

Introduction to Informatics Lecture 26: Information Technology in the Real World

Databases

NO MORE LABS !!!

Readings until now

Posted online

Lecture notes

- http://informatics.indiana.edu/rocha/i101
 - The Nature of Information
 - Technology
 - Modeling the World
- @ infoport
 - <u>http://infoport.blogspot.com</u>
- From course package
 - Von Baeyer, H.C. [2004]. *Information: The New Language of Science*. Harvard University Press.
 - Chapters 1, 4 (pages 1-12)
 - Chapter 10 (pages 13-17)
 - From Andy Clark's book "Natural-Born Cyborgs"
 - Chapters 2 and 6 (pages 19 67)
 - From Irv Englander's book "The Architecture of Computer Hardware and Systems Software"
 - Chapter 3: Data Formats (pp. 70-86)
 - Klir, J.G., U. St. Clair, and B.Yuan [1997]. Fuzzy Set Theory: foundations and Applications. Prentice Hall
 - Chapter 2: Classical Logic (pp. 87-97)
 - Chapter 3: Classical Set Theory (pp. 98-103)
 - Norman, G.R. and D.L. Streinrt [2000]. *Biostatistics: The Bare Essentials*.
 - Chapters 1-3 (pages 105-129)
 - OPTIONAL: Chapter 4 (pages 131-136)
 - Chapter 13 (pages 147-155)
 - Chapter 5 (pages 141-144)
 - Igor Aleksander, "Understanding Information Bit by Bit"
 - Pages 157-166
 - Ellen Ullman, "Dining with Robots"
 - Pages 167-172

Assignment Situation

Labs Past

Lab 1: Blogs

neets

- Closed (Friday, January 19): Grades Posted
- Lab 2: Basic HTML
 - Closed (Wednesday, January 31): Grades Posted
- Lab 3: Advanced HTML: Cascading Style
 - Closed (Friday, February 2): Grades Posted
- Lab 4: More HTML and CSS
 - Closed (Friday, February 9): Grades Posted
- Lab 5: Introduction to Operating Systems: Unix
 - Closed (Friday, February 16): Grades Posted
- Lab 6: More Unix and FTP
 - Closed (Friday, February 23): Grades Posted
- Lab 7: Logic Gates
 - Closed (Friday, March 9): Grades Posted
- Lab 8: Intro to Statistical Analysis using Excel
 - Closed (Friday, March 30): Grades Posted
- Lab 9: Data analysis with Excel (linear regression)
 - Closed (Friday, April 6): Grades Posted
- Lab 10: Simple programming in Excel and Measuring Uncertainty
 - April 12 and 13, Due April 20

Assignments

- Individual
 - First installment
 - Closed: February 9: Grades Posted
 - Second Installment
 - Past: March 2: Grades Posted
 - Third installment
 - Past: Grades Posted
 - Fourth Installment
 - Presented April 10th, Due April 20th
- Group
 - First Installment
 - Past: March 9^{th,} graded
 - Second Installment
 - Past: April 6th Graded
 - Third Installment
 - Presented Thursday, April 12; Due Friday, April 27

Luis M.Rocha and Santiago Schnel

Individual Assignment – Part IV

Step by step analysis of "dying" squares

- 4th Installment
 - Presented: April 10th
 - Due: April 20th
- Use inductive and deductive reasoning

Euis M.Roch

- To uncover the algorithm in each quadrant
 - Build from inductive knowledge accumulated so far

Summary of Black Box

Quadrant 1

- At the random initial state
 - All numbers have equal probability of being initially present
 - But the probability of changes are different
- In Any State
 - Any number changes depending on its neighbors
 - It 'gravitates' towards the smallest number that it 'sees' most often.
 - Odd and Even numbers do not show different behavior
- What is the Algorithm?

Summary of Black Box

Quadrant 3

- At the random initial state
 - All numbers have equal probability of being initially present
 - But the probability of changes are different

In Any State

- 0 can only change to 0
- 5 can only change to 5 or 0
- Even digits always change to even digits
- Odd digits could change to any other digit
- What is the Algorithm?

	n(i)	p(i)
0	27	0.27
1	4	0.04
2	12	0.12
3	4	0.04
4	12	0.12
5	9	0.09
6	12	0.12
7	4	0.04
8	12	0.12
9	4	0.04

- 1. $0 \rightarrow 0$
- 2. $\{5\} \rightarrow \{0, 5\}$
- 3. $\{2, 4, 6, 8\} \rightarrow \{0, 2, 4, 6, 8\}$ 4. $\{1, 3, 7, 9\} \rightarrow$
 - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Summary of Black Box

Quadrant 2

- At the random initial state
 - All numbers have equal probability of being initially present
 - But the probability of changes are different

In Any State

- 0 can only change to 0
- 5 can only change to 5 or 0
- Even digits always change to even digits
- Odd digits could change to any other digit
- What is the Algorithm?

1.	$0 \rightarrow 0$
2.	$\{ 5 \} \rightarrow \{ 0, 5 \}$
3.	$\{2, 4, 6, 8\} \rightarrow \{0, 2, 4, 6, 8\}$
4.	{1, 3, 7, 9} →
	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Possible Operations Q2 and Q3

Operator	Meaning	Excel	Example
0	Brackets, grouping	0	y = (a + b) * (c + d)
*	Multiplication	*	i=j*k
+	Add	+	i = i+1
-	Subtract	-	i=j-3.2
/	Real division	/	i=8/5 = 1.6
div	Integer division	Quotient (a,b)	i=8/5 = 1
Mod, %	remainder	Mod (a, b)	i=8 mod 5 = 3
ROUND	Rounds	ROUND (a, d)	i = ROUND(3.67, 0) = 4
INT	Integer Part	INT	i=INT(3.67) = 3
rand	Random number	Rand() RandBetween(a,b)	i=rand(n)

Tip for Individual Assignment

Quadrant Q

There are 100 cells in each 10x10 quadrant

• C = 1...100

- Each cell can take one of 10 colors
 - V(C)=0..9
 - is the value of the cell
 - This is the state cell C is in
- Random initialization of quadrant Q at cycle 1
 - For c=1 to 100 do
 - $V(C) \leftarrow randbetween(0,9)$ {random number 0 to 9}
 - EndFor
 - Cycle ← 1
- Run for Number of cycles
 - n ← Input dialog
 - For k=1 to n do
 - Cycle ← cycle+1
 - {Pick random cell}
 - $C \leftarrow randbetween(1,100)$
 - {Update the value of the cell (NOT THE REAL THING)}
 - V(C) \leftarrow ((V(C) * randbetween(0,9)) div 2) 5*x
 - EndFor
- X may be a hidden variable
 - X ← ???

The Entity-Relationship Model

Conceptual Data Model

- A kind of "pseudocode" for models of data storage
- What should we consider?
 - What are the interesting entities and relationships in our model of reality?
 - What information about these entities and relationships do we need to store?
 - What are the reality constraints and rules that must hold?

Peter Chen (1976)

World₁

Year

Luis M.Rocha

Arity of Relationships

The number of entities participate in a relationship

Binary, ternary, N-ary

Try this at home...

- How to represent the following?
 A book can have no more than 5 authors
 - A customer has to specify the shipping option
 - Each branch has only one manager.

The Relational Database Model

Relational database management system (RDBMS)

- Most popular commercial database type.
- a data model based on *logic* and set theory.
- invented by Ted Codd in 1970
 - Oxford, IBM, U. Michigan, IBM

System R

- IBM's San Jose research center
- Structured English Query Language ("SEQUEL")
 - Data Manipulation Language (DML)
- SEQUEL was later condensed to SQL due to a trademark dispute
- In 1979, Relational Software, Inc. (now Oracle Corporation) introduced the first commercially available implementation of SQL

Ted Codd

The Relational Database Model

- A relational database is a collection of tables
 - 2-dimensional
- Each table has a unique name in the database.
 - Tables define Relations
 - Columns (number of sets)
 - Attributes plus key (primary set)
 - Row (number of relation instances)
- CDS A table is a set of rows: tuples

ID	Title	Artist
3592	Yes I am a Witch	Yoko Ono
2678	Big	Macy Gray
0623	Sound of Silver	LCD Soundsystem
0321	Welcome to Planet Sexor	Tiga
8854	Transparent Things	Fujiya & Miyagi

Luis M.Rocha

From Yuqing Melanie Wu (1308: Information Representation)

Schema and Instance

"Guide us, Oh Database Manager!"

Adapted from Yuqing Melanie Wu (1308: Information Representation)

Database schema

- Metadata or Model
- The logical design of a database
 - E.g. using the *entity-relationship model*
 - Entity → Table
 - Attribute → Columns
 - Relationship → Table
- Specifies names of tables/relations (*entities and relationships*), plus names and types of each column (*attributes*)
- Database instance
 - A snapshot of the data in the database at a given instant in time.

Customer(Phone, Name, Address)

The identifying labels for the elements of the primary set of a table

Every instance (row) in the database must have a distinct primary key

Every instance in the database must have a particular (non-null) value for the primary key.

Structured Query Language (SQL)

- The most popular computer language used to create, modify and retrieve data from relational database management systems. (Wikipedia)
 - Three subsets of SQL
 - Data Definition Language (DDL)
 - Data Manipulation Language (DML)
 - Data Control Language (DCL) (for authorization)

Data Definition Language

- Used to create, alter, and delete databases and tables.
- Statements
 - Create Table
 - CREATE TABLE table_name (column_name1 data_type primary key, column_name2 data_type);
 - Some other operations
 - alter and "drop"

Data Manipulation Language

- Used to retrieve, insert, delete and update data in a database
- Statements
 - Select
 - Selects rows (records) according to attribute criteria
 - E.g. Select CDs published in YEAR=x
 - Some other operations
 - "insert", "update", "delete", and "truncate"

Select Statement

Select

- Selects rows (records) according to attribute criteria
 - E.g. papers published in YEAR=x
 - **SELECT** * FROM *list-of-relations* WHERE *condition*
 - SELECT * FROM CITATION_TABLE WHERE PUBLISHED_YEAR='1995';
 - * Denotes ALL
- SELECT * FROM T;
 - Returns all elements of all the rows of the table T

Project Project Extracts columns E.g. projects a set of papers into a reduced set of attributes. SELECT C1,C7 FROM T;

Join Operation

Join

- Merges records that contain matching values for specified attributes
 - given a key value join records from both tables
- SELECT * FROM employee, department;
- SELECT * FROM citation-table, author-table WHERE citation-table.MUID = author-table.MUID;

Group Assignment

Third Installment

- Given any text such as the *library of babylon* or *Funes, the memorious*
 - Create a *database model* and a *relational database instance* using *Microsoft Access* to store the data and conclusions from previous installments
 - Use the entity-relationship model
 - Examples of items that should appear
 - Title, author, language, publication date
 - Frequency/probability of each letter
 - Conditional probabilities for letters 'e' and 'u' (as produced in installment 2)
 - Positively and negatively dependent letters
 - Use at least 4 texts
- Due on April 27th, 2005
 Upload to Oncourse

Next Class!

Topics of next classes Databases and SQL Individual Assignment Review Readings for Next week *@ infoport* course package No More Labs!!!!!!

