biologically-inspired computing

ętworks Pa na ai bit.ly/atBIC \bigcirc

lecture 7

course outlook

UNIVERSITY casci.binghamton.edu/academics/i-bic

final project schedule

Projects

bit.lv/atBIC

Due by May 7th in Brightspace, "Final Project 483/583" assignment

ALIFE 2025

- Not necessarily to submit to actual conference due date
 - May 4 full paper, July 4, abstract
- https://2025.alife.org/
- Max 8 pages, author guidelines:
- https://2025.alife.org/calls#paper-call
- MS Word and Latex/Overleaf templates
- Preliminary ideas by March 7
 - Submit to "Project Idea" assignment in Brightspace.
- Individual or group
 - With very definite tasks assigned per member of group

ALIFE 2025

Tackle a real problem using bio-inspired algorithms, such as those used in the labs.

Reusing and expanding labs is highly encouraged.

BINGHAMTON U N I V E R S I T Y STATE UNIVERSITY OF NEW YORK rocha@indiana.edu casci.binghamton.edu/academics/i-bic

readings for this class

Additional information

- Floreano, D. and C. Mattiussi [2008]. *Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies*. MIT Press. Preface, Sections 4.1, 4.2. **Chapter 2.**
 - Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall. Chapter 1, pp. 1-23. Sections 7.1 to 7.4, Appendix B.3.1. Chapter 2, Sections 8.1, 8.2, 8.3.10

Lecture notes

- Chapter 1: What is Life?
- Chapter 2: The logical Mechanisms of Life
- Chapter 3: Formalizing and Modeling the World
- Chapter 4: Self-Organization and Emergent Complex Behavior
 - posted online @ casci.binghamton.edu/academics/i-bic
- Papers and other materials
 - Optional
 - Prusinkiewicz and Lindenmeyer [1996] The algorithmic beauty of plants.
 - Chapter 1
 - Flake's [1998], *The Computational Beauty of Life*. MIT Press.
 - Chapters 1, 5, 6 (7-9).
 - Chapters 10, 11, 14

natural design principles

modeling similarities across nature

- self-similar structures
 - Trees, plants, clouds, mountains
 - morphogenesis
 - Mechanism
 - Iteration, recursion, feedback
- dynamical systems and unpredictability
 - From limited knowledge or inherent in nature?
 - Mechanism
 - Chaos, measurement
- self-organization, collective behavior, emergence
 - Complex behavior from collectives of many simple units or agents
 - cellular automata, dynamical networks, morphogenesis, swarms, brains, social systems
 - Mechanism
 - Parallelism, multiplicity, multi-solutions, redundancy
- evolution
 - Adaptation, learning, social evolution
 - Mechanism
 - Reproduction, transmission, variation, selection, Turing's tape
- Network causality (heterogenous complexity)
 - Behavior derived from many inseparable sources
 - Immune system, anticipatory systems, brain-body-environment-culture, embodiment, epigenetics, culture
 - Mechanism
 - Modularity, control, hierarchy, connectivity, stigmergy, redundancy

discrete dynamical systems or automata networks

NK Boolean Network (N=13, K=3)

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

examples

networks with (automata) dynamics

canonical complex systems

NK Boolean Network (N=13, K=3)

different Boolean networks for same structure (256¹³)

Multivariate Dynamical Systems: *Structure*: Variable interactions, associations, influence *Dynamics*: variable *states* (micro) network *configurations* (macro)

> Minimal networks with both structure and dynamics. Interactions and variables with binary states. Huge statespaces and **ensembles** for same structure. Full range of **attractor behavior**

 $2^N \rightarrow$ Network configurations (state-space) $2^{2^K} \rightarrow$ possible Boolean functions of k inputs (k=3 \rightarrow 256)

Kauffman, SA. J. theoretical biology 22.3 (1969): 437-467.

BINGHAMTON rocha@binghamto

NK-networks

Stuart Kauffman's version

simple Boolean network

small example NK-network of 3 variables

or

or

р	q	p ∨ q
0	0	0
0	1	1
1	0	1
1	1	1

State	space

t		t+1					
	n ₁	n ₂	n ₃	n ₁	n ₂	n ₃	
0	0	0	0	0	0	0	0
1	0	0	1	0	1	0	2
2	0	1	0	0	0	1	1
3	0	1	1	1	1	1	7
4	1	0	0	0	1	1	3
5	1	0	1	0	1	1	3
6	1	1	0	0	1	1	3
7	1	1	1	1	1	1	7

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

v rocha@binghamton.edu casci.binghamton.edu/academics/i-bic

simple Boolean network

attractors and state-space

Boolean network dynamics

ensemble dynamics for same structure

Small Boolean network

SimpleNet

BINGHAMTON UNIVERSITY OF NEW YORK STATE UNIVERSITY OF NEW YORK

dynamical landscape of SimpleNet

State-transition graph (basins of attraction)

Basin	Size	Attractor	Attractor Period
8	22	1,0,1,1,0,1,1,0 1,0,1,0,1,1,1,0 1,0,1,1,1,0,1,0	3
9	2	1,0,1,1,1,1,1,0	1
10	2	1,0,1,1,1,1,1,0	1
11	12	1,1,1,1,1,1,0,1	1
12	12	1,1,1,1,1,1,0,1	1
13	12	0,1,1,1,1,1,1,0	1
14	12	0,1,1,1,1,1,1,1	1

Basin	Size	Attractor	Attractor Period
1	6	1,0,1,0,0,0,0,0	1
2	52	1,0,1,1,1,1,0,1	1
3	6	1,0,1,0,0,0,1,0	1
4	52	1,0,1,1,1,1,1,1	1
5	22	1,0,1,0,0,1,0,0 1,0,1,0,1,0,0,0 1,0,1,1,0,0,0	3
6	22	1,0,1,0,0,1,1,0 1,0,1,0,1,0,1,0 1,0,1,1,0,0,1,0	3
7	22	1,0,1,1,0,1,0,0 1,0,1,0,1,1,0,0 1,0,1,1,1,0,0	3

There are 2⁸=256 possible states but only a small set (14) of attractors

> BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

UNIVERSITY casci.binghamton.edu/academics/i-bic

attractor behavior

casci.binghamton.edu/academics/i-bic

UNIVERSITY

how to control?

dynamical (qualitative) models of regulation from experimental data

the drosophila segment polarity network

Based on the ODE model of von Dassow et al. (2000), consists of 4-cell parasegments, each cell with 15 interacting genes and proteins. 2⁶⁰ network configurations Reproduces wild-type and mutant gene expression patterns in development of fruit fly

2 intercellular inputs: **nhh** (*hedgehog*), **nWG** (*wingless*)

1 intracellular input: SLP (sloppy paired)

Egg with maternally deposited mPNA Anterior		
	State – TransitionFunction	Node
bcd mRt	$\leftarrow 0 \text{ if } i=1 \lor i=2; 1 \text{ if } i=3 \lor i=4;$	SLP_i^{t+1}
Gradients of proteins	$\leftarrow (\mathbf{CIA}_i^t \land \mathbf{SLP}_i^t \land \neg \mathbf{CIR}_i^t) \lor (wg_i^t \land (\mathbf{CIA}_i^t \lor \mathbf{SLP}_i^t) \land \neg \mathbf{CIR}_i^t)$	wg_i^{t+1}
encoded by maternal mRNA	$\leftarrow wg_i^t$	WG_i^{t+1}
BĆE	$\leftarrow (\mathrm{WG}'_{l-1} \lor \mathrm{WG}'_{l+1}) \land \neg \mathrm{SLP}'_l$	en_i^{t+1}
Gap	$\leftarrow en'_i$	EN_i^{t+1}
proteins	$\leftarrow \mathbf{EN}_i^t \land \neg \mathbf{CIR}_i^t$	hh_i^{t+1}
HB-	$\leftarrow hh'_i$	$\mathbf{H}\mathbf{H}_{i}^{t+1}$
	$\leftarrow \mathbf{CIA}_i^t \land \neg \mathbf{EN}_i^t \land \neg \mathbf{CIR}_i^t$	$ptc_i^{\prime+1}$
	$\leftarrow ptc_i^t \lor (PTC_i^t \land \neg HH_{i-1}^t \land \neg HH_{i-1}^t)$	PTC_i^{t+1}
Pair-rule proteins	$\leftarrow \mathbf{PTC}_i^t \land (\mathbf{HH}_{i-1}^t \lor \mathbf{HH}_{i+1}^t)$	\mathbf{PH}_{i}^{t}
H RUN	$\leftarrow \neg PTC_i' \lor (HH_{i-1}' \lor HH_{i+1}')$	\mathbf{SMO}_i^t
Segment-	$\leftarrow \neg \mathbf{EN}_{i}^{t}$	ci_i^{t+1}
polarity proteins	$\leftarrow ci_i^t$	$\operatorname{CI}_{i}^{t+1}$
WGEN	$\leftarrow \mathbf{CI}_i^t \wedge (\neg \mathbf{PTC}_i^t \vee hh_{i-1}^t \vee hh_{i+1}^t \vee \mathbf{HH}_{i-1}^i \vee \mathbf{HH}_{i+1}^t)$	CIA_i^{t+1}
SEGMENT NUMB	$\leftarrow \mathbf{CI}_{i}^{t} \land \mathbf{PTC}_{i}^{t} \land \neg hh_{i-1}^{t} \land \neg hh_{i+1}^{t} \land \neg \mathbf{HH}_{i-1}^{t} \land \neg \mathbf{HH}_{i+1}^{t}$	CIR_i^{t+1}

Albert & Othmer [2003]. J. Theor. Bio. 223: 1-18.

casci.binghamton.edu/academics/i-bic UNIVERSITY

dynamical (qualitative) models of regulation from experimental data

the drosophila segment polarity network

Based on the ODE model of von Dassow et al. (2000), consists of 4-cell parasegments, each cell with 15 interacting genes and proteins. **2**⁶⁰ **network configurations**

Reproduces wild-type and mutant gene expression patterns in development of fruit fly 2 intercellular inputs: **nhh** (*hedgehog*), **nWG** (*wingless*)

1 intracellular input: **SLP** (*sloppy paired*)

dynamical (qualitative) models of regulation from experimental data

the drosophila segment polarity network

dynamical behavior

rocha@indiana.edu

casci.binghamton.edu/academics/i-bic

BINGHAMTON

UNIVERSITY OF NEW YORK

cell-types in a spatial arrangement

dynamical behavior

Albert & Othmer [2003]. J. Theor. Bio. 223: 1-18.

B

INGHAMTON	rocha@indiana.edu	
N I V E R S I T Y	casci.binghamton.edu/academics/i-bic	

cell-types in a spatial arrangement

dynamical behavior

self-organization

robot example with Brooks' subsumption architecture

wall

Jonathan Connell 's Muramator

- Emergent Behavior from system/environment coupling
 - Classifies Walls and Other Robots
 - Self-organization
 - Embodied cognition

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

random Boolean networks

self-organization

Discrete dynamical systems

- Extremely large number o coupled elements
- Systems of binary variables (0,1), coupled to one another in a network
 The activity of each element depends on previous state of other elements
- Simplifies continuous systems while maintaining essential behavior
- Statistical properties of sets of networks
 - Understanding of macroscopic, emergent properties
 - Similar to temperature
- Typically irreversible

biological interpretations of attractor behavior

self-organization

- Genetic regulatory networks
 - Genes are on or off
 - Development, morphogenesis
 - Attractors interpreted as different cell types
- Classification in Immune networks
- Representation in artificial neural networks
- Stable patterns of species abundances in ecosystems

attractors

self-organization as a key mechanism for order and robustness

evolution does not need to encode all details and is constrained

Waddington CH (1942). Nature.**150** (3811):563–565

robustness of phenotypes is the result of a *buffering* of the developmental process.

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic self-organization as a key mechanism for order and robustness

evolution does not need to encode all details and is constrained

Kauffman, S. A. (1984). *Phys. D* Nonlinear Phen. **10**,145–156.

Waddington CH (1942). *Nature*.**150** (3811):563–565

robustness of phenotypes is the result of a *buffering* of the developmental process.

dynamics of gene networks provides buffering (*self-organization*).

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

Boolean networks

definitions

- basin of attraction
 - All states in trajectories leading to an attractor (state cycle)
- length of cycle
 - Number of states in cycle
 - 1 to 2^N
- perturbation (minimal)
 - Flipping of one node to the opposite state
- Damage
 - Change in behavior from a perturbation
- Structural perturbation
 - Permanent in connections or Boolean rules in the network

BINGHAMTON UNIVERSITY STATE DIVERSITY OF LABOR OF CONTROL OF CONTR Boolean network dynamics, perturbations, and control

ensemble dynamics for same structure

Gates & Rocha [2016]. Sci. Rep. 6, 24456.

Boolean network dynamics, perturbations, and control

ensemble dynamics for same structure

Gates & Rocha [2016]. Sci. Rep. 6, 24456.

Boolean network dynamics, perturbations, and control

ensemble dynamics for same structure

Kauffman's statistical analysis

Of NK-Boolean Networks

- Random networks
 - Started with random initial conditions
 - Self-organization is not a result of special initial conditions
- Statistical analysis
 - $K \le 2$
 - Steady state, ordered, crystallization
 - (5 \leq K to) K=N
 - Disordered, chaotic
 - Mean length of cycles: 0.5 x 2^{N/2}
 - Mean number of cycles: N/e
 - High reachability, sensitive to perturbation
 - Number of other state cycles system can reach after perturbation
 - K=2
 - Mean length: n^{1/2}
 - Mean number of cycles: n^{1/2}
 - Low reachability
 - Percolation of frozen clusters (isolated subsets)
 - Not very sensitive to perturbation

Kauffman, S. A. (1984). *Phys. D Nonlinear Phen*.**10**,145–156.

Kauffman, SA. J. theoretical biology 22.3 (1969): 437-467.

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

edge of chaos on Boolean Networks

criticality

• $2 \le K \le 5$

- Good for evolvability?
- Some changes with large repercussions
- Best capability to perform information exchange
 - Information can be propagated more easily
- Problems with analysis
 - Network topology is random
 - Not scale-free, as later explored by Aldana
 - Real genetic networks tend to have lower values of K (in ordered regime)
 - Genes as simply Boolean may be oversimplification
 - Though a few states can approximate very well continuous data

criticality in Boolean networks

dynamical behavior of ensembles of networks

self-organization easily chaotic

evolution requires life in critical regime which is small, how come life is not chaotic?

homogenous lattice of state-determined systems

Parallel updating Artificial physics Local interactions only No actions at a distance • Homogeneous Unpredictable global behavior • Emergence 2-levels: rules (micro-level) and attractor behavior (macro-level) Irreversible Self-organization Example rules • Rug (diffusion) 256 states Average of 8 neighbors in 2-d grid, if state is 255 -> 0. Vote/majority binary

rocha@indiana.edu casci.binghamton.edu/academics/i-bic

elementary CA rules

http://mathworld.wolfram.com/CellularAutomaton.html

rocha@indiana.edu casci.binghamton.edu/academics/i-bic

Living patterns easily replicated in CA

Next lectures

casci.binghamton.edu/academics/i-bic

UNIVERSITY

