Introduction to Informatics Lecture 8: Modeling the World (part II)

Luis M.Rocha and Santiago Schnel

Readings until now

Lecture notes

- Posted online @ <u>http://informatics.indiana.edu/rocha/i101</u>
 - The Nature of Information
 - Technology
 - Modeling the World
- *@ infoport* and web
- From course package
 - Von Baeyer, H.C. [2004]. Information: The New Language of Science. Harvard University Press.
 - Chapters 1, 4 (pages 1-12)
 - From Andy Clark's book "Natural-Born Cyborgs"
 - Chapters 2 and 6 (pages 19 67)

Assignment Situation

- Labs
 - Past
 - Lab 1: Blogs
 - Closed (Friday, January 19): Grades Posted
 - Lab 2: Basic HTML
 - Closed (Wednesday, January 31): Grades Posted
 - Lab 3: Advanced HTML: Cascading Style Sheets
 - Closed (Due Friday, February 2)
 - Lab 4: More HTML and CSS
 - Due Friday, February 9
 - Next: Lab 5
 - Introduction to Operating Systems: Unix
 - Due Friday, February 16
- Assignments
 - Individual
 - First installment
 - Due: February 9
 - Group Project
 - First installment
 - Presented: February 20, Due: March 9th
- Midterm Exam
 - March 1st (Thursday)

Individual assignment

- **Individual Project**
 - 1st installment
 - Presented: February 1st
 - Due: February 9th
 - 2nd Installment
 - Presented: February 13th
 - Due: March: 2n^d
 - 3rd Installment
 - Presented: March 8th
 - Due: March 30th
 - 4th Installment
 - Presented: April 5th
 - Due: April 20th

The Black Box

What is a model?

- The term *model* is used for any complete and consistent set of verbal arguments, mathematical equations or computational rules which are thought to *correspond* to some observable entity in the World
 - Often known as its *prototype*.
- Understanding of the world in scientific terms is to build a model, to reduce apparent complexity to a set of simpler rules.
 - These rules constitute a *theory*!
 - "Only theory can tell us what to measure and how to interpret" – Albert Einstein.

- Mathematical formalism proposed by the biologist Aristid Lindenmayer in 1968 to study biological development.
 - applications in computer graphics
 - Generation of fractals and realistic
 modeling of plants
 - Grammar for rewriting Symbols
 - Production Grammar
 - Defined complex objects by successively replacing parts of a simple object using a set of recursive, rewriting rules or productions.
 - Parallel *recursion*
 - Access to computers

Luis M.Rocha and Santiago Schnell

Depth	Resulting String
0	В
1	F[-B]+B
2	FF[-F[-B]+B] + F[-B]+B
3	FFFF[-FF[- F[-B]+B]+ FF[-B]+B]+ F[- F[-B]+B]+ F[-B]+B

Tracking Consumer Data

- Records stored as vectors
 - CD Purchases
 - [BT, Pi Soundtrack, Common,
 - Electric 6, 4 Hero, Carl Craig, LCD
 - Soundsystem, Fujiya & Miyagi, ...]
 - Pages you read
 - [Information, Library of Babel, Blogs, Technology, Cyborgs, Turntablism, TB303,]
 - Vector is a representation of consumer
 - Grouping consumers according to similarity is a model of users
 - Clustering
 - Used for all sorts of models!

[BT, Common, Electric 6, 4 hero,...] Buyer 1 [1, 1, 0, 0, 0,...] Buyer 2 [1, 0, 0, 0, 0,...]

Tracking users

Graphic of scientific journal similarities at Los Alamos

Red Nodes show a user subset

We can define models of typical users and classes of users

Luis M.Rocha and Santiago Schnel

Probabilistic cleaning

- Very simple rules for colony clean up
 - Pick dead ant. if a dead ant is found pick it up (with probability inversely proportional to the quantity of dead ants in vicinity) and wander.
 - Drop dead ant. If dead ants are found, drop ant (with probability proportional to the quantity of dead ants in vicinity) and wander.

Real and Simulated Ants Clustering

ants

Real ants *Messor sanota* build olusters starting from randomly located corpses

Simulated ants build clusters starting from randomly located items

Figure by Marco Dorigo in Real ants inspire ant algorithms

ant-inspired robots Clustering by collective robots

- Becker et al Rules
 - Move: with no sensor activated move in straight line
 - Obstacle avoidance: if obstacle is found, turn with a random angle to avoid it and move.
 - Pick up and drop: Robots can pick up a number of objects (up to
 - If shovel contains 3 or more objects, sensor is activated and objects are dropped. Robot backs up, chooses and angle and moves.
- Results in clustering
 - The probability of dropping items increases with quantity of items in vicinity

Figure from R Beckers, OE Holland, and JL Deneubourg [1994]. "From local actions to global tasks: Stigmergy and collective robotics". In Artificial Life IV

becker et al experiments

Next Class!

Topics

Data Representation

Readings for Next week

- Lecture notes Posted online @ <u>http://informatics.indiana.edu/rocha/i101</u>
 - Modeling the World
- @ infoport
- From course package
 - From Irv Englander's book "The Architecture of Computer Hardware and Systems Software"
 - Chapter 3: Data Formats (pp. 70-86)

Lab 5

Introduction to Operating Systems: Unix