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lecture 9: organized complexity
introduction to systems science
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introduction to systems science

 Participation: 20%. 
 class discussion, everybody reads and discusses every paper
 engagement in class

 Paper Presentation and Discussion: 20%
 SSIE501 students are assigned to papers individually or as group lead presenters and discussants

 all students are supposed to read and participate in discussion of every paper. 
 Presenter prepares short summary of assigned paper (15 minutes)

 no formal presentations or PowerPoint unless figures are indispensable.
 Summary should:

 1) Identify the key goals of the paper (not go in detail over every section)
 2) What discussant liked and did not like
 3) What authors achieved and did not
 4) Any other relevant connections to other class readings and beyond.

 ISE440 students chose one of the presented papers to participate as lead discussant
 not to present the paper, but to comment on points 2-3) above

 Class discussion is opened to all
 lead discussant ensures we important paper contributions and failures are addressed

 Black Box: 60%
 Group Project (2 parts)

 Assignment I (25%) and Assignment II (35%)

evaluation

bit.ly/atBIC



rocha@binghamton.edu
casci.binghamton.edu/academics/ssie501

course outlook

 Paper Presentation: 20% 
 Present (501) and lead (501&440) the discussion of an article related to 

the class materials
 section 01 presents in class, section 20 (Enginet) posts videos on Brightspace 

(exceptions possible)
 Module 2: Systems Science 

 Discussion Set 4 (Group 4): October 17th
 Klir, G.J. [2001]. Facets of systems Science. Springer. Chapter 8.

 Optional: Klir, G.J. [2001]. Facets of systems Science. Springer. Chapter 11
 Schuster, P. (2016). The end of Moore’s law: Living without an exponential 

increase in the efficiency of computational facilities. Complexity. 21(S1): 6-9. 
DOI 10.1002/cplx.21824.

 Von Foerster, H., P. M. Mora and L. W. Amiot [1960]. "Doomsday: Friday, 
November 13, AD 2026." Science 132(3436):1291-5.

 Future Modules
 See brightspace

next readings (check brightspace)
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course outlook

 Paper Presentation: 20% 
 Present (501) and lead (501&440) the discussion of an article related to the 

class materials
 Enginet students post/send video or join by Zoom synchronously 

 Module 3: Module 3 - The Organization of Complex Systems
 Discussion Set 5 (Group 5)

 Simon, H.A. [1962]. "The Architecture of Complexity". Proceedings of the 
American Philosophical Society, 106: pp. 467-482. 
 Also available in Klir, G.J. [2001]. Facets of systems Science. Springer, pp: 541-559.

 Golan, Amos, and John Harte. "Information theory: A foundation for complexity 
science." Proceedings of the National Academy of Sciences 119.33 (2022): 
e2119089119. 

 James, R., and Crutchfield, J. (2017). "Multivariate Dependence beyond 
Shannon Information". Entropy, 19(10), 531

 See brightspace

more upcoming readings (check brightspace)
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Second assignment 

 Focus on uncovering quadrants
 using data collection, descriptive patterns & 

statistics, and induction. 
 Propose a formal model or algorithm of what 

each quadrant is doing. 
 Analyze, using deduction, the behavior of this 

algorithm. 

The Black Box II: Due: November 22nd, 2024
Herbert Simon: Law discovery means only finding pattern in the data; 
whether the pattern will continue to hold for new data that are observed 
subsequently will be decided in the course of testing the law, not 
discovering it. The discovery process runs from particular facts to 
general laws that are somehow induced from them; the process of 
testing discoveries runs from the laws to predictions of particular facts 
from them [...] To explain why the patterns we extract from observations 
frequently lead to correct predictions (when they do) requires us to face 
again the problem of induction, and perhaps to make some hypothesis 
about the uniformity of nature. But that hypothesis is neither required for, 
nor relevant to, the theory of discovery processes. […] By separating the 
question of pattern detection from the question of prediction, we can 
construct a true normative theory of discovery-a logic of discovery.

Q1 Q2

Q3 Q4
Q3a/b
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Hertzian scientific modeling paradigm
modelling the World

World1

Measure

Symbols

initial 
conditions

Measure

scientific 
model

World2
Natural Laws

observations

predictions

En
co

di
ng

Logical 
Consequences ????

“The most direct and in a sense the most important problem which our 
conscious knowledge of nature should enable us to solve is the 
anticipation of future events, so that we may arrange our present 
affairs in accordance with such anticipation”. (Hertz, 1894) 

Eugene Wigner

“Every empirical law has the disquieting quality that one 
does not know its limitations.” E. Wigner [1957] in “The 

Unreasonable Effectiveness of Mathematics in the Natural 
Sciences” 

A. Rosenblueth and N. Wiener [1945] “The role of models in 
science.” Philosophy of Science. 12(4): 316-321.” 

C. Shalizi [2024] “Opening a closed box.” In: 
Foundational Papers in Complexity Science, D.C. 

Krakauer (Ed). pp. 149–169
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What about our plant?

 An Accurate Model
 Requires

 Varying angles
 Varying stem lengths
 randomness

 The Fibonacci Model is similar
 Initial State: b
 b -> a
 a -> ab

 sneezewort

branching as a model (a general system?)

Psilophyta/Psilotum 

b
a
b

b
b

b
b

b
b b

a
a

a
a
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L-Systems

 Mathematical formalism proposed by the 
biologist Aristid Lindenmayer in 1968 as a 
foundation for an axiomatic theory of biological 
development. 
 applications in computer graphics

 Generation of fractals and realistic modeling of plants
 Grammar for rewriting Symbols

 Production Grammar
 Defines complex objects by successively replacing 

parts of a simple object using a set of recursive, 
rewriting rules or productions. 
 Beyond one-dimensional production (Chomsky) 

grammars
 Parallel recursion
 Access to computers

Aristid Lindenmeyer
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example
parametric 2L-system

convenient tool for expressing developmental 
models with diffusion of substances. 
pattern of cells in Anabaena catenula and 
other blue-green bacteria

From: P. Prusinkiewicz and A. Lindenmayer [1991]. 
The Algorithmic Beauty of Plants.
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organized complexity

 organized simplicity
 very small number of variables

 Deterministic
 classical mathematical tools

 Calculus 
 disorganized complexity

 very large number of variables 
 Randomness, homogenous

 statistical tools
 organized complexity

 sizable number of variables which are 
interrelated into an organic whole

 study of organization
 whole more than sum of parts
 Massive combinatorial searches need for new 

mathematical and computational tools

Warren Weaver’ classes of systems and problems

Weaver, W. [1948]. "Science and Complexity". American Scientist, 36(4): 536-44.
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Organized
simplicity

Disorganized complexity

Organized Complexity

Complexity

R
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m
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ss

examples
organized complexity

Most relevant to problems
in biology, medicine, 

society, and technology
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organized complexity

 organized complexity
 study of organization

 whole is more than sum of parts
 Organizational properties (“systemhood”)

 Need for new mathematical and computational tools
 Massive combinatorial searches
 Problems that can only be tackled with computers

 Computer as lab
 Interdisciplinary and collaborative science

 Thrives in problem-driven environments
 Los Alamos, Santa Fe, all new computing centers.

 thinghood and systemhood
 developing general-purpose computing further

 Computational thinking and cybernetics
 Some (all?) mechanisms and organizational principles are implementation-independent
 Hardware vs software

 Integration of empirical science with general systems
 Interdisciplinarity coupled with computational modeling

 Understanding structure and function
 Of multi-level wholes

 Systems biology, Evolutionary thinking, Systems thinking
 Emergence (or collective behavior)

 How do elements combine to form new unities?
 Micro- to macro-level behavior

from computational to systems thinking
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systems movement

 Mathematics
 Computer Technology and Computational Thinking
 Systems Thinking

 Cybernetics
 Looking at mind, life, society with control, computation, 

information, networks 
 Functional equivalence

 General principles and modeling
Organized Complexity

 Study of organization
 “Whole is more than some of parts”, nonlinearity, interaction, 

communication
 Interdisciplinary outlook

 Not just math and computing, modeling requires 
understanding of focus domain

 Bio-inspired mathematics and computing
 Computing/Mechanism-inspired biology and social science

key roots

Ludwig 
von Bertalanffy

Anatol
Rapoport

Ralph
Gerard

Kenneth
Boulding

1965: Society for the Advancement 
of General Systems Theory
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(complex) systems science

 Systemhood properties of nature
 Robert Rosen

 Systems depends on a specific adjective: thinghood
 Systemhood: properties of arrangements of items, 

independent of the items
 Similar to “setness” or cardinality

 George Klir
 Organization can be studied with the mathematics of 

relations
 S = (T, R)

 S: a System,  T: a set of things(thinghood), R: a (or set of) 
relation(s) (Systemhood)

 Same relation can be applied to different sets of objects
 Systems science deals with organizational properties of 

systems independently of the items
 Examples

 Collections of books or music files are sets of things
 But organization of such sets are systems (alphabetically, 

chronologically, typologically, etc.)

a science of organization across disciplines
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what is a system?

 S = (T, R)
 a (multivariate) system

 T = {A1, A2, …, An}
 A set (of sets) of things

 thinghood
 Cartesian Product

 Set of all possible associations of elements from each set
 All n-tuples

 {A1 × A2 × … × An}
 R: a relation (systemhood)

 Subset of cartesian product on T.
 Many relations R can be defined on the same T

more formally: representation of multivariate of associations/interactions
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𝐴 𝐵 𝐶 𝐷

equivalence classes or multilayer network?
example of system

DCBAR 

Note: same thinghood (set of students), but 
distinct systemhood or organization projected to 
a specific set (layer) as equivalence classes.
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(complex) systems science

 Study of “systemhood” properties 
 Classes of isomorphic abstracted 

systems
 Search of general principles of 

organization
 Weaver’s organized complexity (1948)

 Systemhood properties 
 preserved under suitable transformation 

from the set of things of one system into 
the set of things from the other system
 Divides the space of possible systems 

(relations) into equivalent classes
 Devoid of any interpretation!

 General systems
 Canonical examples of equivalence classes

study of “systemhood” separated from “thinghood”

George Klir

From Klir [2001]
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example of general principle of organization
complex networks

Barabasi-Albert Model: leads to power-law 
node degree distributions in networks 

Amaral et al: Most real networks have a cut-off 
distribution for high degree nodes which can 
be computationally modeled with vertex aging.
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From genetic interaction maps (in yeast)
Uncovering hierarchical organization

Jaimovich, Aet al. 2010. Modularity and directionality in genetic interaction maps. 
Bioinformatics 26, no. 12 (June): i228-i236. 
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Next lectures

 Class Book
 Klir, G.J. [2001]. Facets of systems science. Springer.

 Papers and other materials
 Module 2: Systems Science 

 Discussion Set 4 (Group 4): October 17th
 Klir, G.J. [2001]. Facets of systems Science. Springer. 

Chapter 8.
 Optional: Klir, G.J. [2001]. Facets of systems Science. 

Springer. Chapter 11
 Schuster, P. (2016). The end of Moore’s law: Living 

without an exponential increase in the efficiency of 
computational facilities. Complexity. 21(S1): 6-9. DOI 
10.1002/cplx.21824.

 Von Foerster, H., P. M. Mora and L. W. Amiot [1960]. 
"Doomsday: Friday, November 13, AD 2026." Science 
132(3436):1291-5.

readings


