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P Systems Biology
P Synthetic, Multi- Disciplinary Approach to Biology
P Grand Challenges of Systems Biology
P Full Curriculum for Bioinformatics
P Some traditional components of Bioinformatics:
< Sequence Analysis, Similarity Search, Motif Search, Data-

driven vs.  Knowledge-based Functional Interpretation,
Sequence Alignment, Dynamic Programming for Sequence
Alignment Optimization, Similarity Database Search, basics of
FASTA Method, Simulated Annealing and Genetic Algorithms
for Multiple Sequence Alignment, etc

P Literature Discussion and Useful Resources 

From Bioinformatics to Systems Biology
Layout



Systems Biology
From Systems Science to Post-Genome Informatics
The word “system” is almos never used by itself; it is generally accompanied by an
adjective or other modifier: physical system; biological system; social system [...] The
adjective describes what is specific and particular; i.e., it refers to the specific
“thinghood” of the system; the “system” describes those properties which are
independent of this specific “thinghood.” [Rosen, 1986]

P Systems Science is the methodology used to study
systemhood not thinghood properties in Nature.
< Modeling and Simulation of systems measured from and

validated in real things.
< It accumulates knowledge via Mathematical and Computational

analysis of classes of systems, models, and problems.
– Dynamical Systems, Automata Theory, Pattern Recognition, etc.

P Interdisciplinary Meta-Methodology
< Comparative, Integrative, Non-reductionist

P Historically Related to Cybernetics
< Complex Systems



Systems Science
Dealing with Complex Systems

P Weaver [1948] identified 3 types of problems in Science
< Organized Simplicity: systems with small number of components

– Classical mathematical tools: calculus and differential equations
< Disorganized Complexity: systems with large number of erratic

components
– Stochastic, Statistical Methods

< Organized Complexity: systems with a fair number of components
with some functional identity
– When the behavior of components depends on the organization and

function of the whole
– Techniques depend on Computer Science and Informatics.  Require

massive combinatorial searches, simulations, and knowledge integration.
– The realm of Systems Science

< Complex Systems are systems of many components which cannot
be completely understood by the behavior of their components.
– Complementary models, Hierarchical Organization, Functional

decomposition [See Klir, 1991]



Systems Biology
And its Involvement with Systems Science

P People
< Von Bertalanffy [1952, 1968], Mesarovic [1968], Rosen [1972, 1978, 1979,

1991], Pattee [1962, 1979, 1982, 1991, 2001], Maturana and Varela [1980], 
Kauffman [1991], Conrad [1983], Matsuno [1981], Cariani [1987].

P Biology is the most Fundamental Inspiration for Systems Science
< Cybernetics and Control Theory derive Feedback Control from the

physiological concept of Homeostasis
< Automata Theory, Artificial Intelligence, Artificial Life derived from attempts

(by Turing, McCulloch and Pitts) to study the behavior of the Brain and
Evolution (Von Neumann)

< Self-Organizing, Autopoiesis, Complex Adaptive Systems from
developmental and evolutionary biology.

P But Systems Science has had a Small impact in the practice of Biology
< Due to a large gap between theoretical and experimental biologists.

– Systems-based theoretical Biology versus a reductionist view
– Theoretical biology has had more impact on other areas (AI, Alife,

Complexity, Systems Science) than Biology itself.



Modeling Biological Systems
The Gap Between Experimental Reductionism vs. Systems View
The only consensus found among biologists about their subject is that biological systems
are complicated, by any criterion of complexity that one may care to specify. [Rosen, 1972]

P Biology must simplify organisms to study them – some type of
abstraction or modeling is needed.
< External (Functional) description (favored by Systems Thinking)

– Blackbox, input-output behavior of observables
– Tells us what the system does
– Function depends on repercussions in an environment

< Internal (structural) description (favored by Experimentalists)
– State description, trajectory behavior
– Tells us how the system does what it does
– Structural information can be measured for any component

< Ideally, we would like to move between the two descriptions
– But in Biology, the structural states we can measure, are not obviously

related to the observed functional activities (and vice versa).
– Thus, Systems Biology has mostly been relegated to deal with evolutionary

problems, and Experimental Biology to increase our knowledge of the
molecular components of organisms



Why Structural Reductionism is Not Sufficient
Destruction of Dynamical Properties

P Naive Structural Decomposition
< Breaks an organism into simpler components,

gathers information about those, and attempts to
assemble information about the organism from the
components

< But some properties of the original system cannot be
reconstructed from components
– E.g. the crucial stability properties of 3-body system cannot be

reconstructed from knowledge of 2-body or 1-body
constituents – the dynamics is destroyed. 

– Think what this means for the methodologies of molecular
biology!

http://www.dynamical-systems.org/threebody/



How To Close the Gap
Coupling Structural Data with Functional Decomposition

P Biological Systems require “function-preserving” and
“dynamics-preserving” Decompositions
< In biology, the same physical structure typically is simultaneously

involved in several functional activities
– E.g. unlike airplanes, birds use the same structure (wing) as both propeller

and airfoil
< We must allow the simplifying decompositions to be dictated by

system dynamics
– Iterative Design of Experiments from Knowledge of Dynamics
– Data accumulated from experiments based on naive structural

decompositions are simply the first iteration!
< Search for Global Patterns and Juxtaposed Functional Modes

– E.g. studying global patterns of antigens rather than specific molecular
interactions [Coutinho et al]

– PCA-like, Fourrier Analysis approaches
< Build IntegrativeTechnology to Disseminate and Utilize Structural

Data – for a diverse group of scientists



P Genome Informatics initially as enabling technology for the
genome projects
< Support for experimental projects
< Genome projects as the ultimate reductionism: search and

characterization of the function of information building blocks (genes)
P Post-genome informatics [Kanehisa 2000] aims at the

synthesis of biological knowledge from genomic information
< Towards an understanding of basic principles of life (while developing

biomedical applications) via the search and characterization of
networks of building blocks (genes and molecules)
– The genome contains information about building blocks but, given the

knowledge of Systems Biology, it is naive to assume that it also contains
the information on how the building blocks relate, develop, and evolve.

< Interdisciplinary: biology, computer science, mathematics, and physics

BioInformatics and Computational Biology
Integrative Link for bridging Experimental and Systems Biology



P Not just support technology but involvement in the
systematic, iterative design and analysis of experiments
< Functional genomics: analysis of gene expression patterns at

the mRNA and protein levels, as well as analysis of
polymorphism, mutation patterns and evolutionary
considerations.

< Where, when, how, and why of gene expression 
< Aims to understand biology at the molecular network level

using all sources of data: sequence, expression, diversity, etc. 
P Grand Challenge: Given a complete genome sequence,

reconstruct in a computer the functioning of a biological
organism

Post-Genome informatics
Enabling a Systems Approach to Biology



Post-Genome Informatics or the
“New” Systems Biology

P Systems biology is a unique approach to the study of genes and
proteins which has only recently been made possible by rapid
advances in computer technology. Unlike traditional science which
examines single genes or proteins, systems biology studies the
complex interaction of all levels of biological information: genomic
DNA, mRNA, proteins, functional proteins, informational pathways and
informational networks to understand how they work together.
Systems biology embraces the view that most interesting human
organism traits such as immunity, development and even diseases
such as cancer arise from the operation of complex biological systems
or networks. 
< Institute for Systems Biology: http://www.systemsbiology.org 
< Kitano Symbiotic Systems Project: http://www.symbio.jst.go.jp/

P The “New” Systems Biology is not novel per se, it is rather a result of
new enabling technology for doing “Old” Systems Biology
< But it is finally allowing experimentalists to work with theorists.



P DOE 10 year program on Systems Biology
< the next step of the Genome Project
< From whole-genome sequences, build a systemic understanding of complex

living systems
< Systems approach to Computational Biology
< DOE Mission: produce energy, sequester excess atmospheric carbon that

contributes to global warming, clean up environments contaminated from
weapons production, protect people from energy byproducts (e.g. radiation) and
from the threat of bioterrorism.

< Interdisciplinary: Biology, Mathematics, Computer and Computational Science,
Engineering, Physics, etc.

P 4 Goals:
< Identify and characterize molecular machines of life
< Characterize gene regulatory networks
< Characterize the functional repertoire of complex microbial communities
< Develop computational methods and capabilities to advance understanding and

predict behavior of complex biological systems

Systems Biology at LANL
Genomes To Life Program: DOEGenomesToLife.org





Needs of Systems Biology

PExperimental Side
< Improving cellular measurement methods

– High-throughput identification of the components of protein complexes; Parallel,
comparative, high-throughput identificationof DNA fragments among microbial
communities and for community characterization; Whole-cell imaging including in
vivo measurements; Better Separtion techniques.

< Measurements Based on Functional Decompositions
– Functional assays?  Flexible, fast, novel experimental design based on informatics

results.
PComputational Side
< Integrative Technology

– Standardized formats, databases, and visualization methods
– Automated collection, integration and analysis of biological data
– Algorithms for genome assembly and annotation and measurement of protein

expression and interactions; 
< Simulation Technology

– Improved methods for distributed simulation, analysis, and visualization of complex
biological pathways; 

– Prediction of emergent functional capabilities of microbial communities



Needs of Systems Biology
Continuation

P Modeling Side
< Algorithms for Discovery of Global Patterns and Juxtaposed

Functional Modes
– Pattern Recognition, data-mining,  “Spectral” methods.

< Network Models and Analysis
– Predictive Models based on biochemical pathways of observed

networks
– Simplification Strategies for Network Modeling
– Reduction of possible cell-behaviors from steady-state models of

metabolic network models
– High-Perforemance Algorithms to allow whole-system Kinetic models



P Data-mining of Functional Global Patterns
< Discovery of Juxtaposed temporal patterns in GE data (cell-cycle)

– Comparison between clustering, SVD (PCA), and Gene Shaving.  Mapped
weaknesses of gene shaving with artificial and real data.  Testing better
methods for characterization of temporal processes such as Fourier analysis. 
(Michael Wall, Andreas Rechtsteiner)

– Network Inference (John Ambrosiano, Michael Wall)
– Association Rules for GE data: Generalized AR into an exhaustive search of

itemsets, and inclusion of uncertainty.  (Deborah Rocha)
– Prediction of temporal processes using Klir’s Mask Analysis (Cliff, Joslyn,

Andreas Rechtsteiner, Deborah Rocha)
P Integrative Technology
< Representations of Biological Data
< Latent Databases
< Collaborative and Recommendation Systems
< Automated Analysis of Whole Databases of Publications and data-sets

Systems Biology
On-going work at LANL (CCS)



SVD for Gene Expression “Spectral” Data Mining

Rows of VT: eigengenes
(colums are time steps)
Each gene's expression
pattern is a linear
combination of the
eigengene patterns.

Columns of U: eigenarrays (rows are
genes) describe how each eigengene
contributes to a single gene’s expresssion
pattern (coefficients in a linear expansion).

Columns are
arrays (time
steps) and rows
are genes

Elements of Diagonal S:
Eigenexpression level
Indicate the amount of variance
for all of the data that is
explained by each eigengene. 



Singular Value Decomposition
What does it do? Higher-Order “Clustering”

Also Known as: Principal Components Analysis.

A B
P Given a relation (a matrix) between 2 sets of

distinct objects. SVD is used to discover the
implicit higher-order structure in the relation
< Keyterms by Documents, Genes by Arrays
< Higher-order means indirect relationships: Those

associations between the two types of objects
which are not evident by individual associations.

P In Language and IR most words have many meanings (polysemy) and there
are several possible words to express the same concept (synonymy)
< SVD is used to identify the several meanings of words and “cluster” the words that

express the same concept.
P For gene expression data, we expect to find genes which participate in several

networks (gene functional polysemy) and different genes to participate in the
same networks (gene functional synonymy)
< Clustering usually demands strict inclusion (except for Fuzzy)



SVD for Lower Rank Approximations

Columns of V are the
right singular vectors

Columns of U are the
left singular vectors

SVD allows us to obtain the lower rank approximations that best
approximate the original matrix.  What is lost by losing weaker singular
values, is believed to be unnecessary noise.  The underlying, essential
structure of associations between genes and arrays is preserved. Neural
Networks and other classifiers perform better on the decomposed, lower
dimensionality data (yeung, 2001???)

Eigenarrays

Eigengenes

http://linneus20.ethz.ch:8080/2_2_1.html
http://fonsg3.let.uva.nl/praat/manual/Principal_component_analysis.html



SVD of Time-Dependent Expression Data
Gene expression (13000 genes) after infection with herpes virus

Eigengene 1:
Increase in
expression
after infection

Eigengene 2:
Transient
decrease in
expression
after infection

12 point time series (30min - 48hrs) 
P Genes whose expression is positively (negatively)

correlated with Eigengene 1 are genes whose
expression is increased (decreased) after infection with
Herpes virus

P Genes whose expression is positively (negatively)
correlated with Eigengene 2 are genes whose
expression is transiently decreased (increased) after
infection with Herpes virus.

P The singular value spectrum shows that the signal
cannot be explained by just the first few modes



Biological Discovery via SVD
Eigenarray Coefficient Plot

Eigenarray 1

U

Genes

Princeton group (Shenk’s lab)
found ~1200 genes that
showed significant changes in
expression
at least 3 fold change in
expression at at least 2
consecutive time points

LANL group found a second feature with
interesting biological associations
genes involved in transcription regulation,
immune response, oncogenesis as well as
growth factors/cytokines and their receptors



Data-Mining of Global Patterns
Discovery of Juxtaposed Functional Modes

P Gene Expression Modes
< Cluster analysis provides little insight into inter-relationships among

groups of co-regulated genes.  Tends to demand separated grupings.
< Component ( “spectral”) analysis yields a description of superposed

behavior of gene expression networks, rather than a partition.
– PCA, SVD, etc.
– Holter et al [2000] compares the superposed components to the

characteristic vibration modes of a violin string which entirely specify the
tone produced

< Holter et al [2000] compared SVD analysis of yeast cdc15 cell-cycle
[Spellman et al 1998] and sporulation [Chu et al, 1998] data sets, as
well as the data set from serum-treated human fibroblasts [Iyer et al,
1999].
– Essential temporal behavior is captured by first 2 modes (sine and cosine)
– Large group of genes with same sinosoidal period but dephased 



Holter et al SVD Analysys

P 800 genes by 15 (12)
time measurements

P 2 dominant modes
< Approximately sinusoidal

and out of phase
< Less synchronized as cell

enters 3rd cycle
< If only 12 points are used,

third SV loses relevance,
but 2 first components
remain largely unchanged

Eigengene: rows of VT

(each column is a time
instance)

VT
Eigengenes



cdc15 Reconstruction with k-highest modes

21 43 145

Rows are genes
Columns are time
points

It implies an
undelying simplicity in
genetic response



Eigenarray Coefficient Plot
Plot of the coefficients of the first 2 modes for all genes

P Clusters of genes by other
methods cluster in these plots,
but the temporal progression in
the cell cycle and in the course
of sporulation is more evident
in the SVD analysis

P Holter et al conclude that
genes are not activated in
discrete groups or blocks, as
historically implied by the
division of the cell cycle into
phases or the sporulation
response into tempotal
groups.There is a continuity in
expression change



Eigenarray Coefficient Plot
Random data

random

Fill most of the plot because genes are not very correlated with
components.  A circle implies equal contribution from each component
(rather than an elipse)



P Sorting GE data according to the coefficients of genes and arrays
in eigengenes and eigenarrays gives a global picture of expression
dynamics
< Genes and arrays are classified into groups of similar regulation and

function or similar cellular state and biological phenotype respectively 
< Wall et al [2001], clusters eigenarray coefficients.  Better than

traditional clustering since genes affected by the same regulator are
clustered together irrespective of up or down regulation

P Spectral approaches allow us to filter out the effects of particular
eigengenes/eigenarrays
< Selective discovery of functional patterns

P Aid to the functional simplification necessary for a Systems Biology
< Discovers “superposed” gene expression behavior.  The overall

behavior identified by eigengenes does not describe a particular gene
or the average of a cluster, but rather a separable component of the
integrated behavior of the colection.  The same gene can be correlated
with several eigengenes.

SVD and Functional Decomposition



Discovering Hidden Functional
Expression Modes 
Comparison of SVD Methods with Artificial and Real Data

P Andreas Rechtsteiner
P Artificial data based on

yeast cell cycle data.
< 700 genes with sine

wave expression profile
– Unit amplitude random

phase
< 50 genes exponential

decay and 50 genes
exponential growth

< 5200 random genes



SVD of Artificial Data Set



SVD Mode Plot
Need for More Iterative Spectral Methods

P Gene Shaving and Clustering do not even find the full
sinusoisal component

P Exploring Iterative Variations to Extract Weaker Signals



P Not just support technology but involvement in the systematic design and
analysis of experiments
< Functional genomics
< Where, when, how, and why of gene expression 
< Post-genome informatics aims to understand biology at the molecular network

level using all sources of data: sequence, expression, diversity, etc. 
< Cybernetics, Systems Theory, Complex Systems approach to Theoretical

Biology
P Grand Challenge: Given a complete genome sequence, reconstruct in a

computer the functioning of a biological organism
< Regards Genome more as set of initial conditions for a dynamic system, not as

complete blueprint (Pattee, Rosen, Atlan).  The genome can be contextual and
dynamically accessed and even modified by the complete network of reactions
in the cell (e.g. editing).

< Uses additional knowledge for integration comparative analysis: Comparative
Biology

Bioinformatics as Systems Biology
A Synthetic Multi-Disciplinary Approach to Biology



Systems Biology
CCS Stance: Integration and Bionetwork Hypothesis

Genomic/Proteomic
Sequence
Databases

Texts
Annotations

Bionetwork
Hypotheses

Integration

Clinical
Factors

Biochemical
Pathways

Quantiative Dynamics

Rule Bases

Inferential Networks

Qualitative Dynamics

Bayesian Nets

Gene Expression Analysis discovers patterns of expression behavior in groups of genes: 
numerical expression values without functional or semantic characterization

The biological reasons of gene groupings must be ascertained by biologists
Need to be able to integrate knowledge about a large number of possible underlying
biological mechanisms for a large number of genes in microarrays

Integration of available sources of functional knowledge
databases with biomedical publications and data



P Background
< Knowledge of empirical sciences (Physics, Chemistry, Biology) and

quantitative technical disciplines (programming, appplied mathematics,
statistics)

P Graduate Program (adaptive):
< Training in Biology

– Basic theoretical concepts and experimental method
– Courses: Molecular Biology, Genetics, Cell Biology, Immunology,

Epidemiology, Neurology, etc...
< Training in Computer Science

– Programming,data structures, databases, web technology, robotics and
automation, optimization, Artificial Intelligence and Life, Simulation,
Autonomous Systems

< Mathematics
– Statistics, probability, stochastics processes, dynamical systems, measures

of complexity and uncertainty, graph theory
< Ethics

– Privacy, Security, Technology and Social Issues, bioterrorism

Curriculum For Bioinformatics
Graduate Study in Computational Biology

Altman, R.B. (1998).  Bioinformatics.  14, pp.  549-550
http://www.smi.stanford.edu/projects/helix/bmi214/



P Pairwise Sequence Alignment and Multiple Sequence Alignment
< Dynamic Programming, Simulated Annealing, Similarirty Matrices

P Hidden Markov Models
< Alignment, Prediction

P Phylogenetic Trees
P Combinatorics

< Sequencing
P RNA World

< Structure Prediction
P Sequence feature extraction and annotation
P Proteomics

< Homology Modeling, molecular dynamics, structure prediction
P Database integration and Design
P Optimization

< Expectation Maximization, Monte Carlo Methods, Simulated Annealing, Gradient-based
methods

P Dynamic programming, Bounded Search Algorithms, Cluster Analysis, Machine
Learning, Bayesian Inference, Support Vector Machines, etc. etc.

Computational Biology
Fundamental Concepts

http://www.bioinf.man.ac.uk/ember/documentation.html



P Bioinformatics efforts that appear to be wholly
geared towards basic science are likely to become
relevant to clinical informatics in the coming
decade.  For example, DNA sequence information
and sequence annotations will appear in the
medical chart with increasing frequency.  The
algorithms developed for research in bioinformatics
will soon become part of clinical information
systems.
< Linking of biomedical data for “clinical genomics”
< Altman [1998]. Bioinformatics in Support of Molecular

Medicine. 

Bioinformatics and Biomedicine



P Sequence Analysis
P Similarity Search and Motif Search
P Data-driven vs.  Knowledge-based Functional Interpretation
P Sequence Alignment
P Dynamic Programming for Sequence Alignment

Optimization
P Basics of FASTA Method
P Simulated Annealing and Genetic Algorithms for Multiple

Sequence Alignment
P Basics of BLAST
P Hidden Markov Models
P Suffix Trees for Sequence Alignment
P Evolutionary Trees.

Traditional Components of Bioinformatics



Sequence Analysis
Uncovering higher structural and functional characteristics from
nucleotide and amino acid sequences

Data-Driven approach rather than first-principles equations.
Assumption:when 2 molecules share similar sequences, they are likely to
share similar 3D structures and biological functions because of
evolutionary relationships and/or physico-chemical constraints.

P Similarity (Homology) Search
< Pairwise and multiple sequence alignment, database search, phylogenetic tree

reconstruction, Protein 3D structure alignment
– Dynamic programming, Simulated annealing, Genetic Algorithms, Neural Networks

P Structure/function prediction
< Ab initio: RNA secondary and 3D structure prediction, Protein 3D structure

prediction
< Knowledge-based: Motif extraction, functional site prediction, cellular

localization prediction, coding region prediction, protein secondary and 3D
structure prediction
– Discriminant analysis, Neural Networks, Hidden Markov Model, Formal Grammars



Similarity Search vs. Motif Search
Data-driven vs.  Knowledge-based Functional Interpretation

P Similarity (Homology) Search
< A query sequence is compared with others in a database.  If a similar

sequence is found, and if it is responsible for a specific function, then
the query sequence can potentially have a similar function.
– Like assuming that similar phrases in a language mean the same thing.

P Motif Search (Knowledge-based)
< A query sequence is compared to a motif library, if a motif is present,

it is an indication of a functional site.
– A Motif is a subsequence known to be responsible for a particular function

(often interaction sites with other molecules)
– A Motif library is like a dictionary of sequence-function relationships:

PROSITE (http://www.expasy.ch/sprot/prosite.html)
– Unfortunately there are no comprehensive motif libarries for all types of

functional properties



Similarity Search vs.  Motif Search



Sequence Similarity Search
Sequence Alignment

P Produce the optimal (global or local) alignment of
symbols that best reveals the similarity between 2
sequences (strings).  
< Minimizing gaps, insertions, and deletions while maximizing

matches between elements using a scoring scheme

ALIGNMENT OF 2 STRINGS:
POST GENOME INFORMATICS IS THE FUTURE
GENOME HAS A FUTURE

POST GENOME INFORMATICS IS THE FUTURE
#####GENOME ##HAS A########### FUTURE
#####GENOME #####HAS###### A## FUTURE



Sequence Similarity Search
Sequence Alignment in Biology
P Produce the optimal (global or local) alignment that best reveals the

similarity between 2 sequences.  
< Minimizing gaps, insertions, and deletions while maximizing matches

between elements.
< DNA (RNA) 

– 4 (nucleoptide) symbol alphabet + gap
– TTGACAC
– TTTACAC

< Proteins 
– 20 (aminoacid) symbol alphabet + gap
– RKVA--GMAKPNM
– RKIAVAAASKPAV

< An emprirical measure of similarity between pairs of elements is needed
(substitution scoring scheme)
– Such as the amino acid mutation matrix

Dayhoff et al [1978] collected data for accepted point mutations (frequency of
mutation) (PAMs) from groups of closely related proteins.  Different matrices reflect
different properties of amino acids (e.g. volume and hydrophobicity)
AAIndex: www.genome.ad.jp/dbget/aaindex.html 



Mutation Matrix as Substitution Table



Dynamic Programming
For Sequence Alignment Optimization

Dynamic programming is a very general optimization technique for
problems that can recursively be divided into two similar problems of
smaller size, such that the solution to the larger problem can be obtained
by piecing together the solutions to the two subproblems.  Example:
shortest path between 2 nodes in a graph.
The first mathematical treatment is due to Richard Bellman (1957)

Optimal alignment maximizing the
number of matched letters

AIMS
AMOS

Score function: 1 for match, 0 for
mismatch, 0 for insertion/deletion

AIM-S
A-MOS

3 matches, 2 mismatches, 2 gap insertions = 3



Dynamic Programming
Path Matrix

Left-right

Align a letter from
horizontal with gap
(inserted) in vertical

A path starting at the upper-left corner and ending at the lower-right corner of the
path matrix is a global alignment of the two sequences. The optimal alignment is
the optimal path in the matrix according to the score function for each of the 3
path alternatives at each node. Most path branches are pruned out locally
according to the score function.



Global Sequence Alignment
With Dynamic Programming

P Score Function D (to optimize) sum of weights at each
alignment position from a substitution matrix W
< Nucleotide sequences

– Arbitrary weights: a fixed value for a match or mismatch irrespective
of the types of base pairs

< Amino acid sequences
– Needs to reveal the subtle sequence similarity.  Substitution matrix

constructed from the amino acid mutation frequency adjusted for
different degrees of evolutionary divergence (since the table is built for
closely related sequences)

Weigth for aligning  (Substituting ) element i from sequence s with
element j of sequence tWs(i),t(j)

Weigth for a single element gapd

D0,0 = 0, Di,0= id (i=1...n),  D0,j= jd (j=1...m)
Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1  + d)



Global Alignment

D0,0 = 0, Di,0= id (i=1...n), D0,j= jd (j=1...m)

Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1 + d)

Starting at D1,1, repeatedly
applying the formula, thefinal Dn,m

is the optimal value of the score
function for the alignment. The
optimal path is reconstructed from
the stored values of matrix D by
tracing back the highest local
values

Number of operations
proportional to the size
of the matrix n×m: O(n2)

Needleman and Wunsch algorithm introduces a gap
length dependence with a gap opening and
elongation penalty.



Global Alignment
Toy Example: Maximization

A

A
M

M S

S

O

I

D0,0 = 0, Di,0= id (i=1...n),  D0,j= jd (j=1...m)
Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1  + d)

Score function: 1 for
match, 0 for mismatch, 0
for gap

0

Align a letter from
horizontal with gap
(inserted) in vertical

A
-

0

-
A

0 A
A

1

A
-

-
A

0 0 0

0

0
0

1

I
-

A
A

1

I
M

A
A

1 -
M

A
A

1 1

1

1

2

M
M

2
2

2

2

3

1

1

Backtrack: Maintains Pointer of previous
max path

S
S

-
O

M
M

I
-

A
A 3 matches, 2 mismatches, 2 gap insertions = 3

Several Optimal Alignments are possible.  Backtracking can
be computationally expensive if all branches are pursued. 
Making arbitrary decisions on what pointers to follow, then
the computation complexity is O(N).  For DP is O(N2)



Sequence Alignment
Nucleotide Sequence: Minimization

Score function: 0 for
match, 1 for mismatch, 1
for gap

A-CACACTA
AGCACAC-A

Aminoacid sequence
alignment has much
more complicated
substitution scores

http://merlin.mbcr.bcm.tmc.edu:8001/bcd/Curric/PrwAli/node3.html



Local Alignment
Goal :Alignment of subsequences

D0,0 = 0, Di,0= id (i=1...n), D0,j= jd (j=1...m)

Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1 + d)

D0,j= 0 (j=1...m) Any letter in the horizontal sequence can be a starting
point without any penalty: detects multiple matches
within the horizontal sequence containing multiple
subsequences similar to the vertical sequence



Local Alignment
Smith-Waterman Local Optimality Algorithm

Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1  + d, 0)
Ws(i),t(j) < 0 mismatch Ws(i),t(j) > 0 match d < 0 

D0,0 = 0, Di,0= id (i=1...n),  D0,j= jd (j=1...m)
Di,j = max(Di-1,j-1 + Ws(i),t(j), Di-1,j + d, Di,j-1  + d)

Forces local score for match to be non-negative and for
mismatch to be negative.  Optimal path is not entered, but
clusters of favourable local alignment regions.  Trace back
starts at the matrix element with maximum score.

http://www.cse.ucsc.edu/research/kestrel/runkestrel.html



Similarity Database Search
Parallelized Dynamic Programming

Number of operations in DP is proportional to the size of the
matrix n×m: O(n2) – a lot for a large database of sequences!

Sequential

Parallel



FASTA Method
Dot Matrix Reduces DP Search Area
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Dot Matrix

The dot matrix can be used to recognize local alignments which show as diagonal
stretches or clusters of diagonal strectches. DP can be used only for the portions
of the matrix around these clusters – a limited search area.



FASTA

Hashing the Dot Matrix

Rapid access to stored data items by hashing. Sequences are stored as hash
(look-up) tables. This facilitates the sequence comparison to produce a dot
matrix. 4 times faster for nucleotide sequences: the number of operations is
proportional to the mean row size of the hash table (times dots entered), which is
on average 1/4 of the sequence.

Better than BLAST
for DNA Sequences

http://www.ebi.ac.uk/fasta33/



FASTA
More Details
position 1 2 3 4 5 6 7 8 9 10 11
protein 1 n c s p t a . . . . .
protein 2 . . . . . a c s p r k

position in offset
amino acid protein 1 protein 1 pos 1 - pos2

a 6 6 0
c 2 7 -5
k - 11
n 1 -
p 4 9 -5
r - 10
s 3 8 -5
t 5 -

Note the common offset for the 3 amino acids c,s and p
A possible alignment is thus quickly found -

protein 1 n c s p t a
| | |

protein 2 a c s p r k

Usually with words (k-tuples)
length is typically 1 or 2 for protein
sequences and 5-20 (6) for
nucleotide sequences

Words that have the same offset position reveal a region of
alignment between the two sequences.

Number of comparisons: O(n)
in DP it is O(n2) 

The larger the k-tuple
chosen, the more rapid
but less thorough, a
database search is.  
AC … AG are mismatch,
not partial match
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Statistical Significance
Is the similarity found biologically significant? 

Because good alignments can occur by chance alone, the statistics of alignment
scores help assess the significance.  We know that the average alignment score
for a query sequence with fixed length n increases with the logarithm of length m
of a database sequence.  Thus, the distribution of sequence lengths in the
database can be used to estimate empirically the value of the expected frequency
of observing an alignment with high score.

Another idea is to use the Z-test:

S is the optimal alignment score between 2 sequences

Each sequence is randomized k times (preserving the composition) and new optimal
alignment is computed: s1, s2, ...., sk with mean  : and standard deviation F. If the
score distribution is normal, Z values of 4 and 5 correspond to threshold probabilities
of 3×10-5 and 3×10-6.  However, the distribution typically decays exponentially in S
rather than S2 (as in the normal distribution).  Thus, a higher Z value should be
taken as a threshold for significant similarity.



Multiple Alignment
Simultaneous Comparison of a Group of Sequences

P DP can be expanded to a n-dimensional search space.
< Exhaustive search is manageable for 3, and for a limited portion of the space

for up to 7 or 8 sequences.  
P Heuristics and approximate algorithms
< Compute score for sequences A-C, from A-B, and B-C

– which is in general different from the optimal A-C.
< Hierarchical Clustering of a set of sequences, from a distance matrix

computed from pairwise sequence alignment

P Reasons for Multiple Alignment
< Summarize classes of related proteins (motifs)
< Assess conservation over several proteins
< Establish Evolutionary Relationships

– History of proteins in evolution
< Help model 3D strucures

– What other aminoacids are possible?



Hierarchical Clustering

Given a set of N items and an NxN distance matrix:
1. Assign each item to its own cluster, producing N clusters, each containing
just one item.
2. Find the closest pair of clusters and merge them into a single cluster. 
3. Compute distances between the new cluster and each of the old clusters. 
4 . Repeat steps 2 and 3 until all items are clustered into a single cluster of
size N. 

Distances between clusters:
Single-link clustering: shortest distance from any member of one cluster
to any member of the other cluster.
Complete-link clustering: farthest distance
from any member of one cluster to any member of the other cluster.  
Average-link clustering: average distance from one
cluster to the other cluster. 



Hierarchical Clustering
City Example

Given a set of N items and an NxN distance matrix:
1. Assign each item to its own cluster, producing N clusters
2. Find the closest pair of clusters and merge them into a single cluster. 
3. Compute distances between the new cluster and each of the old clusters. 
4 . Repeat steps 2 and 3 until all items are clustered into a single cluster of
size N. 

Single-link clustering: shortest distance
from any member of one cluster to any
member of the other cluster.



Hierarchical Clustering
City Example: Dendogram

M
I
A

S
E
A

S
F

L
A

B
O
S

N
Y

D
C

C
H
I

D
E
N

206
233
379

671
808
996

10591075
Single-link clustering: shortest
distance from any member of
one cluster to any member of
the other cluster.

http://www.analytictech.com/networks/hiclus.htm



Hierarchical Clustering
Mammal Milk Example

http://www.clustan.com/hierarchical_cluster_analysis.html



Multiple Sequence Alignment
With Hierarchical Clustering

P Distance matrix computed from optimal pairwise sequence alignment 
P Followed by computation of the alignment between groups of

sequences without changing the predetermined alignment within each
group.
< Or using iterative procedure
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Simulated Annealing
For Multiple Alignment

P SA is a stochastic method to search for global
minimum in the optimization of functions to be
minimized. 
< Starting with a given alignment for a set of

sequences, a small random modification is
repeatedly introduced and a new score is
calculated.  When the score is better (negative
energy function), it is accepted.

< Would Not escape local minima
P A stochastic unfavourable modification is accepted

with (Metropolis Monte Carlo) probability:

E(-S)

x

< )E is the increment of the energy function from the
modification. T is a simulated temperature parameter. The
probability is calculated until equilibrium is reached.  Then
the temperature is lowered, and so on.

P Global miniumum is guaranteed for infinite MMC steps and
infinitesimal )T.
< Success depends onTi, Tf, )T, and # of MMC steps



Genetic Algorithms
For Multiple Sequence Alignment

x x x1 2 np

NCode:

!!!

S S np21 S

Selection

Variation

Genotype

Phenotype

Traditional Genetic Algorithm

Used for optimization of solutions for
different problems. Uses the syntactic
operators of crossover and mutation for
variation of encoded solutions, while
selecting best solutions from generation
to generation.  Holland, 1975; Goldberg,
1989; Mitchell, 1995.

P GAs are another stochastic method
used for optimization.
< Solutions to a problem are encoded

in bit strings.
< The best decoded solutions are

selected for the next population
(e.g. by roulette wheel or Elite)

< Variation is applied to selected new
population (crossover and
mutation).



P BLAST
< Heuristic algorithm for sequence alignment that

incorporates good guesses based on the knowledge of
how random sequences are related.

P Prediction of structures and functions
< Neural Networks and Hidden Markov Models

Other Bioinformatics Technology
Major Components not Fully Discussed
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