

# Readings until now

#### Lecture notes

- Posted online
  - http://informatics.indiana.edu/rocha/i101
    - The Nature of Information
    - Technology
    - Modeling the World
- @ infoport
  - <u>http://infoport.blogspot.com</u>
- From course package
  - Von Baeyer, H.C. [2004]. *Information: The New Language of Science*. Harvard University Press.
    - Chapters 1, 4 (pages 1-12)
  - From Andy Clark's book "Natural-Born Cyborgs"
    - Chapters 2 and 6 (pages 19 67)
  - From Irv Englander's book "The Architecture of Computer Hardware and Systems Software"
    - Chapter 3: Data Formats (pp. 70-86)
  - Klir, J.G., U. St. Clair, and B.Yuan [1997]. Fuzzy Set Theory: foundations and Applications. Prentice Hall
    - Chapter 2: Classical Logic (pp. 87-97)
    - Chapter 3: Classical Set Theory (pp. 98-103)
  - Norman, G.R. and D.L. Streinrt [2000]. Biostatistics: The Bare Essentials.
    - Chapters 1-3 (pages 105-129)







# NO LAB THIS WEEK !!!

# **Assignment Situation**

#### Labs

#### Past

- Lab 1: Blogs
  - Closed (Friday, January 19): Grades Posted
- Lab 2: Basic HTML
  - Closed (Wednesday, January 31): Grades Posted
  - Lab 3: Advanced HTML: Cascading Style Sheets
    - Closed (Friday, February 2): Grades Posted
- Lab 4: More HTML and CSS
  - Closed (Friday, February 9): Grades Posted
- Lab 5: Introduction to Operating Systems: Unix
  - Closed (Friday, February 16): Grades Posted
- Lab 6: More Unix and FTP
  - Closed (Friday, February 23): Grades Posted
- Lab 7: Logic Gates
  - Closed: due Friday, March 9
- Next: Lab 8
  - Intro to Statistical Analysis using Excel

Get a Group NOW!

March 22 & 23, Due Friday, March 30



- Assignments
  - Individual

GUOT

- First installment
  - Closed: February 9: Grades Posted
- Second Installment
  - Past: March 2, Being Graded
- Third installment
  - Presented on March 8<sup>th</sup>, Due on March 30<sup>th</sup>
  - First Installment
    - Presented: March 6<sup>th</sup>, Due March 9<sup>th</sup>

## **Summarizing** Data

Frequency

 Number of times an <u>item</u> or <u>value</u> occurs in a collection

#### **Frequency** Distribution

- Given a collection of data items/values, the specification of all the distinctive values in the collection together with the number of times each of these items/values occurs in the collection
  - Table that organizes data into mutually exclusive classes
  - Shows number of observations from data set that fall into each class

[Chase and Brown, "General Statistics"]

#### Frequency Distribution (values)

Sorted Data: 30 data values (Carpet Looms)

| 15.2 | 15.2 | 15.3 | 15.3 | 15.3 | 15.3 | 15.3 | 15.4 | 15.4 | 15.4 |
|------|------|------|------|------|------|------|------|------|------|
| 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.4 | 15.5 | 15.5 |
| 15.5 | 15.5 | 15.5 | 15.5 | 15.6 | 15.6 | 15.6 | 15.7 | 15.7 | 15.7 |

| <b>Frequency</b><br>Distribution | Class | Tallies | Frequency |  |
|----------------------------------|-------|---------|-----------|--|
| Distribution                     | 15.2  | //      | 2         |  |
|                                  | 15.3  | 114     | 5         |  |
|                                  | 15.4  | 1HH 11H | / 11      |  |
|                                  | 15.5  | HH I    | 6         |  |
|                                  | 15.6  | ///     | 3         |  |
|                                  | 15.7  | ///     | 3         |  |



#### **Relative Frequency Distribution (values)**

| Relative<br>Frequency<br>Distribution | Class | Frequency<br>(1) | Relative Freq.<br>(1) ÷ 30 | Cumulative<br>Relative<br>Frequency |
|---------------------------------------|-------|------------------|----------------------------|-------------------------------------|
|                                       | 15.2  | 2                | 0.07                       | 0.07                                |
|                                       | 15.3  | э<br>11          | 0.16<br>0.37               | 0.23                                |
|                                       | 15.5  | 6                | 0.20                       | 0.80                                |
|                                       | 15.6  | 3                | 0.10                       | 0.90                                |
|                                       | 15.7  | 3                | 0.10                       | 1.00                                |
|                                       |       | 30               | 1.00                       |                                     |





#### Freq. Distribution Film data (items) Raw Data: Your favorite films

The Big Lebowski, Kung Fu Hustle, Team America – World Police, Kill Bill 1 + 2, Good Night, and Good Luck, Pulp Fiction,....

| Sorted Movie Preferences                                                                                                                                   | Class                                                                                                              | Freq.                                               | Rel. Freq.                                                           | %                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|
| dumb and dumber8wedding crashers7office space6the matrix5jackass 24old school4tommy boy4anchorman3mission impossible3scarface3super troopers3the departed3 | dragon ball z<br>dream catcher<br>dumb & dumbe<br>elf<br>enough<br>face off<br>Fast/furious/tok<br>Fear/loath/vega | 1<br>1<br>r 8<br>1<br>1<br>1<br>xyo 1<br>s 2<br>223 | 0.004<br>0.004<br>0.036<br>0.004<br>0.004<br>0.004<br>0.004<br>0.009 | 0.4%<br>0.4%<br>0.4%<br>0.4%<br>0.4%<br>0.4%<br>0.9% |
|                                                                                                                                                            | Movies                                                                                                             | Vo                                                  | tes (# Items                                                         |                                                      |

#### **Grouped Frequency Distribution**

- Further summarizes the data
  - Very important when the number of data values is large
- Procedure
  - Divide the interval describing the range of values in a small number of subintervals: *classes*
    - E.g. 10, usually of equal width
  - Count how many values fall in each class



# **Building** a Grouped Frequency **Distribution**

Data

| 100 | 74  | 84  | 95  | <b>9</b> 5 | 110 | 99  | 87  | 100 | 108 |  |
|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|--|
| 85  | 103 | 99  | 83  | 91         | 91  | 84  | 110 | 113 | 105 |  |
| 100 | 98  | 100 | 108 | 100        | 98  | 100 | 107 | 79  | 86  |  |
| 123 | 107 | 87  | 105 | 88         | 85  | 99  | 101 | 93  | 99  |  |

R = 123 - 74 = 49
49/10 = 4.9
Tentative Class Interval Size = 5



# Constructing a Grouped Frequency Distribution

| Grouped<br>Frequency | Class     | Frequency | Relative Freq.  | Cumulative<br>Relative |
|----------------------|-----------|-----------|-----------------|------------------------|
| Distribution         |           | (1)       | <u>(1) ÷ 40</u> | Frequency              |
|                      | 70 - 74   | 1         | .025            | .025                   |
|                      | 75 - 79   | 1         | .025            | .050                   |
|                      | 80 - 84   | 3         | .075            | .125                   |
|                      | 85 - 89   | 6         | .150            | .275                   |
|                      | 90 - 94   | 3         | .075            | .350                   |
|                      | 95 - 99   | 8         | .200            | .550                   |
|                      | 100 - 104 | 8         | .200            | .750                   |
|                      | 105 - 109 | 6         | .150            | .900                   |
|                      | 110 - 114 | 3         | .075            | .975                   |
|                      | 115 - 119 | 0         | .000            | .975                   |
|                      | 120 - 124 | 1         | .025            | 1.000                  |

# Additional Terms Associated with Grouped Frequency Distributions

| Grouped<br>Frequency | Class                 | Frequency | Relative Freq.   | Cumulative<br>Relative |
|----------------------|-----------------------|-----------|------------------|------------------------|
| Distribution         |                       | (1)       | (1)÷ 30          | Frequency              |
|                      | 70 - 74               |           |                  |                        |
|                      | 75 - 79               |           | Class Interval N | <b>/lidpoint</b>       |
|                      | <mark>80</mark> - 84◄ |           | (70 + 74)/2      | = 72                   |
|                      | 85 - 89               | Upper     | Limit            |                        |
|                      | 90 - 94               | 84        |                  |                        |
|                      | 95 - 99               | Lower L   | imit             |                        |
|                      | 100 - 104             | 80        |                  |                        |
|                      | 105 - 109             |           |                  |                        |
|                      | 110 - 114             | 3         | .075             | .975                   |
|                      | 115 - 119             | 0         | .000             | .975                   |
|                      | 120 - 124             | 1         | .025             | 1.000                  |

#### **Frequency Histogram**

**Grouped Frequency Distribution for Carpet Loom Example (Yards of carpet)** 



#### Frequency Polygon

Grouped Frequency Distribution for Carpet Loom Example (Yards of carpet)

| IIII         |                |           | Clas        | SS     | Frequency        |  |
|--------------|----------------|-----------|-------------|--------|------------------|--|
| 12           |                |           | 15.2        | 2-15.4 | 2                |  |
|              |                |           | 15.         | 5-15.7 | 5                |  |
| c            |                |           | 15.8        | 3-16.0 | 11               |  |
| Ű            |                |           | 16.1        | 1-16.3 | 6                |  |
| <u>n</u>     |                |           | 16.4        | 4-16.6 | 3                |  |
| ed           |                |           | 16.7        | 7-16.9 | 3                |  |
| ية<br>2<br>0 |                |           |             |        |                  |  |
|              | 15.0 15.3 15.6 | 15.9 16.2 | 16.5 16.8 1 | 7.1    | M Danks and Sant |  |

#### Frequency Polygon

**Grouped Frequency Distribution for Carpet Loom Example (Yards of carpet)** 



# Cumulative Relative Frequency Polygon: Ogive

|         | 1.0 |                                                                                                                |                |     |
|---------|-----|----------------------------------------------------------------------------------------------------------------|----------------|-----|
| 100 700 | 0.9 | The second s |                |     |
| ncy     | 0.8 | Grouped Cumulativ<br>Frequency Distribut                                                                       | 'e<br>tion for | -   |
| edne    | 0.7 | Carpet Loom Exam<br>(Yards of carpet)                                                                          | ple            | _   |
| /e Fr   | 0.6 | Class C.R.I                                                                                                    | Freq.          |     |
| elativ  | 0.5 | < 15.2                                                                                                         | 0.00           |     |
| Re      | 0.4 | 15.2-15.4                                                                                                      | 0.07           |     |
| \e      | 011 | 15.5-15.7                                                                                                      | 0.23           |     |
| ativ    | 0.3 | 15.8-16.0                                                                                                      | 0.60           |     |
| n       |     | 9 16.1-16.3                                                                                                    | 0.80           |     |
| Ę       | 0.2 | 16.4-16.6                                                                                                      | 0.90           |     |
| ō       | 0.1 | 16.7-16.9                                                                                                      | 1.00           | 1   |
|         |     |                                                                                                                |                |     |
|         |     | 13.2 13.3 13.0 13.9 10.2 10.3 10.0 Luis M.Rocha and                                                            | Santiago S     | chn |

# Frequency Analysis and Cryptography

 Cryptography
 Derived from the Greek word *Kryptos*: hidden

 See Simon Singh's The Code Book CD-ROM

Check out
 Cybersecurity group
 @Informatics





### Group Assignment: First Installment

- Given the text of "Lottery of Babylon" by Jorge Luis Borges
  - Compute the frequency, relative frequency, and cumulative relative frequency distribution of letters
    - In the Spanish and the English Text
    - Upload to Oncourse
      - Note: in the Spanish version, lookout for ñ, á, é, í, ó, ú





Test these hypotheses further!

#### Analysis and Observations

Jeffrey Randall Cooley

Q4

- looked at the number 4 one iteration at a time.
  - 4 -> 1 -> 9 -> 4 -> 1
- All numbers keep appearing

Q2

- Can go to all 0
- Can go to all 0 and evens (2, 4, 6, and 8)
- Q1
  - Groups numbers together
- Q3
  - Always goes to all zero (black)
- Andrew James Dempsey
  - Concentrated on Q3
    - Dies between 400-800 cycles
    - One or none changes per cycle
    - 5 always changes to 0
    - Every number goes to zero
    - 1,2,4,6,7,9 all go to four different numbers
    - Only 3 -> 1
    - **3**,4,6,8 -> 2 ;
    - 9 -> 3;
    - No numbers go to 7 or 9!









Restart

Go



- Found a correlation between colors and numbers
  - 0 = Black ; 1 =GREY;
  - 2 = CYAN; 3 = BLUE;
  - 4 =GREEN/PINK; 5 =GREEN/PINK;
  - 6 =WHITE; 7 = YELLOW/RED;
  - 8 =YELLOW/RED; 9 = LIGHT PINK;
  - Q1
    - TEST: ran the box 15 times at 1200 cycles each and recorded which numbers remain in the box.
      - NUMBER TIMES COUNTED RANK
      - 1----011111110010110-----10---2
      - 2----100110001111101-----9----3
      - 3----011000110001110-----7---4
      - 4----001111000000001-----5/6
      - 5----000010011011100-----5/6
      - 6----11000000011000-----4----7
      - 7----10000100001000-----3----8/9
      - 8----000010000101000-----3----8/9

      - 0----011101111101111-----12----1
      - Lower digits more frequent?

• Test

- **Ouadrants are independent?**
- How to study so many changes?



#### **Cliff Taylor**

Boids

- Quadrants represent one of the 3 behaviors
  - separation, alignment, and cohesion.
  - Q1 contains the results
    - Grouping/flocking
  - Now, the top left quadrant represents all three of
- Also proposed by Donald Peek for Q1 and Q3
- Sarah Kepa, J.T.Waugh, Marcus Bigbee and Andrew Philbrick observed grouping behavior in the left quadrants.







Go

Restart

Jacob Levi Marsh

- First Try: 1000 Cycles
  - Q1: Four numbers...1,2,3,4.
  - Q2: Two numbers...5,0
  - Q3: Only 0
  - Q4: All numbers...0-9
- Second Try: 1000 Cycles
  - Q1 : Contains four numbers...0,1,4,8
  - Q2 : Contains only 0
  - Q3 : Contains only 0
  - Q4 : Contains all numbers...0-9
- Third Try: 1000 Cycles
  - Q1 : Contains six numbers...0,1,2,3,6,9
  - Q2 : Contains all numbers 1-9
  - Q3 : Contains only 0
  - Q4 : Contains all numbers...0-9
- Fourth Try: 1000 Cycles
  - Q1 : Contains five numbers...0,1,2,3,4
  - Q2 : Contains five numbers...0,2,4,6,8
  - Q3 : Contains only 0
  - Q4 : Contains all numbers...0-9
- Findings:
  - Q1 can have 1, 3, 4, 5, 6, or 7 different numbers.
  - Q2 can have 1, 2, 5, or 10 different numbers.

Luis M.Rocha a

- Q3 only has one number which is 0.
- Q4 always has 10 different numbers.
- Look at transition details!
- Ashlee Nicole Sweeden
  - Similar conclusions





#### Samuel Abraham Ritter

- Ran 1,000 cycles and it appeared at first that the number in each of the corners was represented by the number that was depicted most in each of the 4 individual squares.
  - After counting, my theory was not correct since one of the inner squares did not follow this .....it was only the bottom right inner square that did not follow this theory

Q2

#### Nathaniel Wishart

- an odd number can either be replaced by another odd number or an even number, but an even number can only be replaced by another even number.
- Sarah Kepa
  - Unless they go to zero, the odd numbers seem to change to odd numbers, and the even number change to even numbers.
- Andrew Glenn Philbrick
  - From what I noticed even numbers are only able to be replaced by a new even number for a while, but once a great number of cycles are ran the pattern seems to disappear (?)
- Which one is True?









# Next Class!

#### Topics

- More Inductive Reasoning Modeling
  - Measures of Dispersion and Position
  - Regression

#### Readings for Next week

- @ infoport
- From course package
  - Norman, G.R. and D.L. Streinrt [2000]. *Biostatistics: The Bare Essentials*.
    - Chapters 1-3 (pages 109-134)

#### Lab 8

- Data analysis with Excel (linear regression)
- NO LAB THIS WEEK!!!!