introduction to systems science

lecture 13: complex systems under limits

introduction to systems science

evaluation

- Participation: 20%.
 - class discussion, everybody reads and discusses every paper
 - engagement in class
- Paper Presentation and Discussion: 20%
 - **SSIE501** students are assigned to papers individually or as group lead presenters and discussants
 - all students are supposed to read and participate in discussion of every paper.
 - Presenter prepares short summary of assigned paper (15 minutes)
 - no formal presentations or PowerPoint unless figures are indispensable.
 - Summary should:
 - 1) Identify the key goals of the paper (not go in detail over every section)
 - 2) What discussant liked and did not like
 - 3) What authors achieved and did not
 - 4) Any other relevant connections to other class readings and beyond.
 - ISE440 students chose one of the presented papers to participate as lead discussant
 - not to present the paper, but to comment on points 2-3) above
 - Class discussion is opened to all
 - lead discussant ensures we important paper contributions and failures are addressed
- Black Box: 60%
 - Group Project (2 parts)
 - Assignment I (25%) and Assignment II (35%)

readings

Class Book

• Klir, G.J. [2001]. Facets of systems science. Springer.

Papers and other materials

- <u>Module 3</u> The Organization of Complex Systems
 - Discussion set 6 (Group 6): November 5th
 - Barabasi, A.-L. (2015). Network Science, Chapter 1.
 - Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'smallworld'networks. *Nature*, **393**(6684), 440-442.
 - Torres, Leo, Ann S. Blevins, Danielle Bassett, and Tina Eliassi-Rad. "The Why, How, and When of Representations for Complex Systems." *SIAM Review* 63, no. 3 (January 2021): 435–85.

Increasing randomness

Second assignment

The Black Box II: Due: November 22nd, 2024

Herbert Simon: Law discovery means only finding **pattern** in the data; whether the pattern will continue to hold for new data that are observed subsequently will be decided in the course of **testing the law**, not discovering it. The **discovery process** runs from particular facts to general laws that are somehow induced from them; the **process of testing** discoveries runs from the laws to predictions of particular facts from them [...] To explain why the patterns we extract from observations frequently lead to correct predictions (when they do) requires us to face again the problem of **induction**, and perhaps to make some hypothesis about the uniformity of nature. But that hypothesis is neither required for, nor relevant to, the theory of discovery processes. [...] By separating the question of pattern detection from the question of prediction, we can construct a **true normative theory of discovery**-a logic of discovery.

Focus on uncovering quadrants

- using data collection, descriptive patterns & statistics, and induction.
- Propose a formal model or algorithm of what each quadrant is doing.
 - Analyze, using deduction, the behavior of this algorithm.
- Maximum 20 pages!!!
 - 4 per quadrant + 4
 - Supporting information in separate file

Current step: 501

BINGHAMTON UNIVERSITY

modelling the World

Hertzian scientific modeling paradigm

"The most direct and in a sense the most important problem which our conscious knowledge of nature should enable us to solve is the **anticipation of future events**, so that we may arrange our present affairs in accordance with such anticipation". (Hertz, 1894)

BINGHAMTON UNIVERSITY OF NEW YORK STATE UNIVERSITY OF NEW YORK

World is complex, contextual and multilayered

Good news I: Simon's "architecture of complexity" (near-decomposability)

Pescosolido, B.A. 2006. Journal of Health and Social Behavior 47: 189-208.

Newman, M.E.J. (2006). "Modularity and community structure in networks." *PNAS* **103** (23): 8577-8582.

Simon, H.A. [1962]. "The Architecture of Complexity". *Proc. Am. Phil. Soc.*, **106**: pp. 467-482.

World is complex, contextual and multilayered

Good news I: Simon's "architecture of complexity" (near-decomposability)

models

are all "models" equally acceptable/useful?

No!

- William Ockham (c. 1285–1349):
 - "entia non sunt multiplicanda praeter necessitatem"
 - Loosely paraphrased as "make no unnecessary assumptions", or "of two competing theories: simplest is often best"
- Explanatory "power" (cf. discussion on "beauty")
- Generality
 - Example: model of lightning? "Thor gets mad."
- Karl Popper (1902-1994): notion of Falsifiability
 - model/theories/assertions can not be confirmed by any number of empirical tests (Blackbox modeling)
 - but information gained when falsified
 - logical asymmetry between verification and falsification: many observations do not derive (universal) theories, a single observation can falsify it: scientific theories (deduced) from induction are testable.
 - falsifiability hard requirement for scientific models
 - tremendously important in science
- All of these matter in complex systems modeling
 - existing intuitive notions fail in complex systems
 - falsifiability: praxis/logistic problems

Popper (1972) Objective Knowledge

L-systems

models or realistic imitations?

- Common features (design principle) between artificial and real plants
 - Development of (macro-level) morphology from local (micro-level) logic
 - Parallel application of simple rules
 - Recursion

- But are the algorithms the same as the biological *mechanism*?
 - Real organisms need to economize information for coding complex phenotypes
 - The genome cannot encode every ripple of the brain or lungs
 - Organisms need to encode compact procedures for producing the same pattern (with randomness) again and again
- But recursion alone does not explain form and morphogenesis
 - One of the design principles involved
 - There are others
 - Selection, genetic variation, self-organization, epigenetics

fern gametophyte Microsorium linguaeforme (left) and a simulated model using map L systems (right).

complexity

What is it?

dictionary

- Having many varied or interrelated parts, patterns or elements
 - Quantity of parts and extent of interrelations
 - Organizational complexity
- Subjective or epistemic connotation
 - Ability to understand or cope
 - Complexity is in the eyes of the observer
 - Brain to a neuroscientist and to a butcher
 - *Quantity of information* required to describe a system

BINGHAMTON rocha@ UNIVERSITY casci.bi

complexity and information

descriptive complexity

Proportional to the amount of *information* required to describe the system

- In a syntactic way
 - Measure number of entities (variables, states, components) and variety and structure of relationships among them
- General requirements
 - Nonnegative quantity
 - If system A is a homomorphic image of B, then the complexity of A should not be greater than B
 - If A and B are isomorphic, then their complexity should be the same
 - If system C consists of two non-interacting subsystems B and neither is a homomorphic image of the other, then the complexity of C should be equal to the sum of the complexities of A and B
- Size of shortest description or program in a standard language or universal computer
 - generative
 - Applicable to any system
 - Difficult to determine shortest description
 - A.K.A. Kolmogorov complexity

BINGHAMTON rocha

complexity and information

Uncertainty-based complexity

- Proportional to the amount of *information* needed to resolve any uncertainty with the system involved
 - In a syntactic way
 - Related to number of alternatives left undecided to characterize a particular element
 - Examples
 - Hartley Measure
 - Shannon Entropy

including more structure reduces surprise

information is surprise

$$H_S(A) = -\sum_{i=1}^n p(x_i) \log_2(p(x_i))$$

$$H(A) = \log_2|A|$$

Hartley, R.V.L., "Transmission of Information", *Bell System Technical Journal*, July 1928, p.535. C. E. Shannon [1948], "A mathematical theory of communication". *Bell System Technical Journal*, **27**:379-423 and 623-656

casci.binghamton.edu/academics/ssie501

BINGHAMTON rocha@binghamton.edu

UNIVERSITY

complexity flavors

Trade-off between descriptive and uncertainty-based complexity

- When one is reduced, the other is likely to increase
 - Trade certainty for acceptable descriptive complexity
 - Models of phenomena in the realm of organized complexity require large descriptive complexity
 - But to be manageable, we must simplify by accepting larger uncertainty (and smaller descriptive complexity)
- Descriptive and uncertainty-based complexity pertain to systems
 - Characterized by information
- Computational complexity pertains to systems problems
 - Characterization of the time or space (memory) requirements for solving a problem by a particular algorithm
- (epistemic) Complexity-relative-to-a-model (Rosen)
 - When and how a model fails

Hanoi Problem

Facing limits

- Invented by French Mathematician Édouard Lucas in 1883
 - At the Tower of Brahma in India, there are three diamond pegs and sixty-four gold disks. When the temple priests have moved all the disks, one at a time preserving size order, to another peg the world will come to an end.
 - If the priests can move a disk from one peg to another in one second, how long does the World have to exist?

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/ssie501

Recursive building blocks

An Algorithm that uses itself to solve a problem

rocha@binghamton.edu

casci.binghamton.edu/academics/ssie501

BINGHAMTON

UNIVERSIT

Computational Complexity

Prefix		Base
Name	Symbol	10
quetta	Q	10 ³⁰
ronna	R	10 ²⁷
yotta	Y	10 ²⁴
zetta	Z	10 ²¹
exa	E	10 ¹⁸
peta	Р	10 ¹⁵
tera	т	10 ¹²
giga	G	10 ⁹
mega	М	10 ⁶
kilo	k	10 ³
hecto	h	10 ²
deca	da	10 ¹

"FLOPS"

(FLoating Point Operations Per Second)

585 billion years in seconds!!!!!!!

Earth: 5 billion years

Universe: 15 billion years

Fastest Computer: 1.68 exaFLOPS a second ($\approx 2^{60.54}$), $2^{64} / 2^{60.54}$, needs \approx 11 seconds! Resources required during computation of an algorithm to solve a given problem

• Time

how many steps does it take to solve a problem?

• Space

how much memory does it take to solve a problem?

- The Hanoi Towers Problem
 - *f*(*n*) is the number of times the HANOI algorithm moves a disk for a problem of *n* disks
 - *f*(1)=1, *f*(2)=3, *f*(3)=7
 - $f(n) = f(n-1) + 1 + f(n-1) = 2 \times f(n-1) + 1$
 - Every time we add a disk, the time to compute is at least double

$$f(n) = 2^n - 1$$

BINGHAMTON r UNIVERSITY

Bremermann's Limit

facing limits

Physical Limit of Computation

- Hans Bremmermann in 1962
- "no data processing system, whether artificial or living, can process more than 2 × 10⁴⁷ bits per second per gram of its mass."
 - Based on the idea that information could be stored in the energy levels of matter
 - Calculated using Heisenberg's uncertainty principle, the Hartley measure, Planck's constant, and Einstein's famous E = mc² formula
- A computer with the mass of the entire Earth and a time period equal to the estimated age of the Earth
 would not be able to process more than about 10⁹³ bits
- transcomputational problems

BINGHAMTON UNIVERSITY

Transcomputational Problems

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/ssie501

Bad news I: computational limits

readings

Class Book

• Klir, G.J. [2001]. Facets of systems science. Springer.

Papers and other materials

- <u>Module 3</u> The Organization of Complex Systems
 - Discussion set 6 (Group 6): November 5th
 - Barabasi, A.-L. (2015). Network Science, Chapter 1.
 - Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'smallworld'networks. *Nature*, **393**(6684), 440-442.
 - Torres, Leo, Ann S. Blevins, Danielle Bassett, and Tina Eliassi-Rad. "The Why, How, and When of Representations for Complex Systems." *SIAM Review* 63, no. 3 (January 2021): 435–85.

Increasing randomness

