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course outlook

 Labs: 35% (ISE-483)
 Complete 5 (best 4 graded) assignments based on algorithms 

presented in class
 Lab 3: March 24th

 Cellular Automata and Boolean Networks (Assignment 3)
 Delivered by Kaeli Ahn and Erik Fiolkoski
 Due: March 31st

 SSIE – 583 -Presentation and Discussion: 25% 
 Present and lead the discussion of an article related to the class materials

 Enginet students post/send video or join by Zoom 
 April 22, 2025

 Rik Pardun
 Conrad, M. [1990]. "The geometry of evolution.“ Biosystems 24: 61-81. 

 Kiet Ngo Tuan
 Garg, Shivam, Kirankumar Shiragur, Deborah M. Gordon, and Moses Charikar. “Distributed Algorithms from 

Arboreal Ants for the Shortest Path Problem.”PNAS 120, no. 6 (February 7, 2023): e2207959120.
 Eric Fiolkoski

 Schmidt, M. and H. Lipson [2009]. “Distilling Free-Form Natural Laws from Experimental Data". Science, 324: 
81-85.

key events coming up

bit.ly/atBIC
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final project schedule
 Projects

 Due by May 7th in Brightspace, “Final Project 483/583” assignment
 ALIFE 2025

 Not necessarily to submit to actual conference due date 
 May 4 full paper, July 4, abstract

 https://2025.alife.org/
 Max 8 pages, author guidelines:
 https://2025.alife.org/calls#paper-call
 MS Word and Latex/Overleaf templates

 Preliminary ideas by March 7
 Submit to “Project Idea” assignment in Brightspace. 

 Individual or group
 With very definite tasks assigned per member of group

ALIFE 2025
Tackle a real problem using bio-inspired 

algorithms, such as those used in the labs. 

Reusing and expanding labs is 
highly encouraged.

bit.ly/atBIC
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readings for this class

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and 

Technologies. MIT Press. Preface, Sections 4.1, 4.2. Chapter 2.
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and 

Applications. Chapman & Hall. Chapter 1, pp. 1-23. Sections 7.1 to 7.4 , Appendix B.3.1. Chapter 2, 
Sections 8.1, 8.2, 8.3.10

 Lecture notes
 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior

 posted online @ casci.binghamton.edu/academics/i-bic
 Papers and other materials

 Optional
 Prusinkiewicz and Lindenmeyer [1996] The algorithmic beauty of plants.

 Chapter 1
 Flake’s [1998], The Computational Beauty of Life. MIT Press.

 Chapters 1, 5, 6 (7-9).
 Chapters 10, 11, 14

Additional information
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natural design principles

 self-similar structures
 Trees, plants, clouds, mountains

 morphogenesis
 Mechanism

 Iteration, recursion, feedback
 dynamical systems and unpredictability

 From limited knowledge or inherent in nature?
 Mechanism

 Chaos, measurement
 self-organization, collective behavior, emergence

 Complex behavior from collectives of many simple units or agents
 cellular automata, dynamical networks, morphogenesis, swarms, brains, social systems

 Mechanism
 Parallelism, multiplicity, multi-solutions, redundancy

 evolution
 Adaptation, learning, social evolution
 Mechanism

 Reproduction, transmission, variation, selection, Turing’s tape
 Network causality (heterogenous complexity)

 Behavior derived from many inseparable sources
 Immune system, anticipatory systems, brain-body-environment-culture, embodiment, epigenetics, culture 

 Mechanism
 Modularity, control, hierarchy, connectivity, stigmergy, redundancy

modeling similarities across nature
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discrete dynamical systems or automata networks
examples

xx-1 x+1

Cellular Automata

x
t

NK Boolean Network (N=13, K=3)
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canonical complex systems
networks with (automata) dynamics

NK Boolean Network (N=13, K=3) Multivariate Dynamical Systems:
Structure: Variable interactions, 
associations, influence
Dynamics: variable states (micro) 
network configurations (macro)

Minimal networks with both 
structure and dynamics. 

Interactions and variables with 
binary states. Huge state-

spaces and ensembles for 
same structure. Full range of 

attractor behavior possible Boolean functions of k inputs (k=3 →256)
K22
 Network configurations (state-space)N2

Kauffman, SA. J. theoretical biology 22.3 (1969): 437-467.
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# different Boolean networks 
for same structure (25613)
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NK-networks
Stuart Kauffman’s version

NK Boolean Network (N=13, K=3)

#nodes (Boolean 
variables)

# of inputs per 
node

2K  possible input combinations for an 
automaton node

 possible Boolean functions of k inputs
K22

x2x1
0
0
0
1

0
1
0
1

0
0
1
1

x2x1
0
1
0
1

0
0
1
1

K=2

x1  x2

p: bias, or proportion of “1’s” (or “0’s”) in output

p = 0.25 p ˅ qqp
0
1
1
1

0
1
0
1

0
0
1
1

p = 0.75

Lookup tables (LUT)

Kauffman, SA. J. theoretical biology 22.3 (1969): 437-467.
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simple Boolean network
small example NK-network of 3 variables

n1

n2n3

and

or or

p ˅ qqp
0
1
1
1

0
1
0
1

0
0
1
1

p ˄ qqp
0
0
0
1

0
1
0
1

0
0
1
1

t+1t

n3n2n1n3n2n1

00000000
20101001
11000102
71111103
31100014
31101015
31100116
71111117

State space
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simple Boolean network
attractors and state-space

n1

n2n3

and

or or

t+1t

n
3

n2n1n3n2n1
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0: 000
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1
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4 5
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ensemble dynamics for same structure
Boolean network dynamics

Gates & Rocha [2016]. Sci. Rep. 6, 24456. 
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SimpleNet
Small Boolean network
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State-transition graph (basins of attraction)
dynamical landscape of SimpleNet

There are 28=256 possible states but 
only a small set (14) of attractors
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discrete dynamical systems
Example 13 variables

NK Boolean Network (N=13, K=3)
DDLab (Andy wuensche): http://www.ddlab.com/

There are 213=8192 possible states but only a 
small set of attractors
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attractor behavior

 The 213=8192 states in state space are 
organized into 15 basins
 attractor periods ranging between 1 and 7. 
 The number of states in each basin is: 68, 

984, 784, 1300, 264, 76,316, 120, 64, 120, 
256, 2724,604, 84, 428.

how to control?

How to infer
controllability if STG is
too large to compute?
From configuration to 

configuration, or attractor 
to attractor?
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the drosophila segment polarity network
dynamical (qualitative) models of regulation from experimental data

Albert &  Othmer [2003]. J. Theor. Bio. 223:  1-18.

Based on the ODE model of von Dassow et al. (2000), consists of  4-cell parasegments, 
each cell with 15 interacting genes and proteins.

260 network configurations
Reproduces wild-type and mutant gene expression patterns in development of fruit fly

2 intercellular inputs: nhh (hedgehog), nWG (wingless)
1 intracellular input: SLP (sloppy paired)

Reka Albert
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the drosophila segment polarity network
dynamical (qualitative) models of regulation from experimental data

Albert &  Othmer [2003]. J. Theor. Bio. 223:  1-18.

Based on the ODE model of von Dassow et al. (2000), consists of  4-cell parasegments, 
each cell with 15 interacting genes and proteins.

260 network configurations
Reproduces wild-type and mutant gene expression patterns in development of fruit fly

2 intercellular inputs: nhh (hedgehog), nWG (wingless)
1 intracellular input: SLP (sloppy paired)

Reka Albert

Barman & Kwon.PloS one 12.2 
(2017): e0171097.
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dynamical behavior

 Observing the state-transition graph
 converges to one of 10 possible 

stable configurations
 Steady-state attractors

 observed experimentally
 wildtype

 plus 3 variants
 broad stripe
 no-segmentation
 Ectopic

 plus 3 variants

cell-types in a spatial arrangement

Albert &  Othmer [2003]. J. Theor. Bio. 223:  1-18.
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dynamical behavior
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higher-dimensional hyper-cube
representations

Planar representation

16 state drosophila segment polarity network 
(from Willadsen and Wiles , 2007

9-dimension representation
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self-organization

 Emergent Behavior from 
system/environment coupling
 Classifies Walls and Other Robots
 Self-organization
 Embodied cognition

robot example with Brooks’ subsumption architecture

Jonathan Connell ‘s Muramator
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random Boolean networks

 Discrete dynamical systems
 Extremely large number o coupled elements
 Systems of binary variables (0,1), coupled to one another in a network

 The activity of each element depends on previous state of other elements
 Simplifies continuous systems while maintaining essential behavior

 Statistical properties of sets of networks
 Understanding of macroscopic, emergent properties

 Similar to temperature
 Typically irreversible

self-organization
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biological interpretations of attractor behavior

 Genetic regulatory networks
 Genes are on or off
 Development, morphogenesis
 Attractors interpreted as different cell types

 Classification in Immune networks
 Representation in artificial neural networks
 Stable patterns of species abundances in ecosystems

self-organization

attractors spontaneous order To be improved by 
natural selection

Order is the raw material for evolution: how much of life is 
Natural Selection and how much is self-organization? 
(credit assignment problem)
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attractors

 Phase-space as landscape
 State of the system as a drop of water 

released in hills and valleys

(energy) landscape metaphor

Waddington CH (1942). 
Nature.150 (3811):563–565

See: Conrad, M. [1990]. "The geometry of 
evolution.“ Biosystems 24: 61-81

Michael Conrad
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evolution does not need to encode all details and is constrained
self-organization as a key mechanism for order and robustness

Waddington CH (1942). 
Nature.150 (3811):563–565

robustness of phenotypes is the result of a 
buffering of the developmental process. 
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evolution does not need to encode all details and is constrained
self-organization as a key mechanism for order and robustness

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides 
buffering (self-organization). 

robustness of phenotypes is the result of a 
buffering of the developmental process. 
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Boolean networks

 basin of attraction
 All states in trajectories leading to an attractor (state cycle)

 length of cycle
 Number of states in cycle

 1 to 2N

 perturbation (minimal)
 Flipping of one node to the opposite state

 Damage
 Change in behavior from a perturbation

 Structural perturbation
 Permanent in connections or Boolean rules in the network

definitions
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ensemble dynamics for same structure
Boolean network dynamics, perturbations, and control

Gates & Rocha [2016]. Sci. Rep. 6, 24456. 




N

i

ik

1

22

# different Boolean networks 
for same structure

a) 64



rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic

ensemble dynamics for same structure
Boolean network dynamics, perturbations, and control

Gates & Rocha [2016]. Sci. Rep. 6, 24456. 
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configuration vs 
attractor control

and
perturbation vs. 
pinning control
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Kauffman’s statistical analysis

 Random networks
 Started with random initial conditions

 Self-organization is not a result of special initial conditions
 Statistical analysis

 K  2
 Steady state, ordered, crystallization

 (5  K to ) K=N
 Disordered, chaotic
 Mean length of cycles: 0.5 x 2N/2

 Mean number of cycles: N/e
 High reachability, sensitive to perturbation

 Number of other state cycles system can reach after 
perturbation

 K=2
 Mean length: n1/2

 Mean number of cycles: n1/2

 Low reachability
 Percolation of frozen clusters (isolated subsets)
 Not very sensitive to perturbation

Of NK-Boolean Networks

Kauffman, SA. J. theoretical biology 22.3 (1969): 437-467.

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 
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edge of chaos on Boolean Networks

 2  K  5
 Good for evolvability?
 Some changes with large repercussions
 Best capability to perform information exchange

 Information can be propagated more easily
 Problems with analysis

 Network topology is random
 Not scale-free, as later explored by Aldana

 Real genetic networks tend to have lower values of K (in ordered regime)
 Genes as simply Boolean may be oversimplification

 Though a few states can approximate very well continuous data

criticality
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dynamical behavior of ensembles of networks
criticality in Boolean networks

Aldana, M. [2003]. Physica D. 185: 45–66

Random topology

scale-free topology

𝑃 𝑘 ൌ 𝑐.𝑘ିఊ
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evolution requires life in critical regime which is small, how come life is not chaotic?
self-organization easily chaotic

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides buffering (self-
organization). But still easily chaotic.

robustness of phenotypes is the result of a buffering of 
the developmental process. 

Aldana, M. [2003]. Physica D. 185: 45–66
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evolution requires life in critical regime which is small, how come life is not chaotic?
self-organization easily chaotic

Waddington CH (1942). 
Nature.150 (3811):563–565

Kauffman, S. A. (1984). Phys. D 
Nonlinear Phen.10,145–156. 

dynamics of gene networks provides buffering (self-
organization). But still easily chaotic.

robustness of phenotypes is the result of a buffering of 
the developmental process. 

Aldana, M. [2003]. Physica D. 185: 45–66

Structure (topological organization), can provide larger 
stable or critical universe, but still easily chaotic.
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Cellular automata
homogenous lattice of state-determined systems

xx-1 x+1

Cellular Automata

x
t

2-D
 

},...2,1,0{
,...,..., 1

sx
xxxfx t

riiri
t
i


 


1-D

x

  1
,,,, ,...,..., 
 t

rjrijirjri
t

ji yxyx
xxxfx

Toroidal LatticeToroidal LatticeToroidal Lattice

Space-time diagram



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

cellular automata

 Parallel updating
 Artificial physics

 Local interactions only
 No actions at a distance

 Homogeneous
 Unpredictable global behavior

 Emergence
 2-levels: rules (micro-level) and 

attractor behavior (macro-level)
 Irreversible

 Self-organization
 Example rules

 Rug (diffusion)
 256 states
 Average of 8 neighbors in 2-d grid, if 

state is 255 -> 0.
 Vote/majority

 binary
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elementary CA rules
 Radius 1

 Neighborhood =3
 Binary

 23 = 8 input neighborhoods
 28 = 256 rules

http://mathworld.wolfram.com/CellularAutomaton.html

xx-1 x+1

Cellular Automata

x
t
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elementary CA rules
 Radius 1

 Neighborhood =3
 Binary

 23 = 8 input neighborhoods
 28 = 256 rules

http://mathworld.wolfram.com/CellularAutomaton.html

xx-1 x+1

Cellular Automata

x
t
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state-determined transitions
Cellular automata
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state-determined transitions
Cellular automata
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Living patterns easily replicated in CA
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Next lectures

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, 

Methods, and Technologies. MIT Press. 
 Chapter 2. 

 Lecture notes
 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior

 posted online @ http://informatics.indiana.edu/rocha/i-bic 
 Papers and other materials

 Optional
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, 

and Applications. Chapman & Hall. 
 Chapter 2, all sections
 Chapter 7, sections 7.3 – Cellular Automata
 Chapter 8, sections 8.1, 8.2, 8.3.10

 Flake’s [1998], The Computational Beauty of Life. MIT Press.
 Chapters 10, 11, 14 – Dynamics, Attractors and chaos

readings


