Introduction to Informatics

Lecture 14: Logic Circuits and Midterm Review

Luis M.Rocha a

Readings until now

Lecture notes

- Posted online
 - http://informatics.indiana.edu/rocha/i101
 - The Nature of Information
 - Technology
 - Modeling the World
- @ infoport
 - <u>http://infoport.blogspot.com</u>
- From course package
 - Von Baeyer, H.C. [2004]. *Information: The New Language of Science*. Harvard University Press.
 - Chapters 1, 4 (pages 1-12)
 - From Andy Clark's book "Natural-Born Cyborgs"
 - Chapters 2 and 6 (pages 19 67)
 - From Irv Englander's book "The Architecture of Computer Hardware and Systems Software"
 - Chapter 3: Data Formats (pp. 70-86)
 - Klir, J.G., U. St. Clair, and B.Yuan [1997]. Fuzzy Set Theory: foundations and Applications. Prentice Hall
 - Chapter 2: Classical Logic (pp. 87-98)
 - Chapter 3: Classical Set Theory (pp. 99-107)

Assignment Situation

Labs

Past

- Lab 1: Blogs
 - Closed (Friday, January 19): Grades Posted
- Lab 2: Basic HTML
 - Closed (Wednesday, January 31): Grades Posted
- Lab 3: Advanced HTML: Cascading Style Sheets
 - Closed (Friday, February 2): Grades Posted
 - Lab 4: More HTML and CSS
 - Closed (Friday, February 9): Grades Posted
- Lab 5: Introduction to Operating Systems: Unix
 - Closed (Friday, February 16): Being graded
- Lab 6: More Unix and FTP
 - Due Friday, February 23
- Next: Lab 7
 - Logic Gates
 - March 1 and 2, due Friday, March 9
- Assignments

CH NO. OI NO.

- Individual
 - First installment
 - Closed: February 9: Grades Posted
 - Second Installment
 - Due: March: 2nd
 - Group Project
 - First installment
 - Presented: March 6, Due: March 9th

Midterm Exam

March 1st (Thursday)

Get a Group!

Individual assignment

Individual Project

- 1st installment
 - Presented: February 1st
 - Due: February 9th
 - 2nd Installment
 - Presented: February 15th
 - Due: March: 2nd
- 3rd Installment
 - Presented: March 8th
 - Due: March 30th
- 4th Installment
 - Presented: April 5th
 - Due: April 20th

The Black Box

Fundamental Logic Operations/GatesNOTANDOR

Important Logic Operations/Gates IMPLICATION EQUIVALENCE XOR $A \oplus B$, $A \Rightarrow B$, $A \Leftrightarrow B$, B,qB,qA,pA,p A,p B,q $p \oplus q$ $p \Rightarrow q$ $p \Leftrightarrow q$ ()()()0 0 0 $\mathbf{0}$ () 0 0 $\mathbf{0}$ 0 0 1 0 0 1 0 0

1

 $p \Rightarrow q \equiv \neg p \lor q$

 $p \oplus q \equiv (p \lor q) \land \neg (p \land q)$

 $\equiv \neg (p \oplus q)$

1

1

1

Proofs for De Morgan's Law I

 $\neg (p \lor q) \equiv \neg p \land \neg q$

Adapted from C. Heeren

Adapted from C. Heeren

Adapted from C. Heeren

Luis M.Rocha and Santiago Schnel

Implementing Logic Gates

- Source or collector
 - Produces high voltage
 - 5 volts
- Base regulates
 - If signal high
 - Source signal gets grounded: turns transistor off (0)

COLLECTOR

output

- If signal is low
 - Source signal stays high: transistor on (1)
- NOT, NAND and NOR gates easiest to produce

Luis M.Rocha an

APPEARENTLY, HEITHER HAS DAD

Information is a Relation! The central structure of information is a *relation* among signs, objects or things, and agents capable of understanding (or Sign decoding) the signs. <u>Agents</u> are informed by a <u>Sign</u> about some *Thing*. RUN FOR YOUR LIVES! IT'S AN ASTERISK !!!" Agents

Luis M.Rocha a

Informatics

Semiotics and Informatics

- Semantics
 - the content or meaning of the <u>Sign</u> of a <u>Thing</u> for an <u>Agent</u>
 - Relations between signs and objects for an agent
 - the study of meaning.

Syntax Information Technology

- the characteristics of <u>signs</u> and symbols devoid of meaning
 - Relations among signs such as their rules of operation, production, storage, and manipulation.

Pragmatics

- the context of signs and repercussions of signsystems in an environment
 - it studies how context influences the interpretation of signs and how well a signs-system represents some aspect of the environment

(Peirce's) Typology of Signs

- *Icons* are direct representations of objects.
 - Similar to the thing they represent.
 - Pictorial road signs, scale models, computer icons.
 - A footprint on the sand is an icon of a foot.
- *Indices* are indirect representations of objects, but necessarily related.
 - Smoke is an index of fire, the bell is an index of the tolling stroke
 - a footprint is an index of a person.
- Symbols are arbitrary representations of objects
 - Require exclusively a social convention to be understood
 - Convention establishes a code, agreed by a group of agents, for understanding (decoding) the information contained in symbols.
 - Smoke is an index of fire, but if we agree on an appropriate code (e.g. Morse code) we can use smoke signals to communicate symbolically.

The Bit

Shannon used the binary system because it is the most economical

- Uses less memory
 - <u>Information quantity</u> depends on the number of alternative message *choices* encoded in the binary system
- Bit (short for *binary digit*) is the most elementary choice one can make
 - Between two items: "0' and "1", "heads" or "tails", "true" or "false", etc.
 - Bit is equivalent to the choice between two equally likely choices
 - Example, if we know that a coin is to be tossed, but are unable to see it as it falls, a message telling whether the coin came up heads or tails gives us one bit of information

Digital versus Analog

Digital is used to convey the notion of discrete objects/values

- Things we can count
- The word digit comes from the Latin word for finger (*digitus*)
- Digital information is equivalent to symbolic information
 - Any symbol system requires a set of discrete symbols for setting up an arbitrary semantic relation
- Analog (or Analogue)
 - Information transmission via electrical, mechanical, hydraulic, and sound signals
 - Continuously varying signals which are not countable
 - What was used up until Shannon
 - Instead of messages being arbitrarily encoded, analog signals rely on some physical property of the medium
 - It implies an analogy between cause and effect, input and output
 - Voltage as an "analogy" to sound in analog synthesizer
 - But it cannot encode any sound whatsoever!
 - Sounds depend on the physical properties of electricity, the transducer and equipment used

Questions

- What is informatics?
- What is the difference between an "index" and an "symbol"?
- Examples of Analogue vs. Digital Information?
- How does Information Technology relate to semiotics?

Tools, Cyborgs and History of IT

Transparent Technology

So well fitted to, and integrated with, our own lives, biological capacities, and projects as to become almost invisible in use (Andy Clark)

Glasses, wrist-watches, driving cars, mobile phones, pens, sports and musical equipment: human-centered

Not the same as easy to understand

Opaque Technology

- Highly visible in use: technology-centered
 - Computers, industrial machines
- Opaque technology can become transparent with practice
 - But it works better when biologically suited
 - Natural fit, ergonomics

http://www.baddesigns.com/examples.html http://www.jnd.org/

(Donald Norman)

Luis M.Rocha and Santiago Schnell

Natural-born Cybergs?

Humans more than using, incorporate technology

- We know we "know" the time, simply because we are equipped with a watch
- As more portable computing devices become available, will we incorporate easily accessible collective knowledge as our own?
 - Transparent knowledge technology
 - Example: Google SMS
 - Adaptive Knowledge Technology (Clark, Chapter 6)

http://www.google.com/sms/howtouse.html#top

Charles Babbage (1791 – 1871)

Analytical Engine

- Working with Ada Lovelace (daughter of Lord Byron) designed what was to have been a general-purpose mechanical digital computer.
 - With a memory store and a central processing unit (or `mill') and would have been able to select from among alternative actions consequent upon the outcome of its previous actions

- Conditional branching: Choice, information
- Programmed with instructions contained on punched cards

The First Personal Computer

In 1971, Intel released the first microprocessor.

- Able to process four bits of data at a time!
- The Altair 8800 (1975)
 - by a company called *Micro Instrumentation* and Telementry Systems (MITS) sold for \$397
 - Came as a kit for assembly who had to to write software for the machine
 - in machine code!
 - 256 byte memory --about the size of a paragraph

- Microsoft
 - Was born to create a BASIC compiler for the Altair
 - Beginners All-purpose Symbolic Instruction Code

graphical user interface (GUI)

On-Line System (NLS) (1960s)

- Doug Engelbart's Augmentation of Human Intellect project @ Stanford Research Institute
 - pioneer of human-computer interaction
 - also developed hypertext
- Incorporated a mouse-driven cursor and multiple windows.
 - WIMP (windows, icons, menus and pointers)
 - See his demo
 - <u>http://sloan.stanford.edu/MouseSite/19</u> <u>68Demo.html</u>

XEROX PARC

- Xerox Alto (1973)
 - first computer to use the *desktop* metaphor and GUI

Transparent vs Opaque Technology? Describe two computing devices used before the XX century.

- What is a GUI?
- Which computer first featured the mouse and the desktop metaphor GUI?

Modeling

Describing and Understanding the World

The Hertzian Modeling Paradigm

"The most direct and in a sense the most important problem which our conscious knowledge of nature should enable us to solve is the *anticipation of future events*, so that we may arrange our present affairs in accordance with such

anticipation". (Hertz, 1894)

Polya Method: How To Solve It

1. Understanding The Problem

- First. You have to understand the problem.
- What is the thing you want to find to answer the problem (the unknown)?
- Explain the question to other people
- What are the data? What is the condition?
- Draw a figure. Introduce suitable notation.

Devising A Plan (A *Model*)

If you can't solve a problem, then there is an easier problem you can solve: find it.

- Second. Find the connection between the data and the unknown. You may need to consider auxiliary problems
- Have you seen it before? Do you know a related or analogous problem?
- Could you restate the problem? Could you solve a part of the problem?
- Could you derive something useful from the data?
- 3. Carrying Out The Plan
 - Third. Calculate the model using all data and conditions.
 - Do all the calculations, and check them as they go along.
 - Ask: "Can I see it is right?" and then, "Can I prove it is right?"
- 4. Looking Back
 - Fourth. Examine the solution obtained.
 - Can you check the result?
 - Can you derive the solution differently?

Luis M.Rocha and Santiago Schnell

Luis M.Rocha and Santiago Schnell

Depth	Resulting String
0	В
1	F[-B]+B
2	FF[-F[-B]+B] + F[-B]+B
3	FFFF[-FF[- F[-B]+B]+ FF[-B]+B]+ F[- F[-B]+B]+ F[-B]+B

Flocking Behavior

- Boids by Craig Reynolds (1986)
 - 3 Steering behaviors
 - Separation: steer to avoid crowding local flockmates
 - Maintain minimum distance to others
 - Alignment: steer towards the average heading of local flockmates
 - Adjust speed according to others in vicinity
 - Cohesion: steer to move toward the average position of local flockmates
 - Each boid sees only flockmates within a certain small neighborhood around itself.
 - http://www.red3d.com/cwr/boids/

Possible Questions

Describe the Hertz Modelling Process What are Boids and how do they work? Propose an L-System Rule to draw the following artificial plant

Data Representation

Pixels: picture elements

Encoding the World

Encoding in the Modeling Relation

How to encode data?

- What is data?
 - Information without context and knowledge
 - Part of Syntax
- Keeping Numbers
 - The most fundamental need for modeling and information

Encoding Numbers:Counting

11

21

19

11

13

19

17 101

4

- Tallying is the earliest form of modeling
 - Fingers (digits), stones (Lt "calculus"= Pebble), bones
 - Lebombo bone
 - Oldest counting tool is a piece of baboon fibula with 29 notches from 35,000 BC, discovered in the mountains between South Africa and Swaziland
 - Probably representing the number of days in a Moon Cycle (A Model!)
 - Czechoslovakian wolf's bone
 - with 55 notches in groups of 5, from 30,000 BC.

The Ishango Bone

- Oldest Mathematical Artefact?
 - 10,000 BC, border of Zaire and Uganda
 - Used as a counting tool?
 - 9,11,13,17,19, 21: odd numbers
 - 11, 13, 17, 19: prime numbers
 - 60 and 48 are multiples of 12

http://www.simonsingh.com/The_Ishango_Bone.html

Converting Binary to Decimal $2^8 = 256$ 28 27 26 **2**⁵ 24 **2**³ **2**² 21 20 $-2^7 = 128$ $2^6 = 64$ $2^5 = 32$ 1 1 $\mathbf{0}$ 0 1 \mathbf{O} 1 0 \mathbf{O} $2^4 = 16$ 128_64 _8 $2^3 = 8$ 201 $2^2 = 4$ $...d_4d_3d_2d_1d_0 =$ • $2^1 = 2$ $\dots + d_4 \times 2^4 + d_3 \times 2^3 + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0$ $2^0 = 1$

Base Conversion

Decimal to Binary

- Repeated Division by 2
 - Divide the decimal number by 2
 - If the remainder is 0, on the side write down a 0
 - If the remainder is 1, write down a 1
 - Continue until the quotient is 0
 - Remainders are written beginning at the least significant digit (right) and each new digit is written to more significant digit (the left) of the previous digit.

	4		,
58	29	0	0
29	14	1	10
14	7	0	010
7	3	1	1010
3	1	1	11010
1	0	1	111010

decimal quotient Remain binary

Dealing with rational numbers $-2^4 = 16$ **2**³ 20 24 **2**² 21 2-1 **2**-2 **2**-3 $2^3 = 8$ 1 1 $2^1 = 2$ $\mathbf{0}$ 0 \mathbf{O} 1 \mathbf{O} 1 $2^0 = 1$ 16 ___8 .125 $2^{-1} = 0.5$ 25.125 $2^{-2} = 0.25$ $2^{-3} = 0.125$ $\dots d_2 d_1 d_0 d_{-1} d_{-2} \dots =$ $\dots + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0 + d_{-1} \times 2^{-1} + d_{-2} \times 2^{-2} + \dots$ Luis M.Rocha and Santiago Schne

Binary

Binary Arithmetic

- Addition Rules
 - 0+0 = 0, with no carry,
 - 1+0 = 1, with no carry,
 - 0+1 = 1, with no carry,
 - 1+1 = 0, and you carry a 1

111	1
1010	1010
1110	1100
11000	
11000	10110
(10+14=24)	(10+12=22)

Hexadecimal

Base 16

- 16 symbols: 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
- Easy to convert to and from Binary
 - 16 is a power of 2: $16 = 2^4$
 - It takes 4 binary digits for every hexadecimal one
 - Good to represent binary in compressed form!

Hex	Bin	Hex	Bin	Hex	Bin	Hex	Bin
0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	А	1010	Е	1110
3	0011	7	0111	В	1011	F	1111

Encoding Text ASCII

- American Standard Code for Information Interchange
 - between binary numbers and computer and roman symbols
 - Standard to allow computers to communicate textual data
- Uses 7 bits to encode 128 symbols or characters
 - 2⁷ = 128. It fills a byte, but the 8th bit is used to encode additional symbols for other languages and graphics
 - Usually described in hexadecimal
- 4 groups of 32 characters
 - 00 to 1F: control characters
 - Mostly printer/display operations: carriage return (0Dh), line feed (0Ah), back space (08h), etc.
 - 20 to 3F: punctuation, numeric, and special characters
 - Space (20h), digits 0-9 (30h-39h)
 - Arranged so that by subtracting 30h from the ASCII code for any digit, we obtain the numeric equivalent of the digit
 - 40 to 5F: uppercase letters, plus some special characters
 - 60 to 7F: lowercase letters, plus some special characters and a control character (DEL)

ASCII Table

Dec	H	(Oct	Che	a ser e la com	Dec	Hĸ	Oct	Himi	Chr	Dec	Hĸ	Oct	Hm	Chr	Dec	H	Oct	Himi Chr	
0	0	000	BUL	(mull)	32	20	040	4832)	Spece	64	40	100	464	. 8	96	60	140	4996)	
		100	SOE	(start of beeding)	33	21	04L	4,533,	T I	65	41	TOT	4465,	I 🔺	97	6L	141	4997) 🔍	
1	1	002	STX	(start of text)	34	22	042	434	-	66	4	LOZ	4166		98	62	142	4998.	
3	3	003	ETX	(and of text)	35	23	043	4835,		67	43	103	4567	C	99	63	143	4999) 0	
4	4	004	COT	(and of transmission)	36	24	044	435,	•	68	44	104	c (68)		100	64	144	🌢 رەتلاپە	
5	5	UUS	188 . ,	(enquiry)	37	25	U45	4237)	•	69	45	105	4209		ШΤ	65	145	49101) 🖷	
	6	005	ACE	(ecknowLedge)	38	26	046	ر 30 ليه	•	70	46	106	470,		105	66	146	4 8102) 🕻	
1	1	007	BEL.	(bell)	39	27	047	ر 39 ليه	•	71	47	107	4 7 71,	0	103	67	147	💡 ر دفلایه	
		010		(beologeos)	40	20	050	440,	()	72	48	110	472,) 🖪	104	68	L50	4/104) 🕨	
9	9	011	THE	(horicontal tab)	44	89	05L	رياديه	1	73	49	111	473,) I	105	69	LSL	ا رگالیه	
10		OLZ	67	(WL line feed, new line)	4	24	052	44,	•	74	44	115	474	I 🖌	106	64	L52	406) 🕽	
ш		013	77	(vertical teb)	43	20	053	443,	+	75	•	113	475) K	107	68	L\$3	4 8 107, 💺	
12	C	014		(IF form feed, new page)	44	20	054	444		76	•	114	476,		108	С.	154	ا ر108يه	
13	D	OLS	CR	(cerriege ceturn)	45	20	055	445,	-	77	Ð	115	477		109	æ	L55	🗕 ر 109 له	
14		016	20	(shift out)	46	22	056	446,	1.1	76	æ	116	476,		110	æ	L56	ג מווע 🖪	
15	F	017	SI.	(shift in)	47	25	057	4977	/	79	æ	117	479	0	111	67	L\$7		
16	10	020	DLE	(data link esceps)	40	30	060	440,	0	80	-50	120	4900,		115	70	Teo		
17	ш	051	DCI	(device control 1)		31	061	49,	1	8L	SL	151	4901,	9	113	71	191	4)[[]] (
10	12	022	DCE	(device control 2)	50	32	062	41501	2	62	52	122	4962,		114	72	165	40114) 5	
19	IJ	023	DCS	(device control 3)	S L	33	063	445LJ	3	63	53	123	4963,		115	73	L63	42115) 🗧	
20	14	024	DC4	(device control 4)	52	34	064	432)	1	64	54	124	4964	T	112	74	164	40116) 5	
21	LS	025	10.1	(negative ecknowledge)	53	35	065	ردويه	5	85	55	125	4965,	0	117	75	165	40117, 4	
22	16	026	246	(synchronous idle)	54	36	066	454	6	66	56	126	4966,		110	76	166		
23	17	027	11-	(end of trens. block)	55	37	067	41221	7	87	57	127	4967		113	77	167	49119)	
-	D	000	CAR	(cencel)	80	30	070	1997		00	80	130		×	180	70	170		
25	13	031	<u>.</u>	(and of medium)	57	37	071	41371	100		Ser.	121		1	LZL	79	171		
25	H.	0.32	205	(substitute)		34	072	41001	and Links	(γ_{ij})		100			122	78	172	49122)	
=	щ	033		(escepe)	59	30	073	1001		100		122	4 7 91,		123	78	173	49123)	à
20	10	034	1	(CILE COPERCIOE)		.	074	L LOUIS	1 - 2	77	50	134	1972		124	π	174	49124	
23		035	0.0	(group separator)	61	30	075	APOL J	a Star	73	-	135	1000		125	70	175	41251	
30	μ E	0.36		(record esperator)		3	076	APRIL J	Per la		1	136	4994		126	76	176	41261 -	
31	12	0.57	12	(UDIC Separator)		35	m	f Dates		95	SF.	137	4995	-	121	71	177	4127)	6

Bourset preve sectable.com

Luis M.Rocha and Santiago Schnell

Adapted from Cathy Wyss (I308)

- Representation of a twodimensional image as a finite set of digital values
- Picture elements or pixels
 - Resolution: number of pixels in an image
 - 1024 x 768
 - Each defined by one or more numbers

Color, intensity

(about 16 million)

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
1	1	0	0	1	0	0	1
	1.00	-	15 Tomas	1. 100			

27	<mark>2</mark> 6	2 ⁵	24	2 ³	2 ²	21	2 ⁰	9. S
1	1	0	0	1	0	0	1	Sec.

Luis M.Rocha and Santiago Schnel

Graphics Interchange Format

Developed by CompuServe in 1987 (GIF87a)

- Developed to facilitate exchange across computing platforms
- Allows transparency
- GIF89a
 - 1989: allows animated GIF images
- Uses LZW (Lempel-Ziv-Welch) data compression
 - More efficient than plain bitmaps
 - Large images downloaded quicker
 - Lossless compression
 - 256 colors only
 - Patent owned by Unisys until 2003
 - Compuserve did not know that LZW was covered by a patent.
 - Before 1994, Unisys was not aware that GIF used LZW.
 - Builds a dictionary of previously seen strings in the information being compressed.
 - The dictionary does not have to be transmitted

http://sheepfilms.co.uk

Luis M.Rocha and Santiago Schnell

Questions

- What is a positional number system? Give an example of a number system that <u>is not</u> positional, and an example of one that <u>is positional</u>.
- Convert 1001001101.01 from binary to decimal. Please show your calculations.
- What is the ASCII encoding of the word PLATO (Uppercase) in Decimal?
 - 84 85 82 73 78
 - 73 78 70 79 82 77 65 84 73
 - 65 82 73 83 84 79 84 76
- 80 76 65 84 79
- How many bytes do you need to encode a bitmap figure with resolution 300 x 600 using the RGB format?
 - 960,000
 - 180,000
 - 480,000
 - 540,000

The Modeling Relation

Hertz' Modeling Paradigm

- Formal Rules
 - From symbolic representations of observables

Luis M.Rocha

Produce Conclusions

Inty Python: Holy Grail

- Lagers: (enter veloce A witch) A witch we very all a witch Burn her! Burn her! Bed mere: there are ways of telling if she's a witch. What do you do with witches?
- Villagers: Burn , em!
- Bedimere: And what do you burn, span from witches?
- Villagers: Wood?
- Bedimere: Right: Som hy do witches hum
- Villagers: Because they're made or wool
- Bedimere: Right! . Now, what else do you do with wood
- Villagers: Build bridges with it!
- Bedimere: But do we rocalso build bridges from stone; does wood float in water? Villagers: Yes:
- Bedimere: And what else floats in water
- King Arthur: (after more confused suggestions from the villagers) A duck!
- Bedimere: Right! So if she weighs the same as a duck, she'd float in water, and she
- must be made of wood, so.
- Villagers: A witch! Bu
- (They weigh the woman on a large scale with a duck in the other balancing tasket, but inexplicably the scales do not tilt one way or the other. As the villagers drag the woman away, the witch looks at the camera and says with resignation. "It was a fair court".)
- Bedimere: (to King Arthur) Who are you who are so wise in the ways of science? (C) Python (Monty) Pictures
- http://www.RossAnthony.com

Deduction vs. Induction

Propositional Logic is used to study *inferences*

Lists of propositions

How conclusions can be reached from premises

Deductive Inference <

If the premises are true, we have absolute *certainty* of the conclusion

Logic

- February has 29 days only in leap years
- Today is February 29th
- This year is a leap year
- Inductive Inference Uncertainty
 - Conclusion supported by *good evidence* (significant number of examples/observations) but not full certainty -- *likelihood*
 - Ran WhiteBox for 1000 cycles, "dead box" observed
 - Ran WhiteBox for 1000 cycles, "dead box" observed
 - Ran WhiteBox for 1000 cycles, "dead box" observed
 - Ran WhiteBox for 1000 cycles, "dead box" observed
 - "Dead Box" always appears after 1000 cycles

The structure of propositional logic

 Simple propositions are represented by single, lower case letters

- Bloomington is a town p
- Indiana is a state q

Complex propositions are constructed by applying logical operations to simple propositions

- Bloomington is a town and Indiana is a state p and q
- Logic Operations
- Conjunction [andDisjunction [or]
 - Negation
 - Conditional
 - Biconditional

[and] \land [or] \lor [not] \neg [implies] \Rightarrow (if, then)[equivalent] \Leftrightarrow (if and only if)

