introduction to systems science

Shannon-Wiener Information

lecture 2: Shannon(-Wiener) Information

introduction to systems science

SSIE-501/ISE-440 - Fall 2024

office hours: Tuesdays 9:00- 11:30am binghamton.zoom.us/my/luismrocha

office hours: Tu & Th: 10:30-13:00 K1, binghamton.zoom.us/my/

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

rocha@binghamton.edu casci.binghamton.edu/academics/ssie501

introduction to systems science

evaluation Participation: 20%. class discussion, everybody reads and discusses every paper engagement in class Paper Presentation and Discussion: 20% SSIE501 students are assigned to papers individually or as group lead presenters and discussants all students are supposed to read and participate in discussion of every paper. Presenter prepares short summary of assigned paper (15 minutes) no formal presentations or PowerPoint unless figures are indispensable. Summary should: 1) Identify the key goals of the paper (not go in detail over every section) 2) What discussant liked and did not like 3) What authors achieved and did not 4) Any other relevant connections to other class readings and beyond. ISE440 students chose one of the presented papers to participate as lead discussant not to present the paper, but to comment on points 2-3) above Class discussion is opened to all lead discussant ensures we important paper contributions and failures are addressed Black Box: 60% • Group Project (2 parts) Assignment I (25%) and Assignment II (35%)

BINGHAMTON UNIVERSITY OF RESITY CASCI.binghamton.edu/academics/ssie501

course outlook

key events coming up

Paper	Presen	tation:	20%
-------	--------	---------	-----

- Present (501) and lead (501&440) the discussion of an article related to the class materials
 Enginet students post/send video or join by Zoom synchronously
- Module 1: Cybernetics and the Information Turn

Next classes

- Discussion Set 1 (Group 1): September 5th
 - Kline, Ronald R [2015]. The cybernetics moment, or, why we call our age the information age. Johns Hopkins University Press. <u>Chapters 1-2</u>.
 - Optional: Heims, S.G. [1991]. The Cybernetics Group. MIT Press. Chapters: 1,2, 11, and 12
 - Optional: McCulloch, W. and W. Pitts [1943], "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical Biophysics 5:115-133.
 - Gleick, J. [2011]. The Information: A History, a Theory, a Flood. Random House. Chapter 8.
 - Optional: Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information theoretic primer on complexity, selforganization, and emergence." *Complexity* **15**.1 (2009): 11-28.
- Discussion Set 2 (Group 2)
 - Brenner, Sydney. [2012]. "History of Science. The Revolution in the Life Sciences". Science 338 (6113): 1427-8.
 - Brenner, Sydney. [2012]. "Turing centenary: Life's code script. Nature 482 (7386) (February 22): 461-461.
 - Cobb, Matthew. [2013]. "1953: When Genes Became 'Information'." Cell 153 (3): 503-506.
 - Optional: Searls, David B. [2010]. "The Roots of Bioinformatics". PLoS Computational Biology 6(6): e1000809.
 - Weaver, W. [1948]. "Science and Complexity". American Scientist, 36(4): 536-44. Also available in Klir, G.J. [2001]. Facets of systems Science. Springer, pp: 533-540.
- Discussion by all

v rocha@binghamton.edu casci.binghamton.edu/academics/ssie501

course outlook

more upcoming readings (check brightspace)

Fathers of uncertainty-based information

Hartley, R.V.L., "Transmission of Information", *Bell System Technical Journal*, July 1928, p.535. Information is transmitted through noisy communication channels

1200

• Ralph Hartley and Claude Shannon (at Bell Labs), the fathers of Information Theory, worked on the problem of efficiently transmitting information; i. e. *decreasing the uncertainty* in the transmission of information.

C. E. Shannon [1948], "A mathematical theory of communication". *Bell System Technical Journal*, **27**:379-423 and 623-656

C. E. Shannon, "A Symbolic analysis of relay and switching circuits" *.MS Thesis*, (unpublished) MIT, 1937.

C. E. Shannon, "An algebra for theoretical genetics." *Phd Dissertation*, MIT, 1940.

Hartley Uncertainty

entropy

 $\bigcirc X_3$

X_n

uncertainty-based information

Shannon's measure

A =Set of weighted

 X_1

 $\bullet X_2$

Alternatives

entropy of a message

alphabet examples

example

5-letter "english"

- Given a symbol set {A,B,C,D,E}
 - And occurrence probabilities P_A, P_B, P_C, P_D, P_E,

100

- The Shannon entropy is
 - The average minimum number of bits needed to represent a symbol

$$H_{S} = -(p_{A} \log_{2}(p_{A}) + p_{B} \log_{2}(p_{B}) + p_{C} \log_{2}(p_{C}) + p_{D} \log_{2}(p_{D}) + p_{E} \log_{2}(p_{E}))$$

$$H_{S} = -(1.\log_{2}(1) + 0.\log_{2}(0) + 0.\log_{2}(0) + 0.\log_{2}(0) + 0.\log_{2}(0)) = -\log_{2}(1)$$

100

$$H_{S} = -5.\left(\frac{1}{5}\right).\log_{2}\left(\frac{1}{5}\right) = -(\log_{2}(1) - \log_{2}(5)) = \log_{2}(5)$$
$$H_{S} = -(\frac{1}{2}.\log_{2}\left(\frac{1}{2}\right) + \frac{1}{5}.\log_{2}\left(\frac{1}{5}\right) + 3.\left(\frac{1}{12}\right).\log_{2}\left(\frac{1}{12}\right))$$

what it measures

english entropy (rate)

from letter frequency

Most common letters in English texts

english entropy (rate)

from letter frequency

	m (11)	$l_{\alpha} = 2(m(w))$	(u) = 2(u(u))																							۲ ۲	p(x)	log2(p(x))	-p(x).log2(p(x))
	p(x)	2 0006462	$-p(x) \cdot log_2(p(x))$										N	lost co	mmo	on lette	ers in	Engli	ish te	exts					Sp	bace	0.18288	-2.4509943	0.448249175
e +	0.124107	-3.36702/6	0.375058752	14%	—	-	-	1	-		1	-	-		-		-	-	1	-	-	-	-		—Е		0.10267	-3.2839625	0.337152952
a	0.082001	-3 6082129	0.295877429																						т		0.07517	-3.7336995	0.280662128
:	0.07000	2 7020522	0.284282042		I	6																			A		0.06532	-3.9362945	0.257125332
1	0.076805	-3.7020522	0.284382943	12%	11																				0		0.06160	-4.0210249	0.247678132
n	0.076406	-3.7101797	0.283478135																						Ν		0.05712	-4.1298574	0.235897914
0	0.07141	-3.8077402	0.271908822																						I		0.05668	-4.1409036	0.234724772
S	0.070677	-3.8226195	0.270170512	10%																					S		0.05317	-4.2332423	0.225081718
r	0.066813	-3.903723	0.260820228	10.0		Т																			R		0.04988	-4.3254212	0.215748053
1	0.044831	-4.4793659	0.200813559																						н		0. <u>04979</u>	-4.3281265	0.215478547
d	0.036371	-4.7810716	0.173891876			<u> </u>	Т																		L		0. Hart	lev Meas	Ire 63015644
h	0.035039	-4.8349111	0.169408515	8%				I																	D		0 /		61811184
с	0.034439	-4.8598087	0.167367439					1																	U		0.02270	<u></u>	48875
u	0.028777	-5.11894	0.147307736								i T	Т													С		0.02234	-5.4844363	0.122504535
m	0.028 Ha	artley Mea	sure 094755	6%						11			-												м	1	0.02027	-5.6248177	0.113990747
f	0.023 H(26) 4.7	004397 220629								1 +	11													F		0.01983	-5.6561227	0.112164711
р	0.020517	-3.021101/	0.114205704																						W	1	0.01704	-5.8750208	0.100104113
у	0.018918	-5.7240814	0.108289316	4%									Ι	-											G		0.01625	-5.9435013	0.096576215
g	0.018119	-5.7863688	0.104842059	110									1	1											P		0.01504	-6.0547406	0.091082933
w	0.013523	-6.2084943	0.083954364												T	. I									Y		0.01428	-6.1301971	0.087518777
v	0.012457	-6.3269343	0.078812722												1		h	1	Т	-	-				в		0.01259	-6.3117146	0.079456959
b	0.010658	-6.5519059	0.069830868	2%															1	4	.		т		V		0.00796	-6.9728048	0.055511646
k	0.00393	-7.9911852	0.031406876																			*		_	к		0.00561	-7.4778794	0.041948116
х	0.002198	-8.8294354	0.019409218																						X		0.00141	-9.4709063	0.013346416
j	0.001998	-8.9669389	0.017919531	0%																					L j		0.00098	-10.001987	0.009754119
q	0.000933	-10.066609	0.009387113		Е	Т	Α	0 1	N I	S	R	н	L	D	U	С	М	F	W	G	Р	Y	В	V K	0		0.00084	-10.222907	0.008554069
z	0.000599	-10.705156	0.006412389																						z		0.00051	-10.929184	0.005604998
		Entropy	4.14225193																									Entropy	4 0849451
											-10043431																		
					h	nttp://	/www	.mact	reek	.nl/me	emo	rv/Le	etter	Dist	ribut	tion				BI	NGI	HA	MTC)N	rocl	na@bin	nghamto	on.edu	
														_						U N STAT	I I V e unive	E R	SI 7	.Υ Drk	cas	ci.bing	hamton	.edu/acad	lemics/ssie501

entropy and meaning

entropy quantifies information (surprise), but it does not consider information content
 semantic aspects of information are irrelevant to the engineering problem in Shannon's conception

predicting english

entropy according to probabilistic model

0^{th} order model: equiprobable symbols $H(Z)$	$A) = \log_2 A $ Hartley Measure H(27) 4.7548875
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGXY	D QPAAMKBZAACIBZLHJQD
1 st order model: frequency of symbols $H_s(A)$	$= -\sum_{i=1}^{n} p(x_i) \log_2(p(x_i)) \qquad H_{\rm S} = 4.08$
OCRO HLI RGWR NMIELWIS EU LL NBNESBEYA TH EEI AL	LHENHTTPA OOBTTVA NAH BRL
2 nd order model: frequency of digrams	Most common <i>digrams</i> : th, he, in, en, nt,
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE	re, er, an, ti, es, on, at, se, nd, or, ar, al, te, co, de, to, ra, et, ed, it, sa, em, ro.
3 rd order model: frequency of trigrams	Most common <i>trigrams</i> : the, and, tha, ent, ing, ion, tio, for, nde, has, nce, edt, tis, oft, sth, men
IN NO IST LAT WHEY CRATICT FROURE BERS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE	
4 th order model: frequency of tetragrams	$H_{\rm S} = 2.8$
THE GENERATED JOB PROVIDUAL BETTER TRAND THE DISPLAYED CODE ABOVERY UPONDULTS WELL THE CODERST IN THESTICAL IT DO HOCK BOTHE MERG INSTATES CONS ERATION NEVER ANY OF PUBLE AND TO THEORY EVENTIAL CALLEGAND TO ELAST BENERATED I WITH PIES AS IS WITH THE	including more structure reduces surprise
tp://pages.central.edu/emp/LintonT/classes/spring01/cryptography/letterfreq.htm	nl BINGHAMTON rocha@binghamton.edu
http://everything2.com/title/entropy+of+English	

uncertainty

other measures to infer structure and organization in nature and society

- transfer of information between two random processes in time
 - Amount of information (in bits) gained, or uncertainty lost, in knowing future values of Y, knowing the past values of X and Y.

$$I(X;Y) = \sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) \log_2 \frac{p(x_i, y_j)}{p(x_i)p(y_j)}$$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$IG(p(X), q(X)) = \sum_{i=1}^{n} p(x_i) \log_2 \frac{p(x_i)}{q(x_i)}$$

$$T_{X \to Y} = H(Y_t | Y_{t-1:t-L}) - H(Y_t | Y_{t-1:t-L}, X_{t-1:t-L})$$

BINGHAMTON UNIVERSITY OF NEW YORK STATE UNIVERSITY OF NEW YORK

uncertainty

other measures to infer structure and organization in nature and society

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$T_{X \to Y} = H(Y_t | Y_{t-1:t-L}) - H(Y_t | Y_{t-1:t-L}, X_{t-1:t-L})$$

Optional Reading: Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "<u>An information theoretic primer on complexity, self organization, and</u> <u>emergence</u>." *Complexity* **15**.1 (2009): 11-28.

BINGHAMTON UNIVERSITY casci.bingh

rocha@binghamton.edu casci.binghamton.edu/academics/ssie501

uncertainty-based information

information as decrease in uncertainty.

information of sequential messages

information of sequential messages

Next lectures

readings

rocha@binghamton.edu casci.binghamton.edu/academics/ssie501