA Pm 0.05
GA Pm 0.5
ABMGE Pm 0.005

Figure 28: ABMGE with pMut = 0.005 contrasted with three GA with pMut = 0.005, 0.05, and
0.5, on SRR1

work. However, it is clear from this preliminary study of varying mutation rates, that
the evolutionary search provided by the ABMGE is not simply a case of increased vari-
ation. The inclusion of an editype, in addition to the constrained stochastic search
described in section 6, seems to provide a means for agents to cope better in dynamic
environments, seemingly by establishing an evolvable memory of previous environ-
ments as discussed in this section.

8 Discussion

We introduced an evolutionary model of genotype editing based on agents endowed
with coding and non-coding portions of their artificial genome: a codome and an edit-
ome. The non-coding editome is used to alter encoded solutions ontogenetically, with-
out inheritance. We furthermore tested different forms of variation on the editome,
independently from the codome, on several static and dynamic environments, and
showed that genotype editing almost always significantly outperforms the traditional
GA which does not include an editome.

The comparison of our algorithm with a simple GA is not meant to imply that our
method is the best possible evolutionary optimization algorithm for the fitness func-
tions tested. Our goal is above all to understand how genotype editing works and what
kind of search process it leads to. Therefore, we compared the ABMGE to the canon-
ical genetic algorithm. We show that the ABMGE, under most circumstance tested,
improved upon the GA. This means that genotype editing generally improves on the
canonical evolutionary search process, not that it is the best algorithm for the functions
tested. Indeed, other authors have tested different algorithms (e.g. particle swarms) on
some of our test functions with better results than the ABMGE (Ramos et al. (2006)).

In static environments, the ABMGE outperformed the GA in every function we
tested. When it comes to the editype crossover mechanism, it is clearly an advantage

32 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

Royal Road − Dynamic −First 1000 Generations ,Oscillations 100, Runs 50 ,Size 40

GA Pm 0.005
GA Pm 0.05
ABMGE Pm 0.005

Figure 29: Performance of GA and ABMGE without crossover on ORR, p = 100, for the first
1000 generations of a simulation of 50 runs and 4000 generations. ABMGE with pMut = 0.005
contrasted with two GA with pMut = 0.005 and 0.05

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
0

10

20

30

40

50

60

70

80

Generation

Av
era

ge
d b

es
t−s

o−
far

s

Royal Road − Dynamic −Last 1000 Generations ,Oscillations 100, Runs 50 ,Size 40

GA Pm 0.005
GA Pm 0.05
ABMGE Pm 0.005

Figure 30: Performance of GA and ABMGE without crossover on ORR, p = 100, for the last
1000 generations of a simulation of 50 runs and 4000 generations. ABMGE with pMut = 0.005
contrasted with two GA with pMut = 0.005 and 0.05

in the amenable fitness environments defined by the Small Royal Road (section 5.1.1)
and the De Jong (section 5.1.2) functions. It was also advantageous in the static, multi-
modal Schaffer function (section 5.1.4). However, its performance was statistically in-

Evolutionary Computation Volume x, Number x 33

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

distinguishable from the ABMGE with editype mutation alone for the other functions
tested: Optimal Control (section 5.1.3) and Schwefel (section 5.1.5). In any case, in static
environments, editype crossover was never detrimental.

In dynamic environments, the ABMGE also globally outperformed the GA in ev-
ery function tested. Indeed, the ABMGE outperformed the GA in every period of these
simulations, except in the case of the dynamic Schwefel function 5.2.4 where the GA
outperformed the ABMGE in a very small number of fitness periods. However, even in
this case, the ABMGE outperformed the GA in a large majority of periods. Thus we can
conclude that even in the case of the dynamic Schwefel function, the ABMGE globally
outperformed the GA.

Furthermore, in dynamic environments, the difference between the ABMGE and
the GA tends to get more pronounced. This is clear in the case of the Oscillating Royal
Road function (sections 5.2.1 and 7), where the two oscillating fitness functions are
maximally incompatible. While the GA settles to agents that are mediocre in both oscil-
lating environment, the ABMGE (without editype crossover) uses genotype editing to
produce phenotypes that remain excellent in the first fitness environment encountered
(and its subsequent re-appearances), and are quite good in the second environment.
On the other dynamic functions tested, the changing environments are not as incom-
patible as is the case of the ORR, but here too, genotype editing as implemented by the
ABMGE provides an evolutionary advantage in tracking the changing extrema.

Finally, in dynamic environments, while the ABMGE with editype crossover
clearly outperformed the GA, it never provided a clear advantage over the ABMGE
with editype mutation alone. Therefore, our implementation of editype crossover is
not useful in dynamic environments. One interesting result with editype crossover is
the case of the Oscillating Royal Road function (section 5.2.1). While this version of
the ABMGE performs rather poorly on the second fitness function (even worse than
the GA), every time the environment switches back to the first fitness function, the
agents regain very high fitness values (even better than the ABMGE without editype
crossover). This means that the ABMGE with editype crossover, in this dynamic envi-
ronment, is capable of recuperating the solutions it reached in the first environment the
first time around. While it does not show the flexibility of the ABMGE with editype
mutation alone in adapting to changing environments (see section 7), it does preserve
a very stable and effective memory of the first environment found (which the GA does
not).

Thus, we conclude that the co-evolving genotype editing mechanism offers a sig-
nificant evolutionary advantage. This advantage is particularly interesting in dynamic
environments as agents become better equipped to deal with changing environments.
Indeed, they both react quicker to the change and produce fitter agents. While our
highly idealized models do not capture the reality of Biology, they do imply that the
process of RNA editing in nature is, likewise, advantageous in evolution. Indeed, our
results emphasize the importance of genetic regulation by non-coding genetic compo-
nents. The stochastic regulation via genotype editing we tested here, instantiates an
indirect genotype/phenotype mapping capable of enhanced exploration of the fitness
space, without loosing the ability to exploit good areas of the genotype space.

In conclusion, the performance of our agent-based algorithms positions them as
promising novel methods for evolutionary computation and machine learning. We
have thus advanced the understanding of the evolutionary role of RNA Editing,
and we have developed a new biologically-inspired algorithm with powerful search
capabilities—meeting the two goals we set up for this project.

34 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

There are many other aspects of the ABMGE that one can study to further enhance
the power of this agent-based evolutionary algorithm. Naturally, we intend to apply
them to additional problems, but we also intend to study the influence of other forms
of editor variation, and allow the variation of other editor parameters such as editor
length, function, concentration, etc. There is also much to investigate regarding dy-
namic environments. Not only do we expect to study other dynamic landscapes, but
we need to investigate more deeply the influence of the changing period on perfor-
mance. Finally, we intend to investigate more biologically realistic ways of implement-
ing an editype and a codotype, namely by exploring and expanding various artificial
genome models in the literature.

9 Acknowledgements

The Indiana University’s supercomputing facilities used in our analysis are funded in
part by NSF under Grant No. 0116050 and Grant CDA-9601632. We are grateful to
IU’s Research and Technical Services for technical support. We are also grateful to the
FLAD Computational Biology Collaboratorium at the Gulbenkian Institute in Oeiras,
Portugal, for hosting and providing facilities used to conduct part of this research.

References
Angeline, P. J. (1997). Tracking extrema in dynamic environments. In Proceedings of the Sixth

International Conference on Evolutionary Programming, pages 335–345.

Bass, B. (2001). RNA Editing. Frontiers in Molecular Biology Series. Oxford University Press.

Bäck, T. (1998). On the behavior evolutionary algorithms in dynamic environments. In IEEE
International Conference on Evolutionary Computation, pages 446–451.

Benne, R. (1993). RNA Editing: The Alteration of Protein Coding Sequences of RNA. Ellis Horwood.

Benne, R., Van den Burg, J., Brakenhoff, J., Sloof, P., and Tromp, M. (1986). Major transcript of
the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that
are not encoded. Cell, 46(6):819–826.

Blanc, V. and Davidson, N. O. (2003). C-to-U RNA editing: Mechanisms leading to genetic diver-
sity. Journal of Biological Chemistry, 278(3):1395–1398.

Chilibeck, K., Wu, T., Liang, C., Schellenberg, M., Gesner, E., Lynch, J., and Macmillan, A. (2006).
FRET analysis of In Vivo dimerization by RNA editing enzymes. J Biol Chem, 281(24):16530–
16535.

De Jong, K. (1975). Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis,
University of Michigan, Ann Arbor.

Dellaert, F. and Beer, R. (1994). Toward an evolvable model of development for autonomous
agent synthesis. In Brooks, R. and Maes, P., editors, Artificial Life IV. MIT Press Cambridge.

Ficici, S. and Pollack, J. B. (2003). A game-theoretic memory mechanism for ecevolution. In Proc.
of 2003 Genetic and Evolutionary Computation Conference, pages 286–297.

Forrest, S. and Mitchell, M. (1993). Relative building block fitness and the building block hypoth-
esis. Foundations of Genetic Algorithms, 2:109–126.

Furey, T. S., Diekhans, M., Lu, Y., Graves, T. A., Oddy, L., Randall-Maher, J., Hillier, L. W., Wilson,
R. K., and Haussler, D. (2004). Analysis of human mRNAs with the reference genome sequence
reveals potential errors, polymorphisms, and RNA editing. Genome Ressearch, 14(10B):2034–40.

Goldberg, D. E. and Deb, K. (1991). A comparative analysis of selection schemes used in genetic
algorithms. In Foundation of Genetic Algorithms, pages 69–93. Morgan Kaufmann.

Evolutionary Computation Volume x, Number x 35

C.-F. Huang, J. Kaur, A. Maguitman and L. M. Rocha

Hager, W. W. and Pardalos, P. M. (1998). Optimal Control: Theory, Algorithms and Applications.
Kluwer Academic Publishers.

Hinton, G. E. and Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems,
1:495–502.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.

Hoopengardner, B., Bhalla, T., Staber, C., and Reenan, R. (2003). Nervous system targets of RNA
editing identified by comparative genomics. Science, 301(5497):832–836.

Huang, C.-F. (2002). A Study of Mate Selection in Genetic Algorithms. Doctoral dissertation. Ann
Arbor, MI: University of Michigan, Electrical Engineering and Computer Science.

Huang, C.-F. and Rocha, L. M. (2003). Exploration of RNA editing and design of robust genetic
algorithms. In Proceedings of the 2003 IEEE Congress on Evolutionary Computation, pages 2799–
2806. IEEE Presss.

Huang, C.-F. and Rocha, L. M. (2004). A systematic study of genetic algorithms with genotype
editing. In Proc. of 2004 Genetic and Evolutionary Computation Conference, volume 1, pages 1233–
1245.

Huang, C.-F. and Rocha, L. M. (2005). Tracking extrema in dynamic environments using a co-
evolutionary agent-based model of genotype edition. In GECCO ’05: Proceedings of the 2005
conference on Genetic and evolutionary computation, pages 545–552, New York, NY, USA. ACM
Press.

Kargupta, H. (1996). The gene expression messy genetic algorithm. In International Conference on
Evolutionary Computation, pages 814–819.

Maas, S., Rich, A., and Nishikura, K. (2003). A-to-I RNA editing: Recent news and residual
mysteries. Journal of Biological Chemistry, 278(3):1391–1394.

Mattick, J. S. (2003). Challenging the dogma: the hidden layer of non-protein-coding RNAs in
complex organisms. BioEssays, 25:930–939.

Mittaz, L., Antonarakis, S. E., Higuichi, M., and Scott, H. S. (1997). Localization of a novel hu-
man RNA-editing deaminase (h(red)2 or ADARB2) to chromosome 10p15. Human Genetics,
100:398–400.

Panait, L., Wiegand, R. P., and Luke, S. (2004). A sensitivity analysis of a cooperative coevolu-
tionary algorithm biased for optimization. In Proc. of 2004 Genetic and Evolutionary Computation
Conference, volume 1, pages 573–584.

Pollack, R. (1994). Signs of Life: The Language and Meanings of DNA. Houghton Mifflin.

Potter, M. and De Jong, K. (2000). Cooperative coevolution: An architecture for evolving coad-
apted subcomponents. Evolutionary Computation, 8(1):1–29.

Ramos, V., Fernandes, F., and Rosa, A. (2006). On self-regulated swarms, societal memory, speed
and dynamics. In Rocha, L. M., Yaeger, L. S., Bedau, M. A., Floreano, D., Goldstone, R. L., and
Vespignani, A., editors, Artificial Life X: Proceedings of the Tenth International Conference on the
Simulation and Synthesis of Living Systems, pages 393–399. MIT Press.

Reil, T. (1999). Dynamics of gene expression in an artificial genome - implications for biological
and artificial ontogeny. In ECAL ’99: Proceedings of the 5th European Conference on Advances in
Artificial Life, pages 457–466, London, UK. Springer-Verlag.

Rocha, L. M. (1995). Contextual genetic algorithms: Evolving developmental rules. In Moran,
F., Moreno, A., Guervos, J. J. M., and Chacon, P., editors, ECAL 1995: Advances in Artificial Life,
Third European Conference on Artificial Life, Granada, Spain, June 4-6, 1995, volume 929 of Lecture
Notes in Computer Science, pages 368–382. Springer.

36 Evolutionary Computation Volume x, Number x

Agent-Based Model of Genotype Editing

Rocha, L. M. (2001). Evolution with material symbol systems. Biosystems, 60(1-3):95–121.

Rocha, L. M. and Huang, C.-F. (2004). The role of RNA editing in dynamic environments. In The
Ninth International Conference on the Simulation and Synthesis of Living Systems (ALIFE9), pages
489–494. MIT Press.

Rocha, L. M., Maguitman, A., Huang, C.-F., Kaur, J., and Narayanan, S. (2006). An evolutionary
model of genotype editing. In Rocha, L. M., Yaeger, L. S., Bedau, M. A., Floreano, D., Gold-
stone, R. L., and Vespignani, A., editors, Artificial Life X: Proceedings of the Tenth International
Conference on the Simulation and Synthesis of Living Systems, pages 105–111. MIT Press.

Schwefel, H.-P. (1981). Numerical optimization of computer models. Chichester: Wiley & Sons.

Simpson, L. (1999). RNA editing-an evolutionary perspective. In Atkins, J. and Gesteland, R.,
editors, The RNA World, pages 585–608. Cold Spring Harbor.

Simpson, L. and Emerson, R. B. (1996). RNA editing. Annual Review of Neuroscience, 19:27–52.

Stuart, K. (1993). RNA editing in mitochondria of african trypanosomes. In Benne, R., editor,
RNA Editing : The Alteration of Protein Coding Sequences of RNA, pages 26–52. Ellis Horwood
Publishers.

Stuart, K., Allen, T., Kable, M., and Lawson, S. (1997). Kinetoplastid RNA editing: complexes
and catalysts. Curr Opin Chem Biol, 1:340–346.

Sturn, N. R. and Simpson, L. (1990). Kinetoplast DNA minicircles encode guide RNA’s for editing
of cytochrome oxidase subunit III mRNA. Cell, 61:879–884.

Wang, Q., Khillan, J., Gadue, P., and Nishikura, K. (2000). Requirement of the RNA editing
deaminase ADAR1 gene for embryonic erythropoiesis. Science, 290(5497):1765–1768.

Evolutionary Computation Volume x, Number x 37

