

NO LAB THIS WEEK !!!

Readings until now

Posted online

Lecture notes

- http://informatics.indiana.edu/rocha/i101
 - The Nature of Information
 - Technology
 - Modeling the World
- @ infoport
 - <u>http://infoport.blogspot.com</u>
- From course package
 - Von Baeyer, H.C. [2004]. *Information: The New Language of Science*. Harvard University Press.
 - Chapters 1, 4 (pages 1-12)
 - Chapter 10 (pages 13-17)
 - From Andy Clark's book "Natural-Born Cyborgs"
 - Chapters 2 and 6 (pages 19 67)
 - From Irv Englander's book "The Architecture of Computer Hardware and Systems Software"
 - Chapter 3: Data Formats (pp. 70-86)
 - Klir, J.G., U. St. Clair, and B.Yuan [1997]. Fuzzy Set Theory: foundations and Applications. Prentice Hall
 - Chapter 2: Classical Logic (pp. 87-97)
 - Chapter 3: Classical Set Theory (pp. 98-103)
 - Norman, G.R. and D.L. Streinrt [2000]. *Biostatistics: The Bare Essentials*.
 - Chapters 1-3 (pages 105-129)
 - OPTIONAL: Chapter 4 (pages 131-136)
 - Chapter 13 (pages 147-155)
 - Chapter 5 (pages 141-144)
 - Igor Aleksander, "Understanding Information Bit by Bit"
 - Pages 157-166
 - Ellen Ullman, "Dining with Robots"
 - Pages 167-172

Assignment Situation

Labs Past

Lab 1: Blogs

heets

- Closed (Friday, January 19): Grades Posted
- Lab 2: Basic HTML
 - Closed (Wednesday, January 31): Grades Posted
- Lab 3: Advanced HTML: Cascading Style
 - Closed (Friday, February 2): Grades Posted
- Lab 4: More HTML and CSS
 - Closed (Friday, February 9): Grades Posted
- Lab 5: Introduction to Operating Systems: Unix
 - Closed (Friday, February 16): Grades Posted
- Lab 6: More Unix and FTP
 - Closed (Friday, February 23): Grades Posted
- Lab 7: Logic Gates
 - Closed (Friday, March 9): Grades Posted
- Lab 8: Intro to Statistical Analysis using Excel
 - Closed (Friday, March 30): being graded
- Lab 9: Data analysis with Excel (linear regression)
 - Due Friday, April 6
- Next: Lab 10
 - Lab 10: Simple programming in Excel and Measuring Uncertainty
 - April 12 and 13, Due April 20

Assignments

- Individual
 - First installment
 - Closed: February 9: Grades Posted
 - Second Installment
 - Past: March 2: Grades Posted
 - Third installment
 - Past: Being Graded
 - Fourth Installment
 - Presented April 10th, Due April 20th
 - Group
 - First Installment
 - Past: March 9th, Being graded
 - Second Installment
 - March 29; Due Friday, April 6

Luis M.Rocha and Santiago Schnel

Group Assignment

- Second Installment: Given the text of "Lottery of Babylon" by Jorge Luis Borges
 - Measures of central tendency and dispersion of letter frequency
 - Probability of a letter being a vowel
 - Probability of a letter being a consonant
 - Conditional probability of letters 'e' and 'u'
 - P(e|♥) where ♥ is the letter occurring before 'e'
 - P(u|♥) where ♥ is the letter occurring before 'u'
 - Compute for all letters (not space)
 - Produce histogram of P(e|♥), for all ♥.
 - Produce histogram of P(u|♥), for all ♥.
 - Discuss the independence of 'e' and 'u' from other letters
 - Upload to Oncourse

Questions

Over a 20-game period, the number of hits by a baseball player was

- 1,2,0,0,1,2,2,1,0,0,4,0,1,1,3,2,1,3,0, and 1
 - Construct the Frequency distribution
 - In what proportion of games did he get at least 3 hits?
- What is the mean, median, and mode
- What is the line that best fits the data with the least squares criterion?
- A coin is tossed three times and an H or T (H= Head, T=Tail) is recorded each time.
- List the elements of the sample space S and list the elements of the event consisting of
 - All heads
 - A head on the second toss
 - Two tails
- Represent the sample space and the events above as a Venn Diagram
- One card is to be selected from an ordinary deck of 52 cards. Find the probability that
- The selected card is an ace
- The selected card is not a 9

Questions

- What type of Uncertainty does the Hartley measure of uncertainty measure?
- What are the units of Shannon entropy?
- Does Shannon's information theory deal with the semantics and pragmatics of a message? Please explain why?
- If we have a symbol set X={A,B,C,D,E} where the symbol occurrence frequencies are:
 - A = 0.5 B = 0.2 C = 0.1 D = 0.1 E = 0.1
 - If we know that a message is being sent in this language, what is the average minimum number of bits needed to guess the next symbol of the message?

Shannon's entropy

on average, how many *yes-no* questions need to be asked to establish what the symbol is.

Entropy of an English Letter

- Entropy of English letter in a message
 - Uncertainty in guessing the next letter
 - Information contained in each new letter that arrives
- Assuming no word or sentence knowledge (no semantics)
 - From frequency distribution
 - H_s(letter) 4.18 bits
 - Hartley measure = log2(26) = 4.7 bits
 - How many guesses on average
- With knowledge of semantics
 - Tests with people in a sentence
 - H_s(letter) 1.1 bits
 - The value of semantics?

letter	estimated Probability	log_2(p)	-p.log_2(p)
•	0.0817	3.61362011	0.29522469
b	0.0149	6.09954396	0.0904213
C	0.0278	6.19877131	0.14389164
ð	0.0425	4.66639336	0.19364672
•	0.127	2,9770996	0.37809185
ſ	0.0223	6.48981248	0.12236592
٥	0.0202	6.6295009	0.11371692
h	0.0909	4.03741396	0.24687861
I	0.0697	3.84289753	0.26783902
J	0.0016	9.36062176	0.01407123
k	0.0077	7.02092684	0.05406113
1	0.0403	4.63307635	0.16671298
m	0.0241	6.37482304	0.12953324
N	0.0676	3.8889999999	0.26250539
Û	0.0761	3.73504328	0.28050176
P	0.0193	6.89526534	0.10991643
q	0.001	9.98578428	0.009996578
r	0.0699	4.06130019	0.24327168
•	0.0633	3.98185089	0.25203849
t	0.0906	3.46434614	0.31388967
U	0.0276	6.17918792	0.14294669
٧	0.0098	6.67300254	0.09539542
w	0.0236	6.40508933	0.12765964
X	0.0016	9.38082178	0.01407123
Y	. 0.0197	6.00500056	0.11161361
A Tor		10.4803676	0.00733626
			4.17623408

The Modeling Relation

Hertz' Modeling Paradigm

Luis M.Rocha

- Rules from Inductive and Deductive Analysis
 - From Data analysis
 - Produce Conclusions

• OED

- Math: A process, or set of rules, usually one expressed in algebraic notation, now used especially in computing, machine translation and linguistics.
- Medicine: A step-by-step procedure for reaching a clinical decision or diagnosis, often set out in the form of a flow chart, in which the answer to each question determines the next question to be asked.

Specifically

- A set of instructions or
 - procedures *for solving a* problem

• For calculating or *computing a model*.

Luis M.Rocha and Santiago Schnell

Algorithms are like Recipes

Algorithm

- Term derived from the name of the Persian mathematician Al-Khwarizmi
 - Lived in the VIII or IX century AD in Baghdad
 - Derived the concept
- In Computer Science
 - A well-defined computational procedure that takes some *input* values and produces *output* values, in a *finite amount of time* using a finite set of well-defined *operations*
 - To solve a computational problem
 - A desired input/output relationship

Example: Sorting

Problem:

 Given a random sequence of numbers, sort them in increasing order

 $\bullet S = \langle a_1, a_2, \dots, a_n \rangle$

Output

Input

- A permutation or reordering of S: $S' = \langle a'_1, a'_2, ..., a'_n \rangle$, such that $a_1 \leq a_2 \leq ... \leq a_n$ Input Algorithm Output
- Instance of the problem
 - I: <89, 54, 7, 102, 73, 15>
 - O: <7, 15, 54, 73, 89, 102>
- Correct Algorithm
 - If for every input instance, it *halts* with the correct output
 - A correct algorithm solves the computational problem

A DECEMBER OF

Luis M.Rocha

Formal

operations

Pseudocode

" It has often been said that a person does not really understand something until he teaches it to someone else. Actually a person does not really understand something until he can teach it to a computer." Donald Knuth

- It is important that algorithms are unambiguous and precise as possible.
 Conventions to attain layout and terminology.
 Algorithms often divided into sections
 - Input
 - the parts/components/ingredients required to accomplish the task
 - Processing
 - Actions/steps/methods to produce a result
 - Output
 - the required outcome
- Pseudo Code
 - Fake code, not really programming code
 - Specifies the steps required for processing.
 - Structured language used to specify an algorithm.

author of the *The Art* of *Computer Programming*, father of the field of rigorous analysis of algorithms, creator of the TEX typesetting system, etc...

Advantage of pseudocode

Reduced complexity

- While writing the algorithm the developer can focus on solving the problem, not how it is written in a a particular language.
- Increased flexibility
 - Pseudo code is written so that code based on it should be able to be written in any language

Ease of understanding

- No need to understand a particular programming language, more like natural language
- Employs whatever expressive method is most clear and concise
 - Even a plain English sentence

Pseudocode Statements

- Assignment
 - Used to (a) store a value in a *variable* or (b) calculating the answer to an arithmetic problem and then storing the result
 - Symbols used
 - "=", "←"
 - Example
 - Total = 100 (storing a value)
 - Area = Length * Width (arithmetic Calculations)

Operator	Meaning	Excel	Example
0	Brackets, grouping	0	y = (a + b) * (c + d)
*	Multiplication	*	i=j*k
+	Add	+	i = i+1
-	Subtract	-	i=j-3.2
/	Real division	/	i=8/5 = 1.6
div	Integer division	Quotient (a,b)	i=8/5 = 1
Mod, %	remainder	Mod (a, b)	i=8 mod 5 = 3
ROUND	Rounds	ROUND (a, d)	i = ROUND(3.67, 0) = 4
INT	Integer Part	INT	i=INT(3.67) = 3
rand	Random number	Rand() RandBetween(a,b)	i=rand(n)

Pseudocode I/0

Input

- Display a message asking the user for a value and store the value typed by the user in a variable.
 - Examples
 - Input custNam
 - displays a message asking the user to input a customers name and store the value typed by the user in the *variable* called *custName*.
- Display/Output
 - Displays data on the computer screen (monitor).
 - Examples
 - Display "Width = ", width
 - Display "Hello World"
 - Display grossIncome, taxPayable
 - Values in quotation marks are displayed exactly as stated (minus the quotation marks)
 - The values held in variables are displayed rather than the variable name.

Pseudocode Decision

if condition then action end-if if condition then action1 else action2 . . . end-if case selector of condition1 : action1 condition2 : action2 condition3 : action3 end-case

Luis M.Rocha and S

Pseudocode Iteration or Loops

- y=rand(100) mod x
- Display y
- X=x+1
- ENDWHILE
 - The number of iterations to compute may depend on the computation itself

FOR counter = start-value to end-value DO
statement
statement
ENDFOR

WHILE condition DO statement statement ... ENDWHILE

Example: Hire assistant

HIRE-ASSISTANT(n)

1 best $\leftarrow 0$ \triangleright candidate 0 is a least-qualified dummy candidate

INTRODUCTION TO

ECOND EDITION

ALGORITHMS

Luis M.Roch

- for $i \leftarrow 1$ to n
 - do interview candidate i

if candidate i is better than candidate best

then best $\leftarrow i$

Hire Candidate Best

RANDOMIZED-HIRE-ASSISTANT(n)

- 1 randomly permute the list of candidates
- 2 best $\leftarrow 0$ \triangleright candidate 0 is a least-qualified dummy candidate
- 3 for $i \leftarrow 1$ to n

6

- 4 do interview candidate i
 5 if candidate i is better
 - if candidate i is better than candidate best
 - then best $\leftarrow i$
- ⁷ Hire Candidate *Best*

Flow Chart

- Pictorial representation of algorithm
 - Parallelogram for input/output
 - Oval for start and stop
 - Rectangle for processing
 - Diamond for decision
 - Hexagon for preparations and loops
 - Circle for connector
 - Arrow for flow direction

Next Class!

Topics

- More Algorithms and Limits of Computation
- **Readings for Next week**
 - @ infoport
- From course package
 - Igor Aleksander, "Understanding Information Bit by Bit"
 - Resources tab in onCourse.
 - Ellen Ullman, "Dining with Robots"
 - Resources tab in onCourse.
- No lab this week!!!!!!

