

Readings until now

Posted online

Lecture notes

- http://informatics.indiana.edu/rocha/i101
 - The Nature of Information
 - Technology
 - Modeling the World
- @ infoport
 - <u>http://infoport.blogspot.com</u>
- From course package
 - Von Baeyer, H.C. [2004]. *Information: The New Language of Science*. Harvard University Press.
 - Chapters 1, 4 (pages 1-12)
 - Chapter 10 (pages 13-17)
 - From Andy Clark's book "Natural-Born Cyborgs"
 - Chapters 2 and 6 (pages 19 67)
 - From Irv Englander's book "The Architecture of Computer Hardware and Systems Software"
 - Chapter 3: Data Formats (pp. 70-86)
 - Klir, J.G., U. St. Clair, and B.Yuan [1997]. Fuzzy Set Theory: foundations and Applications. Prentice Hall
 - Chapter 2: Classical Logic (pp. 87-97)
 - Chapter 3: Classical Set Theory (pp. 98-103)
 - Norman, G.R. and D.L. Streinrt [2000]. *Biostatistics: The Bare Essentials*.
 - Chapters 1-3 (pages 105-129)
 - OPTIONAL: Chapter 4 (pages 131-136)
 - Chapter 13 (pages 147-155)
 - Chapter 5 (pages 141-144)
 - Igor Aleksander, "Understanding Information Bit by Bit"
 - Pages 157-166
 - Ellen Ullman, "Dining with Robots"
 - Pages 167-172

Assignment Situation

Labs Past

Lab 1: Blogs

neets

- Closed (Friday, January 19): Grades Posted
- Lab 2: Basic HTML
 - Closed (Wednesday, January 31): Grades Posted
- Lab 3: Advanced HTML: Cascading Style
 - Closed (Friday, February 2): Grades Posted
- Lab 4: More HTML and CSS
 - Closed (Friday, February 9): Grades Posted
- Lab 5: Introduction to Operating Systems: Unix
 - Closed (Friday, February 16): Grades Posted
- Lab 6: More Unix and FTP
 - Closed (Friday, February 23): Grades Posted
- Lab 7: Logic Gates
 - Closed (Friday, March 9): Grades Posted
- Lab 8: Intro to Statistical Analysis using Excel
 - Closed (Friday, March 30): being graded
- Lab 9: Data analysis with Excel (linear regression)
 - Closed (Friday, April 6): Being Graded
- Next: Lab 10
 - Lab 10: Simple programming in Excel and Measuring Uncertainty
 - April 12 and 13, Due April 20

Assignments

- Individual
 - First installment
 - Closed: February 9: Grades Posted
 - Second Installment
 - Past: March 2: Grades Posted
 - Third installment
 - Past: Grades Posted
 - Fourth Installment
 - Presented April 10th, Due April 20th
- Group
 - First Installment
 - Past: March 9^{th,} graded
 - Second Installment
 - Past: April 6th Being graded
 - Third Installment
 - Presented Thursday, April 12; Due Friday, April 27

Luis M.Rocha and Santiago Schnel

Array of Integers

- A data structure to store series or lists or data
 - Example: age of students in I101
 - 19, 18, 21, 24, 19, 20, 19, 22, 18, 19
 - Index: stores the location of data element in the series
 - i: 1,2,3,4,5,6,7,8,9,...., 100,....
 - Array: stores data elements organized by index
 - A[i]: A[1]=19, A[2]=18, A[3]=21, A[4]=24,....

Example: Sorting Algorithm

Insertion Sort

- Given a random sequence of numbers, sort them in increasing order
- Input

• $S = \langle a_1, a_2, ..., a_n \rangle$

- Output
 - A permutation or reordering of S: $S' = \langle a'_1, a'_2, ..., a'_n \rangle$, such that $a_1 \leq a_2 \leq ... \leq a_n$
- Works the way many people sort a card hand
- For $j \leftarrow 2$ to length S do
 - Key ← A[j]
 - i ← j-1
 - While ((i>0) and (A[i]>key)) do
 - A[i+1]=A[i]
 - i ← i-1
 - endWhile
 - A[i+1] ← key
- Endfor

Individual Assignment – Part IV

Summary of Black Box

Quadrant 1

- At the random initial state
 - All numbers have equal probability of being initially present
 - But the probability of changes are different
- In Any State
 - Any number changes depending on its neighbors
 - It 'gravitates' towards the smallest number that it 'sees' most often.
 - Odd and Even numbers do not show different behavior
- What is the Algorithm?

Summary of Black Box

Quadrant 3

- At the random initial state
 - All numbers have equal probability of being initially present
 - But the probability of changes are different

In Any State

- 0 can only change to 0
- 5 can only change to 5 or 0
- Even digits always change to even digits
- Odd digits could change to any other digit
- What is the Algorithm?

	n(i)	p(i)
0	27	0.27
1	4	0.04
2	12	0.12
3	4	0.04
4	12	0.12
5	9	0.09
6	12	0.12
7	4	0.04
8	12	0.12
9	4	0.04

- 1. $0 \rightarrow 0$
- **2**. $\{5\} \rightarrow \{0, 5\}$
- 3. $\{2, 4, 6, 8\} \rightarrow \{0, 2, 4, 6, 8\}$ 4. $\{1, 3, 7, 9\} \rightarrow$
 - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Summary of Black Box

Quadrant 2

- At the random initial state
 - All numbers have equal probability of being initially present
 - But the probability of changes are different

In Any State

- 0 can only change to 0
- 5 can only change to 5 or 0
- Even digits always change to even digits
- Odd digits could change to any other digit
- What is the Algorithm?

1.	$0 \rightarrow 0$
2.	$\{5\} \to \{0, 5\}$
3.	$\{2, 4, 6, 8\} \rightarrow \{0, 2, 4, 6, 8\}$
4.	{1, 3, 7, 9} →
	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Possible Operations Q2 and Q3

Operator	Meaning	Excel	Example
0	Brackets, grouping	0	y = (a + b) * (c + d)
*	Multiplication	*	i=j*k
+	Add	+	i = i+1
-	Subtract	-	i=j-3.2
/	Real division	/	i=8/5 = 1.6
div	Integer division	Quotient (a,b)	i=8/5 = 1
Mod, %	remainder	Mod (a, b)	i=8 mod 5 = 3
ROUND	Rounds	ROUND (a, d)	i = ROUND(3.67,0) = 4
INT	Integer Part	INT	i = INT(3.67) = 3
rand	Random number	Rand() RandBetween(a,b)	i=rand(n)

Tip for Individual Assignment

Quadrant Q

There are 100 cells in each 10x10 quadrant

• C = 1...100

- Each cell can take one of 10 colors
 - V(C)=0..9
 - is the value of the cell
 - This is the state cell C is in
- Random initialization of quadrant Q at cycle 1
 - For c=1 to 100 do
 - $V(C) \leftarrow randbetween(0,9)$ {random number 0 to 9}
 - EndFor
 - Cycle ← 1
- Run for Number of cycles
 - n ← Input dialog
 - For k=1 to n do
 - Cycle ← cycle+1
 - {Pick random cell}
 - $C \leftarrow randbetween(1,100)$
 - {Update the value of the cell (NOT THE REAL THING)}
 - V(C) \leftarrow ((V(C) * randbetween(0,9)) div 2) 5***x**
 - EndFor
- X may be a hidden variable
 - X ← ???

Eliza

- In 1966 Joseph Weizenbaum developed an algorithm and program that simulates the behavior of a psychotherapist
 - The program seemed to be able to understand anything typed in by the user

- The program was actually fairly "dumb" in modern AI terms
 - Its "understanding" was the result of programming trickery
- Its weaknesses were caused by relying almost exclusively on the premise that the syntax of a sentence captured its semantic meaning

Adapted from Bruce R. Maxim

Eliza Algorithm

- set up a language database
 Words, synonyms, sentences
 begin the conversation (e.g. with a greeting)
 - Repeat
 - read user input
 - generate Eliza's response
 - print the response on the screen
 - until the conversation ends

Eliza Algorithm – More Details

- set up a language database
 - Words, synonyms, sentences
- begin the conversation (e.g. with a greeting)
- Repeat
 - read user input
 - Keeps track of the two most recent inputs from the user
 - generate Eliza's response
 - preprocess the user input
 - Remove all punctuation from inputs and check for duplicate input
 - Make some synonym replacements from a list of pairs (e.g. big for huge)
 - Change pronouns (e.g. I and me to you)
 - find a matching keyword
 - choose an appropriate response template
 - if a keyword is found
 - extract the part of the user's input following the keyword
 - apply transformations to the extracted input
 - plug the transformed input into the response
 - Else
 - generate a non-committal response
 - print the response on the screen
- until the conversation ends

Actroid

The Actroid Robot

- understands naturally spoken words and can carry on a conversation with a guest, answering in a natural voice.
 - Speaks Chinese, Korean, English and Japanese.
 - understands 40,000 phrases
 - 2,000 types of answers
 - Nuanced facial expressions, Natural gestures such eye movement and smiling
- Robot information booth attendant at 2005 World Fair in Aichi
 - Built by Kokoro and Advanced Media
 - And she raps!

Next Class!

Topics

- Limits of Computation
- Databases

Readings for Next week

- @ infoport
- From course package
 - Igor Aleksander, "Understanding Information Bit by Bit"
 - Resources tab in onCourse.
 - Ellen Ullman, "Dining with Robots"
 - Resources tab in onCourse.

There is a lab this week!!!!!!

- Lab 10
 - Simple programming in Excel and Measuring Uncertainty
 - April 13, 14; Due April 21