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course outlook

 Labs: 35% (ISE-483)
 Complete 5 (best 4 graded) assignments based on algorithms 

presented in class
 Lab 3: March 31st

 Cellular Automata and Boolean Networks (Assignment 3)
 Delivered by Kaeli Ahn and Erik Fiolkoski
 Due: April 7th

 SSIE – 583 -Presentation and Discussion: 25% 
 Present and lead the discussion of an article related to the class materials

 Enginet students post/send video or join by Zoom 
 April 22, 2025

 Rik Pardun
 Conrad, M. [1990]. "The geometry of evolution.“ Biosystems 24: 61-81. 

 Kiet Ngo Tuan
 Garg, Shivam, Kirankumar Shiragur, Deborah M. Gordon, and Moses Charikar. “Distributed Algorithms from 

Arboreal Ants for the Shortest Path Problem.”PNAS 120, no. 6 (February 7, 2023): e2207959120.
 Eric Fiolkoski

 Schmidt, M. and H. Lipson [2009]. “Distilling Free-Form Natural Laws from Experimental Data". Science, 324: 
81-85.

key events coming up

bit.ly/atBIC
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final project schedule
 Projects

 Due by May 7th in Brightspace, “Final Project 483/583” assignment
 ALIFE 2025

 Not necessarily to submit to actual conference due date 
 May 4 full paper, July 4, abstract

 https://2025.alife.org/
 Max 8 pages, author guidelines:
 https://2025.alife.org/calls#paper-call
 MS Word and Latex/Overleaf templates

 Preliminary ideas by March 7
 Submit to “Project Idea” assignment in Brightspace. 

 Individual or group
 With very definite tasks assigned per member of group

ALIFE 2025
Tackle a real problem using bio-inspired 

algorithms, such as those used in the labs. 

Reusing and expanding labs is 
highly encouraged.

bit.ly/atBIC
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readings for this class

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and 

Technologies. MIT Press. Preface, Sections 4.1, 4.2. Chapter 2.
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and 

Applications. Chapman & Hall. Chapter 1, pp. 1-23. Sections 7.1 to 7.4 , Appendix B.3.1. Chapter 2, 
Sections 8.1, 8.2, 8.3.10

 Lecture notes
 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior

 posted online @ casci.binghamton.edu/academics/i-bic
 Papers and other materials

 Optional
 Prusinkiewicz and Lindenmeyer [1996] The algorithmic beauty of plants.

 Chapter 1
 Flake’s [1998], The Computational Beauty of Life. MIT Press.

 Chapters 1, 5, 6 (7-9).
 Chapters 10, 11, 14

Additional information
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What’s a CA?
more formally

D-dimensional lattice L with a finite 
automaton in each lattice site (cell)

 State-determined system

 finite number of states Σ: K=| Σ|
E.g. Σ = {0,1}

 finite input alphabet α

 transition function Δ: α→Σ

 uniquely ascribes state s in Σ to input patterns α

Neighborhood template
N

NN K  ,

Number of possible neighborhood states

NKKD 

Number of possible 
transition functions

Example (ECA)

K=2, N=3,

|α|=23=8

D = 28=256
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What’s a CA?
more formally

D-dimensional lattice L with a finite 
automaton in each lattice site (cell)

 State-determined system

 finite number of states Σ: K=| Σ|
E.g. Σ = {0,1}

 finite input alphabet α

 transition function Δ: α→Σ

 uniquely ascribes state s in Σ to input patterns α

Neighborhood template
N

NN K  ,

Number of possible neighborhood states

NKKD 

Number of possible 
transition functions

Example

K=8

N=5

|α|=37,768

D 1030,000

Example (ECA)

K=2, N=3,

|α|=23=8

D = 28=256



Langton’s parameter

N

N

K
nK 



 Statistical analysis
 Identify classes of transition functions with similar behavior

 Similar dynamics (statistically)
 Via Higher level statistical observables

 Like Kauffman
 The Lambda Parameter (similar to bias in BN)

 Select a subset of D characterized by λ
 Arbitrary quiescent state: sq

 Usually 0
 A particular function Δ has n transitions to this state and (KN-n) transitions to other states s of Σ
 (1-λ) is the probability of having a sq in every position of the rule table

Finding the structure of all possible transition functions

Langton, C.G. [1990]. “Computation at the edge of chaos: phase transitions and 
emergent computation”. Artificial Life II. Addison-Wesley.

λ = 0: all transitions lead to sq (n =KN)

λ = 1: no transitions lead to sq (n =0)

λ = 1-1/K: equally probable  states ( n=1/K . KN)
Range: from most homogeneous to most 

heterogeneous
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Langton’s observations

 λ only correlates well with dynamic behavior for fairly large values of K and N
 E.g. K≥4 and N≥5

 Experiments
 K=4, N=5
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Langton’s results
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Langton’s results

Approximate time 
when density is 
within 1% of 
long-term 
behavior
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Edge of chaos

 Transient growth in the vicinity of phase transitions 
 Length of CA lattice only relevant around phase transition (λ=0.5)

 Conclusion: more complicated behavior found in the phase transition between order and chaos
 Patterns that move across the lattice

A phase transition?
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Computation at the edge of chaos?

 Transition region
 Supports both static and propagating structures

 λ =0.4+
 Propagating waves (“signals”?) across the CA lattice

 Necessary for computation?
 Signals and storage?

 Computation
 Requires storage and transmission of information
 Any dynamical system supporting computation must exhibit 

long-range signals in space and time
 Wolfram’s CA classes

 I: homogeneous state
 Steady-state

 II: periodic state 
 Limit cycles

 III: chaotic
 IV: complex patterns of localized structures

 Long transients
 Capable of universal computation
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Bias and lambda parameter
Edge of chaos

xx-1 x+1

Cellular Automata

Boolean Networks
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evolution requires life in critical regime which is small, how come life is not chaotic?
self-organization easily chaotic

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides buffering (self-
organization). But still easily chaotic.

robustness of phenotypes is the result of a buffering of 
the developmental process. 

Aldana, M. [2003]. Physica D. 185: 45–66
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Structure (topological organization), can provide larger 
stable or critical universe, but still easily chaotic.
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current theory for random networks and the finite cases
criticality in Boolean networks

Derrida & Pomeau. [1986] EPL . 1.2: 45.

2.𝑘.𝑝 1 െ 𝑝 ൌ 12.𝑘.𝑝 1 െ 𝑝 ൌ 1

Manicka, Marques-Pita, &  Rocha, [2022]. J. Royal Society Interface. 19(186):20210659.

homogeneous networks heterogenous networks

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

𝑃 𝑘 ൌ 𝑐.𝑘ିఊ

Aldana, M. [2003]. Physica D. 185: 45–66
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redundancy in causal logic of automata (canalization)
effective graph: nonlinear measure of effective connectivity

Marques-Pita &  Rocha, [2013]. PLoS ONE, 8(3): e55946. 

input redundancy:
kr(x) = mean number of “#” in LUT

𝑘ሺ𝑥ସሻ ൌ 3

Prime Implicants (Quine-McCluskey)

𝑥ସ ൌ 𝑥ଵ ∧ 𝑥ଶ

𝑘௘ሺ𝑥ସሻ ൌ 1.25𝑘௘ሺ𝑥ସሻ ൌ 1.25

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

Measuring dynamical redundancy
and its dual effectiveness

Chaos et al [2006]. J. of Plant 
Growth Regulation. 25(4): 278-289.

effective connectivity:
𝑘௘ 𝑥 ൌ 𝑘 𝑥 െ 𝑘௥ 𝑥

github.com/CASCI-lab/CANA
Correia, Gates, Wang & Rocha [2018]. Frontiers in Physyology 9: 1046. 

𝑘௥ሺ𝑥ସሻ ൌ 1.75𝑘௥ሺ𝑥ସሻ ൌ 1.75

p: bias, ratio of “1’s” in output

p(x) = 2/8 = 0.25
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arabidopsis thaliana network
effective graph

Chaos et al [2006]. J. of Plant 
Growth Regulation. 25(4): 278-289.

redundant variables and more 
effective control pathways revealed

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.
Gates & Rocha [2016]. Scientific Reports 6, 24456. 
Marques-Pita &  Rocha, [2013]. PLoS ONE, 8(3): e55946. 

Interaction graph obtained from 
pairwise estimation of interaction. No 
dynamics represented in graph; 
many dynamics fit same structure.

Effective graph redundancy in (nonlinear) dynamics is 
integrated probabilistically (not estimated). Provides 
causal explanation of how likely dynamical perturbation 
and control signals propagate in biochemical pathways.

𝑘ሺ𝐴𝐺ሻ ൌ 9

𝑘௘ሺ𝐴𝐺ሻ ൌ 2.1𝑘௘ሺ𝐴𝐺ሻ ൌ 2.1

github.com/CASCI-lab/CANA
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probabilistic and precise characterization of causal (nonlinear) dynamics
effective graph

Interaction graph typically obtained 
from (qualitative) pairwise estimation 
of interaction. No dynamics 
represented in graph; many 
dynamics fit same structure.

Effective graph redundancy in dynamics is integrated 
probabilistically (not estimated). Reveals network of nonlinear 
interactions that escapes pairwise estimation. Provides 
causal explanation of how dynamical perturbation and 
control signals propagate in biochemical pathways.

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.
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8,220 interactions (of over 
3K automata) in 78 models

redundant pathways are ubiquitous in biochemical regulation
effective graph

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

dynamical redundancy is pervasive in systems 
biology models of regulation and signaling:
biochemical variables are controlled by substantially 
fewer inputs than interaction graph suggests.

effectiveness is heterogenous: 
only few inputs are very effective, 
most are ineffective or redundant.   

robustness to most 
perturbations

node-level edge-level

Interaction graph
Contain fully 

redundant 
edges

21
57

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.
Gates & Rocha [2016]. Scientific Reports 6, 24456. 
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effective connectivity enables greater robustness (random ensembles)
criticality in the presence of canalization/redundancy

 xkxkxk re  )()(

c.𝑘௘ .𝑝 1 െ 𝑝 ൌ 1c.𝑘௘ .𝑝 1 െ 𝑝 ൌ 1c.𝑘.𝑝 1 െ 𝑝 ൌ 1c.𝑘.𝑝 1 െ 𝑝 ൌ 1
Aldana, M. [2003]. Physica D. 185: 45–66
Derrida & Pomeau. [1986] EPL . 1.2: 45.

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.
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effective connectivity enables greater robustness (random ensembles)
criticality in the presence of canalization/redundancy

 xkxkxk re  )()(

c.𝑘௘ .𝑝 1 െ 𝑝 ൌ 1c.𝑘௘ .𝑝 1 െ 𝑝 ൌ 1c.𝑘.𝑝 1 െ 𝑝 ൌ 1c.𝑘.𝑝 1 െ 𝑝 ൌ 1
Aldana, M. [2003]. Physica D. 185: 45–66
Derrida & Pomeau. [1986] EPL . 1.2: 45.

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

Stable biochemical networks can exist well 
into expected chaotic behavior, provided 
canalization is selected for: dynamics 

“buffers” underlying interaction structure 
New theory uses only dynamical 

redundancy properties 



rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic

effective connectivity enables greater robustness (random ensembles)
criticality in the presence of canalization/redundancy

c.𝑘௘ .𝑝 1 െ 𝑝 ൌ 1c.𝑘௘ .𝑝 1 െ 𝑝 ൌ 1

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

𝑃 𝑘 ൌ 𝑐.𝑘ିఊ

homogeneous networks heterogenous networks

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

Stable biochemical 
networks can exist well into 
expected chaotic behavior, 
provided canalization is 
selected for: dynamics 

“buffers” underlying 
interaction structure 

𝜎ଶ ൌ  𝑝 1 െ 𝑝𝜎ଶ ൌ  𝑝 1 െ 𝑝
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low effective connectivity leads networks closer to “edge of chaos”
ubiquitous canalization in (experimentally-validated) systems biology models

63 Biochemical regulation models with 
very low effective connectivity despite high 

connectivity. In new theory networks are 
near criticality

c.𝑘.𝑝 1 െ 𝑝 ൌ 1c.𝑘.𝑝 1 െ 𝑝 ൌ 1 c.𝑘௘ .𝑝 1 െ 𝑝 ൌ 1c.𝑘௘ .𝑝 1 െ 𝑝 ൌ 1

Manicka, Marques-Pita, &  Rocha, [2022]. J. Royal Society Interface. 19(186):20210659.
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effective connectivity better predicts critical transition
ubiquitous canalization in (experimentally-validated) systems biology models

Biochemical regulation models 
have very low effective 

connectivity despite high 
connectivity. Accounting for 

heterogeneity and canalization 
better predicts dynamical regime

c. 𝑘௘.𝑝 1 െ 𝑝 ൌ 1c. 𝑘௘.𝑝 1 െ 𝑝 ൌ 1

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

homogeneous networks heterogenous networks

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

𝜎ଶ ൌ  𝑝 1 െ 𝑝𝜎ଶ ൌ  𝑝 1 െ 𝑝
c. 𝑘. 𝑝 1 െ 𝑝 ൌ 1c. 𝑘. 𝑝 1 െ 𝑝 ൌ 1
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but is there an edge of chaos boundary?
ubiquitous canalization in (experimentally-validated) systems biology models

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.

homogeneous networks

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

IQR Of Derrida

Optimal classification thresholds

Once canalization (dynamical 
redundancy) is considered 
optimal critical region very 

small and dynamical range is 
better predicted. 

heterogenous networks
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but is there an edge of chaos boundary?
ubiquitous canalization in (experimentally-validated) systems biology models

Manicka, Marques-Pita, &  Rocha, [2021]. J. Royal Society Interface. 19(186):20210659.
Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.

More accurate measures of dynamical regime  
show that experimentally-validated systems 

biology are far from the edge of chaos

Park, Costa,  Rocha,  Albert, & Rozum [2023]. PRX Life. 1, 023009. 

Large disorder by 
usual measures

Much less disorder 
after accounting for 

time-shifts

Criticality might arise from 
interactions of amongst 
largely stable modules
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Thaliana control pathways (using structure and dynamics information)
effective graph

The effective graph helps
understand how control

actually operates to inform
actionable strategies

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

Structural control theories fail: 
LFY is master-regulator, WUS 
autoregulator, others redundant.   

Gates & Rocha [2016]. Sci. Rep. 6, 24456. 

𝑒௝௜ ൒ 0.2 𝑒௝௜ ൒ 0.4 Chaos et al [2006]. J. of Plant 
Growth Regulation. 25(4): 278-289.
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Boolean networks, control, sound, art, and education
control and the cybernetics of life

Chaos et al [2006]. “From Genes to Flower Patterns and 
Evolution: Dynamic Models of Gene Regulatory Networks”. 
Journal of Plant Growth Regulation. 25(4): 278-289.
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Boolean networks, control, sound, art, and education
control and the cybernetics of life

Chaos et al [2006]. “From Genes to Flower Patterns and 
Evolution: Dynamic Models of Gene Regulatory Networks”. 
Journal of Plant Growth Regulation. 25(4): 278-289.
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predicting drug and therapy targets in causal models
discrete modeling of cancer networks

discrete modeling of within-cell oncogenic 
signal transduction, recapitulates known 
resistance PI3K inhibitors. Suggests novel 

combinatorial interventions.

Reka Albert
Jorge 
Zañudo

Integrative, causal models for simulations
• built from inductive parameter estimation and 

knowledge synthesis 
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uncovering and characterizing control pathways for drug therapy
ER+ breast cancer model

𝑒௝௜ ൒ 0.2

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.
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uncovering and characterizing control pathways for drug therapy
ER+ breast cancer model

𝑒௝௜ ൒ 0.4

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.
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causal (modular) dynamics via conditional effective connectivity

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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causal (modular) dynamics via conditional effective connectivity

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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causal (modular) dynamics via conditional effective connectivity
ER+ baseline

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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causal (modular) dynamics via conditional effective connectivity
ER+ baseline

+ Alpelisib

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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causal (modular) dynamics via conditional effective connectivity
ER+ baseline

+ Alpelisib

+ Fulvestrant

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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causal (modular) dynamics via conditional effective connectivity
ER+ baseline

+ Alpelisib

+ Fulvestrant

Gates,Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

uncovers probabilistic causal dynamics
• analytically, not via Monte-Carlo simulations
• scalable
• preferred control pathways
• explains criticality better in finite networks
• study and predict unobserved events

redundancy and control in biochemical regulation

Rocha L.M. [2022]. Bioinformatics. btac360.
Parmer, Rocha & Radicchi [2022].  Nature Communications. 13, 3457.

Gates & Rocha [2016]. Scientific Reports 6, 24456. 

Manicka, Marques-Pita, & Rocha, [2022]. J. Royal Society 
Interface. 19(186):20210659.

Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
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dynamically-decoupled modules
effective modularity

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

Most networks preserve a large 
weakly connected component up to 
edge effectiveness ≤ 0.4.

But most break into dynamically-
decoupled modules for edge 
effectiveness > [0.4, 0.6].

Allows comparisons between 
networks regarding the ability to 
effectively propagate signals.

Experimentally-validated models suggest biochemical 
regulation highly modular with low effectiveness interactions 
between modules granting robustness to perturbations.

Manicka, Marques-Pita, &  Rocha, [2022]. J. Royal Society Interface. 19(186):20210659.
Costa, Rozum, Marcus, & Rocha[2023]. Entropy. 25(2):374.
Park, Costa,  Rocha,  Albert, & Rozum [2023]. PRX Life. 1, 023009. 
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from evolutionary robustness to network and dynamical redundancy
canalization as a key mechanism for resilience

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides buffering (self-
organization). But still easily chaotic.

robustness of phenotypes is the result of a buffering of 
the developmental process. 

canalized genetic control ignores some inputs (redundancy) 
to attain necessary resilience (tradeoff stability/evolvability)

Structure (topological organization), can provide larger 
stable or critical universe, but still easily chaotic.
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from evolutionary robustness to network and dynamical redundancy
canalization as a key mechanism for resilience

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides buffering (self-
organization). But still easily chaotic.

robustness of phenotypes is the result of a buffering of 
the developmental process. 

canalized genetic control ignores some inputs (redundancy) 
to attain necessary resilience (tradeoff stability/evolvability)Aldana, M. [2003]. Physica D. 185: 45–66

Structure (topological organization), can provide larger 
stable or critical universe, but still easily chaotic.Michael Conrad

Evolvability: extradimensional 
bypass, neutrality, redundancy, 
controllability and robustness tradeoff.
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Alan Turing (1912-1954)

 “The chemical basis of morphogenesis”
 Turing, A. M. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).

 Reaction-diffusion systems
 “Computing machinery and intelligence”

 Turing, A. M. Mind 49, 433–460 (1950).
 The “Turing Test”

 “On computable numbers with an 
application to the Entscheidungsproblem”
 Turing, A. M. Proc. Lond. Math. Soc. s2–42, 230–265 (1936–37).

 Turing machine, universal computation, decision problem

key contributions (most relevant to biocomplexity)

Brenner, Sydney. [2012]. “Life’s code script.” Nature 482 (7386): 461-461.
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Turing’s tape

 “On computable numbers with an application to the Entscheidungsproblem”
 Turing, A. M. Proc. Lond. Math. Soc. s2–42, 230–265 (1936–37).

 Turing machine, universal computation, decision problem
 Machine’s state is controlled by a program, while data for 

program is on limitless  external tape
 every machine can be described as a number that can be stored on 

the tape (for itself or another machine)
 Including a Universal machine

 distinction between numbers that mean things (data) and numbers 
that do things (program)

A fundamental principle of computation

“The fundamental, indivisible unit of information is 
the bit. The fundamental, indivisible unit of digital 
computation is the transformation of a bit between 
its two possible forms of existence: as [memory] or 
as [code]. George Dyson, 2012.

code



At every discrete time 
instance the machine 
is in a single state

Program is a state 
transition table

Tape 
move

Write 
symbol

Next 
state

Read 
symbolstate

left-140

right10-1
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quorum sensing or what decision to take? (Density Classification)
imagine automata as agents

12827 NK
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density classification task
random strategies

12827 NK

0P

Typically chaotic behavior
No convergence
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density classification task
local strategy: majority rule

12827 NK

0P
Isolated groups
No information transmission
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density classification task
block expansion strategy

12827 NK

 %60%,53P

“blind” spreading of local information
No information integration
Not much better than random choice

GA to evolve rules for DCT [1994]
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density classification task
emergent computation strategies

12827 NK

Integration and transmission of 
information across population
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for DST
best CA rules for emergent computation

Integration and transmission of 
information across population
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collective (emergent) computation via computational mechanics
How to characterize complex behavior?

μ
μ

γ

γ

β

β
β

η

η
δ

α
–

α
–

P Particle interaction scheme
< Rules like a production grammar

– the presence (collision) of two
particles produces other particles 

< Transfer information accross the
lattice
– Loci of information processing
– integrate local information globally

to solve the nontrivial density task
< Higher performance than block

expansion

Hanson,J.E., Crutchfield,J.P., [1992].
Journal of Statistical Physics. 66 (5/6),

1415-1462.
Crutchfield,J.P., Hanson,J.E., [1993].

Physica D. 69, 279-301.

Crutchfield  & Mitchell [1995].  PNAS
92: 10742-10746

Das, Mitchell & Crutchfield [1994]. In:  
Parallel Problem Solving from 
Nature-III: 344-353.

GA to evolve rules for DCT [1994]
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comparison of different automata
how do best  rules solve the problem?

GKL Rule
• 3 domains
• 6 particles

GP Rule
• > 10 domains
• > 90 particles!!! !2

!



d

dp



rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic

comparison of different automata
how do best  rules solve the problem?

GKL Rule
• 3 domains
• 6 particles

GP Rule
• > 10 domains
• > 90 particles!!! !2

!

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canalization (beyond pairwise interaction)
effective connectivity/input redundancy  + input symmetry

Marques-Pita &  Rocha, [2013]. PLoS ONE, 8(3): e55946. 

input redundancy:
kr(x) = mean number of “#” in LUT

Prime Implicants (Quine-McCluskey)

Gates, Correia, Wang & Rocha [2021]. PNAS. 118 (12): e2022598118.

Measuring dynamical redundancy, its 
dual effectiveness, and symmetry

effective connectivity:
𝑘௘ 𝑥 ൌ 𝑘 𝑥 െ 𝑘௥ 𝑥

github.com/CASCI-lab/CANA
Correia, Gates, Wang & Rocha [2018]. Frontiers in Physyology 9: 1046. 

f(xi)

minimal transition control: set of wildcard schemata 
is DNF of prime implicants (Blake Canonical Form)

plus group invariance

6)( xk
p: bias, ratio of “1’s” in output

p(x) = 14/64 ≈ 0.22

ks(x) = mean number 
of “○” in LUT

𝑘௘ 𝑥 ൌ 6 െ 2 ൌ 4𝑘௘ 𝑥 ൌ 6 െ 2 ൌ 4

𝑘௥ 𝑥 ൌ 2𝑘௥ 𝑥 ൌ 2

𝑘௦ 𝑥 ൌ 4𝑘௦ 𝑥 ൌ 4
f(xi)
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comparison of different automata
how do best  rules solve the problem?

GKL Rule
• 3 domains
• 6 particles

GP Rule
• > 10 domains
• > 90 particles!!! !2

!



d

dp
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it takes redundancy to solve

 Solving by schemata
 Each automaton ignores most inputs, avoiding chaos

ignoring most incoming information

GKL Rule
• 3 domains
• 6 particles

GP Rule
• > 10 domains
• > 90 particles!!!

Marques-Pita &  Rocha, [2011]. IEEE Alife: 233-240.
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it takes redundancy to solve

 Solving by schemata
 Each automaton ignores most inputs, avoiding chaos

ignoring most incoming information

GKL Rule
• 3 domains
• 6 particles

GP Rule
• > 10 domains
• > 90 particles!!!

Marques-Pita &  Rocha, [2011]. IEEE Alife: 233-240.
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search in redescription (canalization) space

 Created much smoother search space
 Allows more focused search of rules

 Canalization, neutrality, robustness?
 Second best rule in 1-D CA (best-known PS rule)

 Best split-performance
 Best rule in 2-D CA

 reason about emergent computation in new ways
 Process-symmetry

canalization (redundancy) improves evolutionary search

Marques-Pita , Mitchell &  Rocha. [2008]. UC08. LNCS. 5146-163. 204: 

Marques-Pita &  Rocha. [2008]. ALIFE XI. MIT Press:  390-397.
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studying and explaining emergence

 Are emergent patterns good for explanation?
 Do stripes or spots explain the “system”?

 Canalization (dynamical redundancy) is a powerful idea
 Capture loci of control and building blocks of information transmission

linking local and global/collective behavior

GKL Rule
• 3 domains
• 6 particles

GP Rule
• > 10 domains
• > 90 particles!!!

Marques-Pita &  Rocha, [2011]. IEEE Alife. 

(mechanistic) reductionism vs emergence:
what is the best explanation? 
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what happens with noise?

 Does canalization help?
 Studying the effect of noise on the density classification task

realistic emergent/collective computation

Marques-Pita &  Rocha, [2011]. IEEE Alife. 
Challa, Hao, Rozum, & Rocha.[2024]. ALIFE 2024. MIT Press. pp. 83. DOI: 10.1162/isal_a_00823.
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what happens with noise?

 Does canalization help?
 Studying the effect of noise on the density classification task

realistic emergent/collective computation

Marques-Pita &  Rocha, [2011]. IEEE Alife. 
Challa, Hao, Rozum, & Rocha.[2024]. ALIFE 2024. MIT Press. pp. 83. DOI: 10.1162/isal_a_00823.

Noise tends to destroy convergence…
(convergence within noise level )  
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what happens with noise?
realistic emergent/collective computation

Marques-Pita &  Rocha, [2011]. IEEE Alife. 
Challa, Hao, Rozum, & Rocha.[2024]. ALIFE 2024. MIT Press. pp. 83. DOI: 10.1162/isal_a_00823.

 Does canalization help?
 Studying the effect of noise on the density classification task

Input redundancy correlated 
with robustness to noise
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what happens with noise?
realistic emergent/collective computation

Marques-Pita &  Rocha, [2011]. IEEE Alife. 
Challa, Hao, Rozum, & Rocha.[2024]. ALIFE 2024. MIT Press. pp. 83. DOI: 10.1162/isal_a_00823.

 What about symmetry?
 Not so much, at least for existing (non-noise) CA rules….
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Next lectures

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, 

Methods, and Technologies. MIT Press. 
 Chapter 2. 

 Lecture notes
 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior

 posted online @ http://informatics.indiana.edu/rocha/i-bic 
 Papers and other materials

 Optional
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, 

and Applications. Chapman & Hall. 
 Chapter 2, all sections
 Chapter 7, sections 7.3 – Cellular Automata
 Chapter 8, sections 8.1, 8.2, 8.3.10

 Flake’s [1998], The Computational Beauty of Life. MIT Press.
 Chapters 10, 11, 14 – Dynamics, Attractors and chaos

readings


