

NO LAB THIS WEEK !!!

Readings until now

Lecture notes

- Posted online
 - http://informatics.indiana.edu/rocha/i101
 - The Nature of Information
 - Technology
 - Modeling the World

@ infoport

<u>http://infoport.blogspot.com</u>

- From course package
 - Von Baeyer, H.C. [2004]. *Information: The New Language of Science*. Harvard University Press.
 - Chapters 1, 4 (pages 1-12)
 - Chapter 10 (pages 13-17)
 - From Andy Clark's book "Natural-Born Cyborgs"
 - Chapters 2 and 6 (pages 19 67)
 - From Irv Englander's book "*The Architecture of Computer Hardware and Systems Software*"
 - Chapter 3: Data Formats (pp. 70-86)
 - Klir, J.G., U. St. Clair, and B.Yuan [1997]. Fuzzy Set Theory: foundations and Applications. Prentice Hall
 - Chapter 2: Classical Logic (pp. 87-97)
 - Chapter 3: Classical Set Theory (pp. 98-103)
 - Norman, G.R. and D.L. Streinrt [2000]. *Biostatistics: The Bare Essentials*.
 - Chapters 1-3 (pages 105-129)
 - OPTIONAL: Chapter 4 (pages 131-136)
 - Chapter 13 (pages 147-155)
 - Chapter 5 (pages 141-144)
 - Igor Aleksander, "Understanding Information Bit by Bit"
 - Pages 157-166

Assignment Situation

Labs Past

Lab 1: Blogs

heets

- Closed (Friday, January 19): Grades Posted
- Lab 2: Basic HTML
 - Closed (Wednesday, January 31): Grades Posted
- Lab 3: Advanced HTML: Cascading Style
 - Closed (Friday, February 2): Grades Posted
- Lab 4: More HTML and CSS
 - Closed (Friday, February 9): Grades Posted
- Lab 5: Introduction to Operating Systems: Unix
 - Closed (Friday, February 16): Grades Posted
- Lab 6: More Unix and FTP
 - Closed (Friday, February 23): Grades Posted
- Lab 7: Logic Gates
 - Closed (Friday, March 9): Grades Posted
- Lab 8: Intro to Statistical Analysis using Excel
 - Closed (Friday, March 30): being graded
- Lab 9: Data analysis with Excel (linear regression)
 - Due Friday, April 6
- Next: Lab 10
 - Lab 10: Simple programming in Excel and Measuring Uncertainty
 - April 12 and 13, Due April 20

Assignments

- Individual
 - First installment
 - Closed: February 9: Grades Posted
 - Second Installment
 - Past: March 2: Grades Posted
 - Third installment
 - Past: Being Graded
 - Fourth Installment
 - Presented April 10th, Due April 20th
 - Group
 - First Installment
 - Past: March 9th, Being graded
 - Second Installment
 - March 29; Due Friday, April 6

Luis M.Rocha and Santiago Schnel

Group Assignment

- Second Installment: Given the text of "Lottery of Babylon" by Jorge Luis Borges
 - Measures of central tendency and dispersion of letter frequency
 - Probability of a letter being a vowel
 - Probability of a letter being a consonant
 - Conditional probability of letters 'e' and 'u'
 - P(e|♥) where ♥ is the letter occurring before 'e'
 - P(u|♥) where ♥ is the letter occurring before 'u'
 - Compute for all letters (not space)
 - Produce histogram of P(e|♥), for all ♥.
 - Produce histogram of P(u|♥), for all ♥.
 - Discuss the independence of 'e' and 'u' from other letters
 - Upload to Oncourse

Why are we dealing with uncertainty in Informatics?

- Information is transmitted through noisy communication channels
 - Ralph Hartley and Claude Shannon (at Bell Labs), the fathers of Information Theory, worked on the problem of efficiently transmitting information; i. e. *decreasing the uncertainty* in the transmission of information!

Hartley, R.V.L., "Transmission of Information", *Bell System Technical Journal*, July 1928, p.535.

C. E. Shannon, ``A mathematical theory of communication," *Bell System Technical Journal*, vol. 27, pp. 379-423 and 623-656, July and October, 1948.

Uncertainty-based Information

- In a problem-solving or decision-making activity
 - Uncertainty is the result of some information deficiency
- *Information* is defined as "a measure of the freedom from *choice* with which a message is *selected* from the set of all possible messages"
 - Bit (short for *binary digit*) is the most elementary choice one can make between <u>two equally likely</u> <u>choices</u>
 - Between two items: "0' and "1", "heads" or "tails", "true" or "false", etc.
 - Example, if we know that a coin is to be tossed, but are unable to see it as it falls, a message telling whether the coin came up heads or tails gives us one bit of information
 - Therefore the *fundamental unit of information*

[Klir and Weirman, "Uncertainty-based information"] Luis M.Rocha and Santiago Schn

Let's talk about choices Multiplication Principle

 "If some choice can be made in M different ways, and some subsequent choice can be made in N different ways, then there are M x N different ways these choices can be made in succession" [Paulos]

3 shirts and 4 pants = 3 x 4 = 12 outfit choices

Nonspecificity

- A type of ambiguity
 - When there are choices

- Unspecified distinctions between several alternatives
 - Variety, imprecision
 - Indiscriminate choices
- Measured by Hartley measure
 - The amount of uncertainty associated with a set of alternatives (e.g. messages) is measured by the amount of information needed to remove the uncertainty

 $H(A) = \log_2 |A|$ Number of Choices Measured in bits

Properties of Logarithms

$$x = b^{y} \Leftrightarrow y = \log_{b} x$$

$$p = \log_{b} b = 1 \quad \log_{b} 1 = 0 \quad b^{2}, \text{ computes the uncertainty of 2 choices as 1: the bit}$$

$$p = \log_{b} (M, N) = \log_{b} M + \log_{b} N \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

$$p = \log_{b} (M - \log_{b} N) \quad \text{Converts multiplication into sum. Easier to deal with accounting choices}$$

What about probability?

- Some alternatives may be more probable than others!
- A different type of ambiguity
 - Alternatives are distinct
 - Conflict, strife, discord
- Measured by Shannon's *entropy* measure
 - The amount of uncertainty associated with a set of alternatives (e.g. messages) is measured by the *average* amount of information needed to remove the uncertainty

N 1 0 2 0 2 0 4 0 4 0 4 0 4 0 4 0 4 0 5 0 5 0 5 0 6 0 7 0 6 1 V 0 4 0 4 0 4

Entropy of a message

Message encoded in an alphabet of *n* symbols, for example:

English (26 letters + space + punctuations)

Morse code (dot, dash, space)

DNA (A, T, G, C)

Shannon's entropy formula

Shannon formulated the following problem:

Let's us define a quantity that *measures*

missing information, how much information is needed to establish what the symbol is, or

uncertainty about what the symbol is, or

on average, how many yes-no questions need to be asked to establish what the symbol is.

$$H_{S}(A) = -\sum_{i=1}^{n} p(x_{i}) \log_{2}(p(x_{i}))$$
Luis M.Rocha and Santiago Schnel

Examples – Morse code

 $H_{s}(A) = -\sum_{i=1}^{n} p(x_{i}) \log_{2}(p(x_{i})) \qquad H_{s} = -(p_{1} \log_{2}(p_{1}) + p_{2} \log_{2}(p_{2}) + p_{3} \log_{2}(p_{3}))$

dot, dash, space

All dots:
$$p_1 = 1$$
, $p_2 = p_3 = 0$.

• Take any symbol – it's a dot; no uncertainty, no question needed, no missing information, $H_s = -1.log_2(1) = 0$.

- 50-50 chance that it's a dot or a dash: p₁ = p₂ = 1/2, p_k = 0.
 - Given the *probabilities*, need to ask one question
 - one piece of missing information
 - $H_s = -(1/2.\log_2(1/2) + 1/2.\log_2(1/2)) = -1.\log_2(1/2) = -(\log_2(1)) \log_2(2)) = \log_2(2) = 1$ bit

• Uniform: all symbols equally likely, $p_1 = p_2 = p_3 = 1/3$.

Given the *probabilities*, need to ask as many as 2 questions - 2 pieces of missing information, H_s = - log₂(1/3) = - (log₂(1) - log₂(3)) = log₂(3) = 1.59 bits

Example English

Given a symbol set {A,B,C,D,E}

- And occurrence probabilities P_A, P_B, P_C, P_D, P_E,
- The Shannon entropy is

The average minimum number of bits needed to represent a symbol

 $H_{S} = -(p_{A} \log_{2}(p_{A}) + p_{B} \log_{2}(p_{B}) + p_{C} \log_{2}(p_{C}) + p_{D} \log_{2}(p_{D}) + p_{E} \log_{2}(p_{E}))$

Shannon's entropy

on average, how many *yes-no* questions need to be asked to establish what the symbol is.

Critique of Shannon's communication theory

- The entropy formula as a measure of information is arbitrary
- Shannon's theory measures quantities of information, but it does not consider information content
- In Shannon's theory, the semantic aspects of information are irrelevant to the engineering problem

Other Forms of Uncertainty Vagueness or fuzziness Simultaneously being "True" and "False" Fuzzy Logic and Fuzzy Set Theory 長伯 THEP HE HERE THER C THERE "Me, ambivalent?, .. Well, yes and no ... "

Frequency Analysis and Cryptography

 Cryptography
 Derived from the Greek word *Kryptos*: hidden
 See Simon Singh'

- See Simon Singh's The Code Book CD-ROM
 - Enigma

Next Class!

- Topics
 - Algorithms
 - Readings for Next week
 - @ infoport
 - From course package
 - Norman, G.R. and D.L. Streinrt [2000]. *Biostatistics: The Bare Essentials*.
 - Chapters 1-3 (pages 109-134)
 - OPTIONAL: Chapter 4 (pages 135-140)
 - Chapter 13 (pages 151-159)
 - Chapter 5 (pages 141-144)
 - Von Baeyer, H.C. [2004]. *Information: The New Language of Science*. Harvard University Press.
 - Chapter 10 (pages 13-17)
 - Igor Aleksander, "Understanding Information Bit by Bit"
 - Pages 157-166
- No Lab this week!!!