lecture 7: Modeling

understanding Nature with symbols

abstracting symbol mappings

Raphael's "Plato and Aristotle"

- Aristotle (384-322 BC)
- First (??) to relate symbols more explicitly to the external world and to successively clarify the nature of the symbolworld relation.
- Student of Plato, educated Alexander the Great
- first to consider specific observable factors which determine
- In Physics
- he recognized (mathematical) rules which could describe the relation between an object's weight, the medium's density and the consequent rate of motion (fail):'
- (1) for freely falling or freely rising bodies, speed is proportional to
the density of the medium.

- (2) in forced motion, speed is proportional to the force applied and
inversely proportional to the mass of the body moved
- first time that observable quantities had been expressed in symbolic (numerical) form allowing the results oxpobservations to be used in calculations
- The nature of causation

Ishango bone

- http://classics.mit.edu/Aristotle/physics.html

Modeling!

"When you can measure what you are speaking of and express it in numbers you know that on which you are discoursing. But if you cannot measure it and express it in numbers. your knowledge is of a very meagre and unsatisfactory kind'. Lord Kelvin

abstracting the World

symbol-world relation

- Galileo (1564-1642)
- Progressive dissociation of the symbols from objects
- The interrelationships among signs themselves studied quite apart from the relations among the objects they represent
- Previously, symbols were still generally regarded as inherent properties of the referent objects themselves
- Aristotle's Physics postulated certain primary qualities/elements such as "Fire". Galileo regards "primary" properties as only those that can be
 mathematically quantified, such as size, shape and motion.
- Newton (1643-1727)
- Extends process of abstraction
- Distinguishes between symbols
- Arising from observation
- represent initial conditions
- Arising from symbol relations
- representing laws which govern the subsequent motion.
- Some facts about Hertz
- First to broadcast and receive radio waves
- Established that light is a form of electromagnetic radiation.
- His name is associated with the SI unit for frequency
- Principles of Mechanics (1894)
- Goal was to purge physics of mystical, undefined, unmeasured entities
- such as force (which one can infer but not measure)
- Physical theories to be based only on measurable quantities
- the results of measurements are symbols.
- Physical theory becomes about building relationships among observationally-derived symbols: models
- what Hertz called "images."

Hertzian scientific modeling paradigm

"The most direct and in a sense the most important problem which our
conscious knowledge of nature should enable us to solve is the
anticipation of future events, so that we may arrange our present
affairs in accordance with such anticipation". (Hertz, 1894)

BINGHAMTON	rocha@binghamton.edu casci.binghamton.edu/academics/ssie501m

2,000-year-old astronomical calculator

- bronze mechanical analog computer
- discovered more than 100 years ago in a Roman shipwreck, was used by ancient Greeks to display astronomical cycles.
- built around the end of the second century BC to calculate astronomical positions
- With imaging and high-resolution X-ray tomography to study how it worked.
- complicated arrangement of at least 30 precision, hand-cut bronze gears housed inside a wooden case covered in inscriptions.
- technically more complex than any known device for at least a millennium afterwards.

Fibonacci Numbers!
our first model

3.

Mathematics

Language

141592653589793238462643383279 502884197169399375105820974944 592307816406286208998628034825 342117067982148086513282306647 093844609550582231725359408128 481117450284102701938521105559 644622948954930381964428810975 665933446128475648233786783165 271201909145648566923460348610 454326648213393607260249141273 724587006606315588174881520920 962829254091715364367892590360 011330530548820466521384146951 941511609433057270365759591953 092186117381932611793105118548 074462379962749567351885752724 8912279381

Is The

Of Nature

When I was a kid my mother told me never to stare into the centre of the sun.

So once, when I was b,
I did

design principles

- D'Arcy Wentworth Thompson (1860-1948)
- On Growth and Form (1917), laid the foundations of bio-mathematics
- Equations to describe static patterns of living organisms
- Shells, cauliflower head, etc.
- Transformations of form changing a few parameters

D'Arcy Thompson

Pseudopriacanthus altus

Copyright (©) 2006 Nature Publishing Group Nature Reviews | Genetics
Arthur, Wallace. "D'Arcy Thompson and the theory of transformations." Nature Reviews Genetics 7.5 (2006): 401-406.

rocha@binghamton.edu
casci.binghamton.edu/academics/ssie501m

What about our plant?
branching as a model (a general system?)

- An Accurate Model
- Requires
- Varying angles
- Varying stem lengths
- randomness
- The Fibonacci Model is similar
- Initial State: b
- b-> a
- a -> ab
- sneezewort

Aristid Lindenmeyer

- Mathematical formalism proposed by the biologist Aristid Lindenmayer in 1968 as a foundation for an axiomatic theory of biological development.
- applications in computer graphics
- Generation of fractals and realistic modeling of plants
- Grammar for rewriting Symbols
- Production

Grammar

- Defines complex objécts by successively replacing parts of a simple object using a set of recursive, rewriting rules or productions.
- Beyond one-dimensional production (Chomsky)
grammars
- Parallel recursion
- Access to computers

rocha@binghamton.edu
casci.binghamton.edu/academics/ssie501m

example

```
#define CH 900 /* high concentration */
#define CT 0.4 /* concentration threshold */
#define ST 3.9 /* segment size threshold */
#include H /* heterocyst shape specification */
#ignore f ~ H
\omega: -(90)F(0,0,CH)F(4,1,CH)F(0,0,CH)
p
                F(s/3*2,2,c)f(1)F(s/3,1,c)
p}2: : F(s,t,c) : t=2 & s>=6 ->
                        F(s/3,2,c)f(1)F(s/3*2,1,c)
p}\mp@code{\mp@code{: F F(h,i,k) < F(s,t,c) > F(o,p,r) : s>ST|c>CT }->
                F(s+.1,t,c+0.25*(k+r-3*c))
p}\mp@subsup{4}{}{:}:\textrm{F}(\textrm{h},\textrm{i},\textrm{k})<\textrm{F}(\textrm{s},\textrm{t},\textrm{c})>\textrm{F}(\textrm{o},\textrm{p},\textrm{r}): !(\textrm{s}>\textrm{ST}|\textrm{c}>\textrm{CT})
                        F(0,0,CH) ~ H(1)
p5 : H(s): s<3 }->\textrm{H}(\mathbf{s*1.1)
```


From: P. Prusinkiewicz and A. Lindenmayer [1991]. The Algorithmic Beauty of Plants.

18: Y1810月1 1ABOMAOLY

> convenient tool for expressing developmental models with diffusion of substances. pattern of cells in Anabaena catenula and other blue-green bacteria

