Dynamics on expanding spaces: modeling the emergence of novelties

Vittorio Loreto, Vito D. P. Servedio, Steven H. Strogatz and Francesca Tria

INFO-1501 | Introduction to Informatics | Paper Presentation | Kaicheng Yang

What is this paper about? A review about modeling the emergence of innovations.

Simon like models	With time depe
	Sample-spa
	Норр
	Urn mode

Models

Plain Simon's

endent sub-linear invention probability

With tokens aging

With stream aging

ice reducing model

e Urn Model

el with triggering

Fundamental laws

Power law Frequency distribution is power law

 $P(f) \propto f^{-\beta}, \beta > 1$

Zipf's law Frequency rank curve is power law

 $f(R) \propto R^{-\alpha}, \alpha = 1/(\beta - 1)$

Heap's law

Size of distinct elements grows sub-linearly with total number of elements

$$D \propto \begin{cases} N^{\gamma}, & \beta < 2\\ N, & \beta > 2 \end{cases}, \gamma = \beta - 1$$

Real data:

$\alpha > 1$

$\gamma < 1$

Words list

Word	Frequency	Rank
the	22038615	1
be	12545825	2
and	10741073	3
till	5079	5000

Data from: https://www.wordfrequency.info/

Frequency distribution

Frequency rank curve

Heap's law

Ν

D: number of distinct elements N: total number of elements

Fundamental laws

Power law Frequency distribution is power law

 $P(f) \propto f^{-\beta}, \beta > 1$

Zipf's law Frequency rank curve is power law

 $f(R) \propto R^{-\alpha}, \alpha = 1/(\beta - 1)$

Heap's law

Size of distinct elements grows sub-linearly with total number of elements

$$D \propto \begin{cases} N^{\gamma}, & \beta < 2\\ N, & \beta > 2 \end{cases}, \gamma = \beta - 1$$

Real data:

$\alpha > 1$

$\gamma < 1$

Fundamental laws

Heap's law: $D(N) \propto N^{\gamma}$

Plain Simon's model

- 1. A stream of tokens
- 2. Each time a new token in added to the stream with probability p
- to be copied

rich-gets-richer

3. With probability (1-p) a randomly chosen token in the stream is selected

Power law distribution

Plain Simon's model

Master equation: $N_{k,t+1} = N_{k,t} +$

 $\frac{\partial N_k}{\partial t} =$ Continuous limit:

 $q_k \propto k^{-1-}$ Solution:

 $\beta \in (2,\infty)$ Linear growth, not sub linear

$$(k-1)(1-p)\frac{N_{k-1},t}{t} - k(1-p)\frac{N_{k,t}}{t} + p\delta_{k,1}$$

$$= -(1-p)\frac{1}{t}\frac{\partial(kN_k)}{\partial k} \qquad N_{k,t} = tq_k$$

$$\beta = 1 + \frac{1}{1-p}$$
 $p \in (0,1)$

Models	
Equivalence quantity	Degre
Settings	

Simon's model with sub-linear p

To counter Plain Simon's model's linear growth, the invention probability should decrease sub-linearly:

 $p(t) = p_0 t^{\gamma - 1}, 0 < \gamma < 1$

Sub-linear growth: $D(t) \propto t^{\gamma}$ $f(R) \propto R^{1/\gamma}$ Zipf's law:

Simon's model with memory

Old songs are not likely to be chosen, so tokens should age. Different aging mechanisms were introduced by Dorogovtsev-Mendes and Cattuto-Loreto-Pietronero.

Still, linear growth

The Dorogovtsev-Mendes model:

- the equivalence.

Introduced as an improvement of BA model to create scale-free networks. 2. Should lead to a similar result for modeling emergence of novelties due to

Sample-space reducing model

Space of possibilities often locally reduces when the process goes on: for instance, when composing a sentence the first word is almost free, while the subsequent ones are more and more constrained.

The model:

- 1. N-faced dice => j
- 2. j-faced dice => i
- 3. i-faced dice => 1
- 4. go to rule 1
- 5. each step go to rule 1 with λ

Power law without rich-get-richer mechanism

$$f(R) \propto R^{-\lambda}$$

 $\lambda \in (0, 1)$

Hoppe urn model

- 1. Two kinds of balls: black ones with mass θ colored with mass 1 2. Start with one black ball in the urn
- 3. Randomly choose balls from the urn, if it's black return it and add a ball with new color; if it's colored, return it with a copy of it
- 4. Repeat 3

Hoppe urn model

Urn model with triggering

(a)

- 2. the extracted element is put back into U together with p copies of it

1. an element is randomly extracted from U with uniform probability and added to S

3. if the extracted element has never been used before in S (it is a new element in this respect), then v + 1 different brand new distinct elements are added to U.

Urn model with triggering

$D \propto \begin{cases} (\rho - v)^{\frac{v}{\rho}} t^{\frac{v}{\rho}}, & \rho > v \\ \frac{v - \rho}{\rho} t, & \rho < v \end{cases}$

Recover the results to Plain Simon's model when $\rho < v$

$f(R) \propto R^{-\frac{\mu}{v}}$

Urn model with triggering

Heap's law

Zipf's law

Discussions

- 1. Are you convinced that this is the right approach?
- 2. Why the paper reviews the models that don't work well?
- 3. How can these models help us to make more innovations?

e right approach? els that don't work well? o make more innovations?

Thanks!