introduction to systems science

introduction to systems science

evaluation

- ▉ Participation: 20%.
	- class discussion, everybody reads and discusses every paper
	- \bullet engagement in class
- П Paper Presentation and Discussion: 20%
	- **SSIE501** students are assigned to papers individually or as group lead presenters and discussants ■ all students are supposed to read and participate in discussion of every paper.
	- 0 Presenter prepares short summary of assigned paper (15 minutes)
		- no formal presentations or PowerPoint unless figures are indispensable.
	- \bullet Summary should:
		- П 1) Identify the key goals of the paper (not go in detail over every section)
		- П 2) What discussant liked and did not like
		- 3) What authors achieved and did not
		- 4) Any other relevant connections to other class readings and beyond.
	- \bullet **ISE440** students chose one of the presented papers to participate as lead discussant
		- not to present the paper, but to comment on points 2-3) above
	- 0 Class discussion is opened to all
		- \blacksquare lead discussant ensures we important paper contributions and failures are addressed
- u Black Box: 60%
	- Group Project (2 parts)
		- Assignment I (25%) and Assignment II (35%)

course outlook

next readings (check brightspace)

- Paper Presentation: 20%
	- Present (501) and lead (501&440) the discussion of an article related to the class materials
	- *section 01* presents in class, *section 20* (Enginet) posts videos on Brightspace (exceptions possible)
- Module 2: Systems Science
	- Discussion Set 4 (Group 4): October 17th
		- Klir, G.J. [2001]. *Facets of systems Science*. Springer. Chapter 8.
			- Optional: Klir, G.J. [2001]. *Facets of systems Science*. Springer. Chapter 11
		- Schuster, P. (2016). The end of Moore's law: Living without an exponential increase in the efficiency of computational facilities. *Complexity*. **21**(S1): 6-9. DOI 10.1002/cplx.21824.
		- Von Foerster, H., P. M. Mora and L. W. Amiot [1960]. "Doomsday: Friday, November 13, AD 2026." Science **132**(3436):1291-5.
- Future Modules
	- See brightspace

course outlook

casci.binghamton.edu/academics/ssie501

NIVERSITY

course outlook

more upcoming readings (check brightspace)

Second assignment

The Black Box II: Due: **November 22nd, 2024**

Herbert Simon: Law discovery means only finding **pattern** in the data; whether the pattern will continue to hold for new data that are observed subsequently will be decided in the course of **testing the law**, not discovering it. The **discovery process** runs from particular facts to general laws that are somehow induced from them; the **process of testing** discoveries runs from the laws to predictions of particular facts from them [...] To explain why the patterns we extract from observations frequently lead to correct predictions (when they do) requires us to face again the problem of **induction**, and perhaps to make some hypothesis about the uniformity of nature. But that hypothesis is neither required for, nor relevant to, the theory of discovery processes. [...] By separating the question of pattern detection from the question of prediction, we can construct a **true normative theory of discovery**-a logic of discovery.

- П Focus on uncovering quadrants
	- using data collection, descriptive patterns & statistics, and induction.
- Propose a formal model or algorithm of what each quadrant is doing.
	- Analyze, using deduction, the behavior of this algorithm.

Current step: 501

BINGHAMTON

modelling the World

Hertzian scientific modeling paradigm

"The most direct and in a sense the most important problem which our conscious knowledge of nature should enable us to solve is the **anticipation of future events**, so that we may arrange our present affairs in accordance with such anticipation". (Hertz, 1894)

branching as a model (a general system?)

- **•** Requires
	- Varying angles
	- Varying stem lengths
	- **n** randomness
- The Fibonacci Model is similar
	- \blacksquare Initial State: b
	- **b -> a**
	- **a -> ab**
- \bullet *sneezewort*

BINGHAMTON UNIVERSIT

L-Systems

Aristid Lindenmeyer

- Mathematical formalism proposed by the biologist Aristid Lindenmayer in 1968 as a foundation for an axiomatic theory of biological development.
	- applications in computer graphics
		- Generation of fractals and realistic modeling of plants
	- \bullet Grammar for rewriting Symbols
		- **Production Grammar**
		- Defines complex objects by successively replacing parts of a simple object using a set of recursive, rewriting rules or productions.
			- Beyond one-dimensional production (Chomsky) grammars
			- Parallel *recursion*
			- Access to computers

BINGHAMTON UNIVERSIT

parametric 2L-system

example

convenient tool for expressing developmental models with *diffusion of substances*. pattern of cells in *Anabaena catenula* and other blue-green bacteria

rocha@binghamton.edu rocha@binghamton.edu UNIVERSITY **casci.binghamton.edu/academics/ssie501 casci.binghamton.edu/academics/ssie501**

From: P. Prusinkiewicz and A. Lindenmayer [1991]. *The Algorithmic Beauty of Plants*.

organized complexity

Warren Weaver' classes of systems and problems

- organized simplicity
	- very small number of variables
		- Deterministic
	- classical mathematical tools
		- Calculus
- disorganized complexity
	- very large number of variables
		- Randomness, homogenous
	- statistical tools
- organized complexity
	- sizable number of variables which are interrelated into an organic whole
	- study of <u>organization</u>
		- whole more than sum of parts
		- Massive combinatorial searches need for new mathematical and computational tools

Weaver, W. [1948]. "Science and Complexity". *American Scientist*, **36**(4): 536-44.

organized complexity

examples

organized complexity

BINGHAMTON UNIVERSITY

systems movement

key roots

▔

▔

▔

1965: Society for the Advancement of General Systems Theory

KennethBoulding

Ludwig von Bertalanffy

(complex) systems science

a science of organization across disciplines

- \Box Systemhood properties of nature
	- Robert Rosen
		- Systems depends on a specific adjective: **thinghood**
		- **Systemhood**: properties of arrangements of items, independent of the items
			- Similar to "setness" or cardinality
	- George Klir
		- **Organization** can be studied with the mathematics of **relations**
		- $S = (T, R)$
			- *S*: a System, *T*: a set of things(thinghood), *R*: a (or set of) relation(s) (Systemhood)
			- Same relation can be applied to different sets of objects
			- Systems science deals with **organizational properties** of systems independently of the items
		- Examples
			- Collections of books or music files are sets of things
			- But organization of such sets are systems (alphabetically, chronologically, typologically, etc.)

BINGHAMTON UNIVERSITY

what is a system?

 \bullet \bullet \bullet

 \boldsymbol{A}

 $a_{\mathbf{1}}$

 a_2

 $a_n\,$

 R A R

 $R₁$

 n -times

 a_1

 a_{2}

 a_n

more formally: representation of multivariate of associations/interactions

what is a system? more formally: representation of multivariate of associations/interactions $S = (T, R)$ \overline{B} \blacksquare \overline{A} a (multivariate) system b_1 $T = \{A_1, A_2, ..., A_n\}$ a_1 ▔ A set (of sets) of things D_2^{\bullet} $a_{\rm 2}$ time *thinghood* Cartesian Product ▔ b_m Set of all possible associations of elements from each set $a_n\,$ All *n*-tuples bipartite graph • ${A_1 \times A_2 \times ... \times A_n}$ ■ *R*: a relation (systemhood) $R \subseteq A^2 (= A \times A),$ $R \subseteq A \times B$ Subset of cartesian product on *T*. $R \subseteq A^2 (= A \times A \times A).$ $R \subseteq (A \times A) \times B$, Many relations *R* can be defined on the same *T* $R \subseteq (A \times B) \times (A \times B),$ $R \subseteq A^n (= A \times A \times \ldots \times A).$ graph A hypergraph A n -times \pmb{A} $R \subseteq (A \times A \times A) \times B$ $R \subseteq (A \times A) \times A$ a_{2} a_{2} $R \subseteq (A \times A \times A) \times (B \times B),$ $R \subseteq A \times (A \times A),$ $R \subseteq (A \times B) \times (A \times B) \times (A \times B).$ a_1 a_1 $R \subseteq (A \times A) \times (A \times A)$. \mathcal{A}_n $a_n\,$ **BINGHAMTON rocha@binghamton.edu** George Klir UNIVERSIT **casci.binghamton.edu/academics/ssie501**

example of system

equivalence classes or multilayer network?

Table 21 Set of Ctudents with Four Characteristic

Table 2.2. Equivalence Relation R_g Defined on the Set of Students Listed in

$R \subseteq A \times B \times C \times D$

Note: same thinghood (set of students), but distinct systemhood or organization projected to a specific set (layer) as equivalence classes.

BINGHAMTON UNIVERSITY

rocha@binghamton.edu rocha@binghamton.edu casci.binghamton.edu/academics/ssie501 casci.binghamton.edu/academics/ssie501

example of system

equivalence classes or multilayer network?

Note: same thinghood (set of students), but distinct systemhood or organization projected to a specific set (layer) as equivalence classes.

$$
R \subseteq A \times B \times C \times D
$$

BINGHAMTON UNIVERSITY

rocha@binghamton.edu rocha@binghamton.edu casci.binghamton.edu/academics/ssie501 casci.binghamton.edu/academics/ssie501

(complex) systems science

study of "systemhood" separated from "thinghood"

■ Study of "systemhood" properties Classes of isomorphic abstracted systems Search of **general principles** of **organization** Weaver's organized complexity (1948) ■ Systemhood properties • preserved under suitable transformation from the set of things of one system into the set of things from the other system ■ Divides the space of possible systems (relations) into equivalent classes **Devoid of any interpretation!** General systems ■ Canonical examples of equivalence classes

complex networks

example of general principle of organization

Barabasi-Albert Model: leads to power-law node degree distributions in networks

Amaral et al: Most real networks have a cut-off distribution for high degree nodes which can be computationally modeled with vertex aging.

Uncovering hierarchical organization

From genetic interaction maps (in yeast)

Jaimovich, Aet al. 2010. Modularity and directionality in genetic interaction maps.

Bioinformatics **26**, no. 12 (June): i228-i236.

BINGHAMTON rocha@binghamton.edu rocha@binghamton.edu UNIVERSITY **casci.binghamton.edu/academics/ssie501 casci.binghamton.edu/academics/ssie501**

Uncovering hierarchical organization

From genetic interaction maps (in yeast)

Jaimovich, Aet al. 2010. Modularity and directionality in genetic interaction maps. *Bioinformatics* **26**, no. 12 (June): i228-i236.

Next lectures

readings

P. Class Book

- Klir, G.J. [2001]. *Facets of systems science*. Springer.
- **Papers and other materials**
	- Module 2: Systems Science
		- Discussion Set 4 (Group 4): October 17th
			- Klir, G.J. [2001]. *Facets of systems Science*. Springer. Chapter 8.
				- Optional: Klir, G.J. [2001]. *Facets of systems Science*. Springer. Chapter 11
			- Schuster, P. (2016). The end of Moore's law: Living without an exponential increase in the efficiency of computational facilities. *Complexity*. **21**(S1): 6-9. DOI 10.1002/cplx.21824.
			- Von Foerster, H., P. M. Mora and L. W. Amiot [1960]. "Doomsday: Friday, November 13, AD 2026." Science **132**(3436):1291-5.

BINGHAMTON