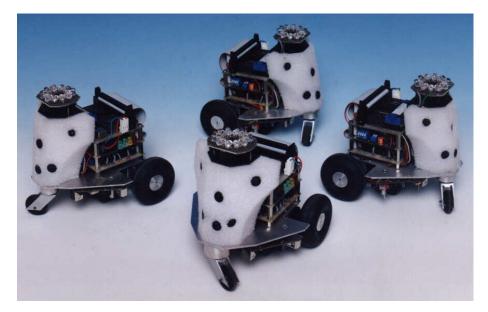

Flocking Behavior

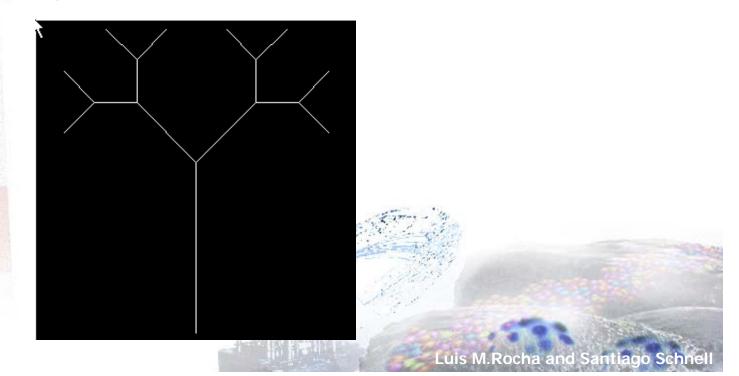
- Boids by Craig Reynolds (1986)
 - 3 Steering behaviors
 - Separation: steer to avoid crowding local flockmates
 - Maintain minimum distance to others
 - Alignment: steer towards the average heading of local flockmates
 - Adjust speed according to others in vicinity
 - Cohesion: steer to move toward the average position of local flockmates
 - Each boid sees only flockmates within a certain small neighborhood around itself.
 - http://www.red3d.com/cwr/boids/

Boids Used in Movies

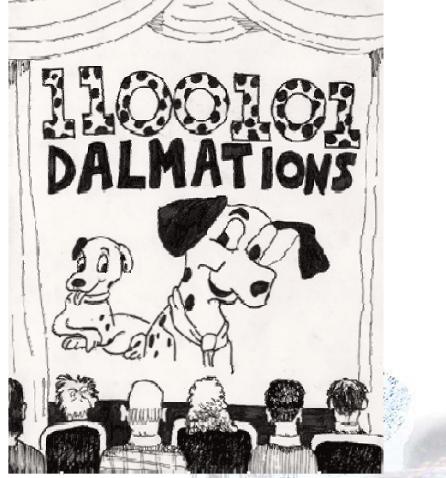
- Batman Returns
 - to simulate bats and penquins
- Cliffhanger
 - Simulation of bats
- Jurassic Park
 - Simulation of gallamunus herd
- The Lion King
 - Scene of wildbeast stampede
- Jumanji
 - Stampede of zoo animals
- Star Trek Voyager "Elogium"
 - Simulation a swarm of space creatures



Intelligent Autonomous Systems Laboratory. University of the West of England.



Cybernetic Intelligence Research Group, University of Reading, England


Possible Questions

Describe the Hertz Modelling Process What are Boids and how do they work? Propose an L-System Rule to draw the following artificial plant

Introduction to Informatics Lecture 9: Data Representation

Film Night at the Einary Society

Luis M.

Readings until now

Lecture notes

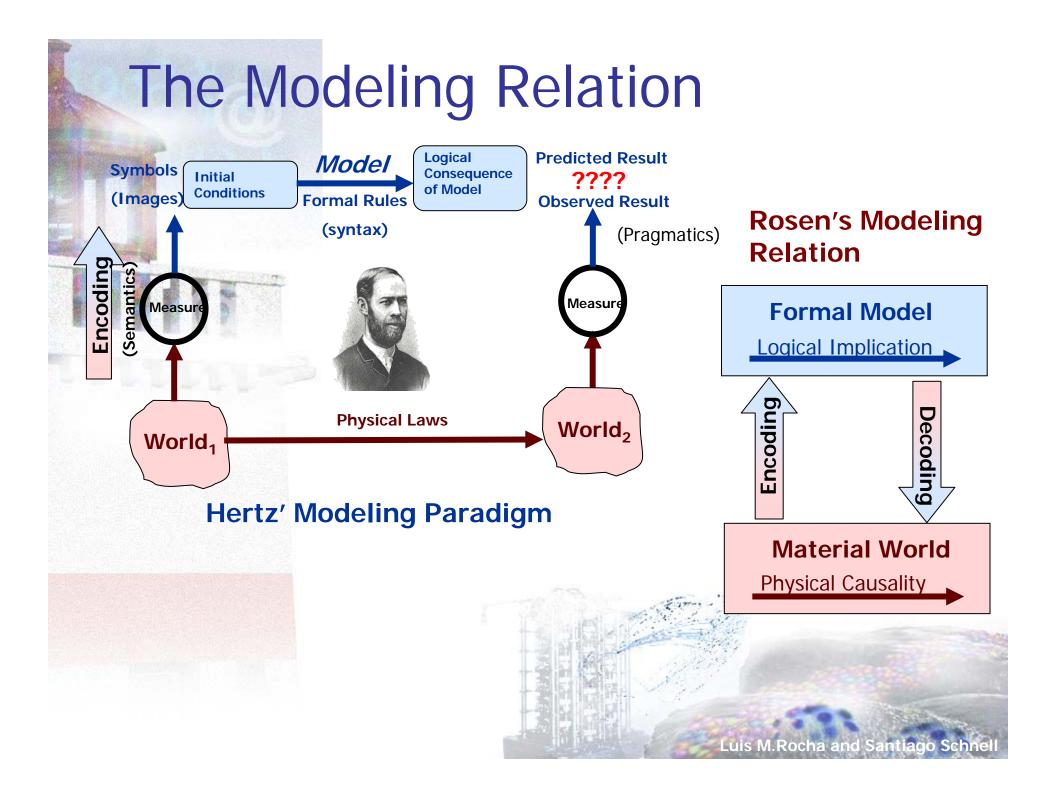
- Posted online @ <u>http://informatics.indiana.edu/rocha/i101</u>
 - The Nature of Information
 - Technology
 - Modeling the World
- @ infoport
- From course package
 - Von Baeyer, H.C. [2004]. *Information: The New Language of Science*. Harvard University Press.
 - Chapters 1, 4 (pages 1-12)
 - From Andy Clark's book "Natural-Born Cyborgs"
 - Chapters 2 and 6 (pages 19 67)
 - From Irv Englander's book "The Architecture of Computer Hardware and Systems Software"
 - Chapter 3: Data Formats (pp. 70-86)

Assignment Situation

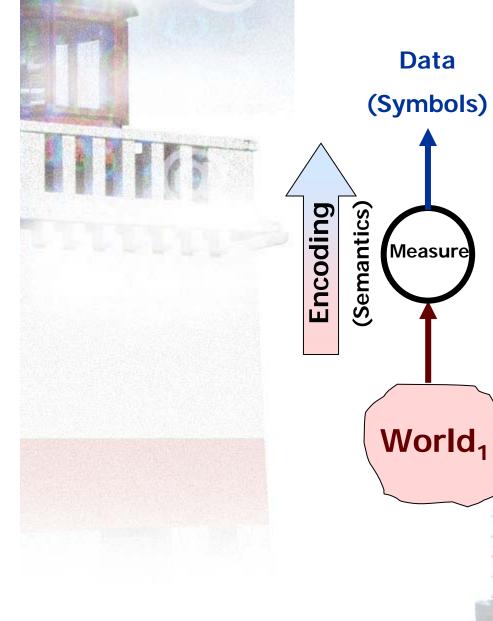
Labs

Past

- Lab 1: Blogs
 - Closed (Friday, January 19): Grades Posted
- Lab 2: Basic HTML
 - Closed (Wednesday, January 31): Grades Posted
 - Lab 3: Advanced HTML: Cascading Style Sheets
 - Closed (Due Friday, February 2)
- Lab 4: More HTML and CSS
 - Due Friday, February 9
- Next: Lab 5
 - Introduction to Operating Systems: Unix
 - Due Friday, February 16
 - Open Steel Account (instructions online)
 - Intro to Operating Systems
- Assignments
 - Individual
 - First installment
 - Due: February 9
 - Group Project
 - First installment
 - Presented: February 20, Due: March 9th
- Midterm Exam
 - March 1st (Thursday)



Individual assignment


- **Individual Project**
 - 1st installment
 - Presented: February 1st
 - Due: February 9th
 - 2nd Installment
 - Presented: February 13th
 - Due: March: 2n^d
 - 3rd Installment
 - Presented: March 8th
 - Due: March 30th
 - 4th Installment
 - Presented: April 5th
 - Due: April 20th

The Black Box

Encoding in the Modeling Relation

How to encode data?

- What is data?
 - Information without context and knowledge
 - Part of Syntax
- Keeping Numbers
 - The most fundamental need for modeling and information

Encoding Numbers:Counting

11

21

19

11

13

19

17 101

4

- Tallying is the earliest form of modeling
 - Fingers (digits), stones (Lt "calculus" = Pebble), bones
 - Lebombo bone
 - Oldest counting tool is a piece of baboon fibula with 29 notches from 35,000 BC, discovered in the mountains between South Africa and Swaziland
 - Probably representing the number of days in a Moon Cycle (A Model!)
 - Czechoslovakian wolf's bone
 - with 55 notches in groups of 5, from 30,000 BC.

The Ishango Bone

- Oldest Mathematical Artefact?
 - 10,000 BC, border of Zaire and Uganda
 - Used as a counting tool?
 - 9,11,13,17,19, 21÷ odd numbers
 - 11, 13, 17, 19: prime numbers
 - 60 and 48 are multiples of 12

http://www.simonsingh.com/The_Ishango_Bone.html

Base for counting

The use of numbers requires a base value

The simplest is "one"

1,475,268

1. one item2: two items

• Etc.

A base defines how we consistently group items in counting

- An order of magnitude
- Roman and Egyptian numerals represent each order of magnitude by a different symbol

200

60

8

Luis M.Roc

I, II, III, IV, V, VI, VII, VIII, IX, X,,L, ..., C ..., D, ..., M, (7)

1M 400K 70K 5K http://www.psinvention.com/zoetic/tr_egypt.htm

Let's go back to Bases

Egyptian and Roman

- Each order of magnitude requires a new symbol
 - No "zero"
 - Omission of relevant group: MXX = 1020, MMV = 2005

Hindu/Arabic System (*positional*)

- 6000 to 3000 BC
- Order of magnitude represented by location
 - With the same symbols!
 - Can represent huge numbers!
- Each position/order of magnitude denotes *n* times the last order of magnitude Hindu-Arabic 9 A V 7 0 2 7 7 1 . (etili used) Arabic 9 8 7 6 5 4 3 2 1 0
 - n is the base! (or radix)
 - 10 is **10** times 1
 - 100 is **10** times 10
 - 1000 is 10 times 100, etc.
- Arabic numerals disseminate in the west via the Iberian Kingdoms
 - Castilian kings sent their children to be educated with Muslim kingdoms
 - al-Andalus
 - Pope Sylvester II (Gerbert of Aurillac, 955-1003 AD)
 - In a monastery close to Barcelona (Kingdom of Aragón) had extensive contact with Muslims. Introduced the abacus, etc,

Luis M.Rocha a

Positional Bases for digital counting

- Digital (from Latin word for finger digitus)
 - Used to convey the notion of discrete objects/values
 - Things we can count
 - Base *n*
 - Each position to the left is equal to *n* times the position to the right
 - Each position to the right is equal to the position to the left divided by *n*.
- Decimal: Base 10 ... [0, (n-1)] [0, (n-1)] [0, (n-1)] [0, (n-1)]
 - 10 symbols (digits): 0,1,2,3,4,5,6,7,8,9
 - Most frequent
 -[thounsands]-[hundreds]-[tens]-[units]

Other digital Bases

Base n

- Each position to the left is equal to *n* times the position to the right
- Each position to the right is equal to the position to the left divided by n.

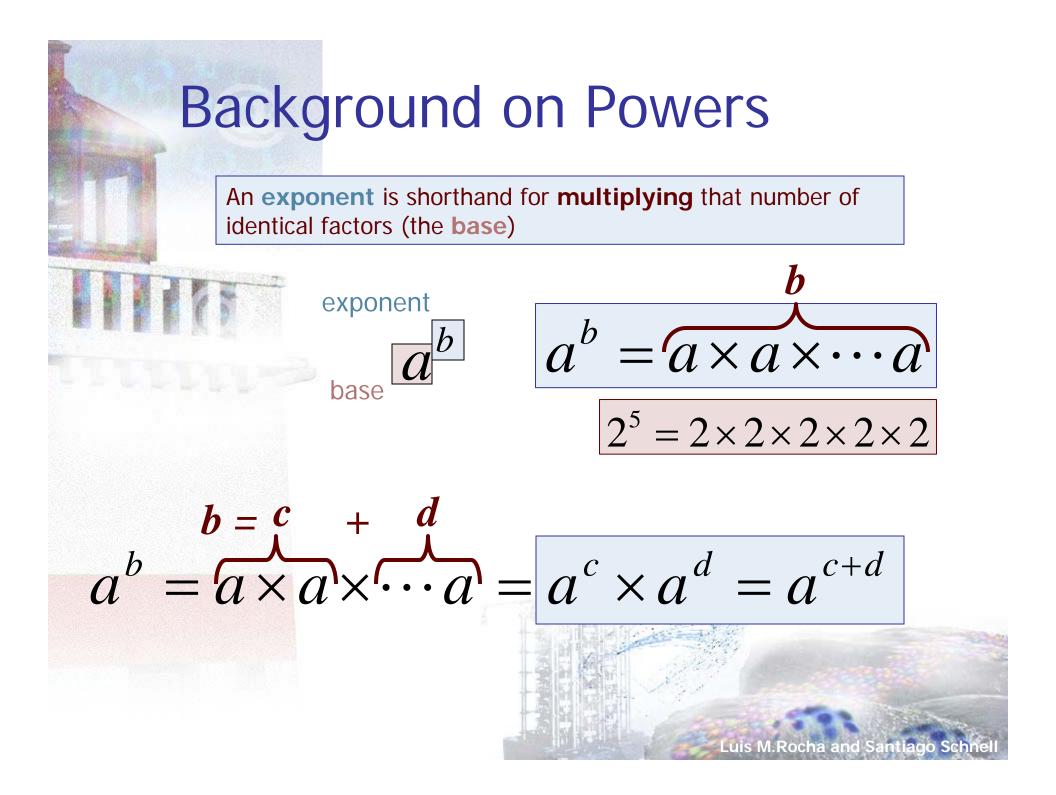
[0, (*n*-1)]

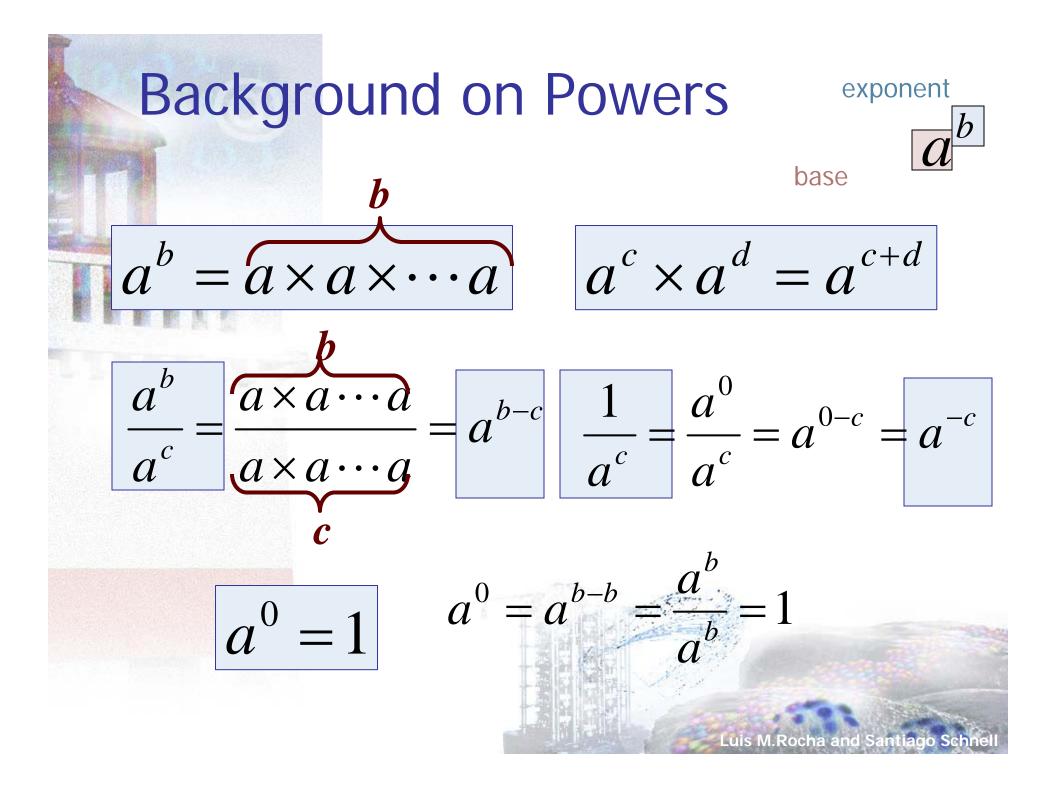
 $n \times$

 $n \times$

[0, (*n*-1)]

[0, (*n*-1)]


- Octal: Base 8
 - 8 symbols: 0,1,2,3,4,5,6,7
 - 4096 512 64 8 1
 - 402 in octal = 258 in decimal
- The Yuki used base 8
 Hovedocimal: Page 14
- Hexadecimal: Base 16
 - 16 symbols: 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F n÷
 - 65536 4096 256 16 1
 - 402 in octal = 258 in decimal = 102 in Hexadecimal
 - 7473 in octal = 3899 in decimal = F3B in Hexadecimal
- Vigesimal: Base 20
 - Mayan system: <u>http://www.saxakali.com/historymam2.htm</u>
- Binary: Base 2
 - 2 symbols: 0, 1
 - 256 128 64 32 16 8 4 2 1
 - 100000010 in binary = 382 in octal = 258 in decimal = 102 in Hexadecimal


Luis M.Rocha and Santiago Schnell

 $n \times$

 $n \div$

[0, (n-1)]

Counting with the Decimal System

Positional number system

- the value of each digit is determined by its position
 - 683 is different from 836
 - The lowest place value is the rightmost position, and each successive position to the left has a higher place value
- Base 10

The value of each position corresponds to powers of 10

- ... $d_4 d_3 d_2 d_1 d_0 = ... + d_4 \times 10^4 + d_3 \times 10^3 + d_2 \times 10^2 + d_1 \times 10^1 + d_0 \times 10^0$
- Each digit to the left is 10 times the previous digit.
 - $\bullet 483 = 4 \times 10^2 + 8 \times 10^1 + 3 \times 10^0$

 $n \times$

[0, (*n*-1)]

- To multiply a number by 10 you can simply shift it to the left by one digit, and fill in the rightmost digit with a 0
 - 483×10=4830
- To divide a number by 10, simply shift the number to the right by one digit (moving the decimal place one to the left).

[0, (*n*-1)]

■ 483÷10=48.3

 $n \times$

[0, (n-1)]

...

With n digits, 10ⁿ unique numbers can be represented

[0, (n-1)]

If n=3, 1000 (=10³) numbers can be represented 0-999.

 $n \times$

Let's Count decimal with fingers

- **Decimal Numeral System**
 - 10 symbols (digits): 0,1,2,3,4,5,6,7,8,9
- Base 10
 - Each position to the left is equal to 10 times the position to the right
 - Each position to the right is equal to the position to the left divided by 10.

http://www.intuitor.com/counting/HandCounter.html

2

Counting with the Binary System

- Positional number system
 - the value of each digit is determined by its position
 - 101 is different from 110
 - The lowest place value is the rightmost position, and each successive position to the left has a higher place value
- Base 2
 - The value of each position corresponds to powers of 2
 - ... $d_4 d_3 d_2 d_1 d_0 = ... + d_4 \times 2^4 + d_3 \times 2^3 + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0$
 - Each digit to the left is 2 times the previous digit.
 - 111100011 (483) = $1 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
 - To multiply a number by 2 you can simply shift it to the left by one digit, and fill in the rightmost digit with a 0
 - 101×2=1010 (5*2 = 10)
 - To divide a number by 2, simply shift the number to the right by one digit (moving the decimal place one to the left).
 - 101÷2=10.1 (5÷2=2.5)

[0, (n-1)]

 $n \times$

 $n \times$

[0, (n-1)]

. . .

With n digits, 2ⁿ unique numbers can be represented

[0, (n-1)]

If n=8, 256 (=2⁸) numbers can be represented 0-11111111.

[0, (n-1)]

 $n \times$

Let's Count binary with fingers

- **Binary Numeral System**
 - 2 symbols: 0,1
- Base 2
 - Each position to the left is equal to 2 times the position to the right
 - Each position to the right is equal to the position to the left divided by 2.

Converting Binary to Decimal $2^8 = 256$ 28 27 26 **2**⁵ 24 **2**³ **2**² 21 20 $2^7 = 128$ $2^6 = 64$ $2^5 = 32$ 1 1 1 0 \mathbf{O} \mathbf{O} ()() $2^4 = 16$ 128_64 8 $2^3 = 8$ 201 $2^2 = 4$ $\dots d_4 d_3 d_2 d_1 d_0 =$ $2^1 = 2^1$... + $d_4 \times 2^4$ + $d_3 \times 2^3$ + $d_2 \times 2^2$ + $d_1 \times 2^1$ + $d_0 \times 2^0$ $2^0 = 1$

Luis M.Rocha and Santiago Schne

Comparing Binary with Decimal

Binary: Decimal Binary: Decimal

- **0000:00**
 - 0001:01
 - 0010:02
- 0011:03
- 0100:04
- 0101:05
- **0110:06**
- 0111:07

- - **1000:08**
 - **1001:09**
 - **1010:10**
 - 1011:11
 - 1100:12
 - 1101:13
 - 1110:14
 - 1111:15

Next Class!

- Topics
 - Encoding Text
 - Encoding Multimedia

Readings for Next week

- Lecture notes Posted online @
 - http://informatics.indiana.edu/rocha/i101
 - Modeling the World
- @ infoport
 - Read Binary encoding resources at Infoport!!
- From course package
 - From Irv Englander's book "The Architecture of Computer Hardware and Systems Software"
 - Chapter 3: Data Formats (pp. 70-86)
- Lab 5
 - Introduction to Operating Systems: Unix