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lecture 13

biologically-inspired computing
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Natural design principles

 self-similar structures
 Trees, plants, clouds, mountains

 morphogenesis
 Mechanism

 Iteration, recursion, feedback
 dynamical systems and unpredictability

 From limited knowledge or inherent in nature?
 Mechanism

 Chaos, measurement
 self-organization, collective behavior, emergence

 Complex behavior from collectives of many simple units or agents
 cellular automata, dynamical networks, morphogenesis, swarms, brains, social systems

 Mechanism
 Parallelism, multiplicity, multi-solutions, redundancy

 evolution
 Adaptation, learning, social evolution
 Mechanism

 Reproduction, transmission, variation, selection, Turing’s tape
 Collective behavior Behavior derived from many inseparable sources

 Multi-level selection, swarm intelligence, immune system, anticipatory systems, brain-body-environment-culture, 
embodiment, epigenetics, culture 

 Mechanism
 Network causality, odularity, control, hierarchy, connectivity, stigmergy, redundancy

exploring similarities across nature
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swarm intelligence

 Bio-inspired methodology for solving distributed problems
 biological examples

 social insects
 ants, termites, bees, wasps

 swarming, flocking, herding behaviors in vertebrates.

 Collective behavior algorithms
 Distributed or decentralized  control

 No central control or agent
 Local communication among agents 
 Self-organization

 Simple agents, complicated emergent behavior
 Robust

 To individual loss
 Adaptive and Flexible

 Capability to respond to perturbations

dumb agents, intelligent collective
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stigmergy

 stigma + ergon = mark + work
 Process of communication by changing 

environment
 Pheromone trails
 Nest Building

 Termites use a simple rule:
 Each agent scoops up a 'mudball'  and covers it 

with  pheromones
 Others are attracted by pheromone and are 

therefore more likely to drop their own mudballs 
near their neighbors

 Introduced by Pierre-Paul Grassé in 1959 
 "Stimulation of workers by the performance 

they have achieved.“
 Regulation of behavior (and constructions) is 

dependent on the behavior of others and the 
environment they build 

 Worker is guided by work 
 Used in optimization algorithms
 Stigmergy: Ant colony algorithms
 Flocking behavior: Particle Swarm 

Optimization
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termite mounds
natural achievements



rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic

termite mounds
natural achievements



rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic

termites

 Very simple Agents that primarily wander around randomly
 Mitchell Resnick

 Rules
 Wander aimlessly until bumping into a wood chip (Random walk)

 If carrying a wood chip, drop it and wander
 Else, pick chip up and wander

Aimless bots

Figure by Gary Flake in The Computational Beauty of Nature.
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ants

 Very simple rules for colony clean up
 Pick dead ant. if a dead ant is found pick it up (with probability inversely proportional to 

the quantity of dead ants in vicinity) and wander. 
 Drop dead ant. If dead ants are found, drop ant (with probability proportional to the quantity of 

dead ants in vicinity) and wander.  

Probabilistic cleaning

Figure by Marco Dorigo in Real ants inspire ant algorithms

See Also: J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. 
Detrain, L. Chretien. “The Dynamics of Collective Sorting Robot-Like 
Ants and Ant-Like Robots”. From Animals to Animats: Proc. of the 1st 
Int. Conf. on Simulation of Adaptive Behaviour. 356-363 (1990).
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ant-inspired robots

 Becker et al Rules
 Move: with no sensor activated move in straight line
 Obstacle avoidance: if obstacle is found, turn with a random angle to avoid it and move.
 Pick up and drop: Robots can pick up a number of objects (up to 3)

 If shovel contains 3 or more objects, sensor is activated and objects are dropped. Robot backs up, 
chooses new angle and moves.

 Results in clustering
 The probability of dropping items increases with quantity of items in vicinity

Clustering by collective or swarm robots

Figure from R Beckers, OE Holland, and JL Deneubourg
[1994]. “From local actions to global tasks: Stigmergy
and collective robotics”. In Artificial Life IV.
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becker et al experiments
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ant clustering algorithm (ACA)

xnxn-1…x3x2x1

 Very simple rules for colony clean up
 Pick dead ant. if a dead ant is found pick it up (with probability inversely 

proportional to the quantity of dead ants in vicinity) and wander. 
 Drop dead ant. If dead ants are found, drop ant (with probability proportional to 

the quantity of dead ants in vicinity) and wander.  

based on dead body cleaning

Data vector: X

xnxn-1…x3x2x1

xnxn-1…x3x2x1

…

…

Cluster data (N samples) according 
to ant clean up rules

Lumer, E. D. and Faieta, B. 1994. Diversity and adaptation in populations of 
clustering ants. In From Animals To Animats 3, pp. 501-508. 
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ant clustering algorithm (ACA)
using thresholds

Clustering rules
 Pick data sample

If there are few similar 
 Drop data sample. 

If there are many similar
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for multivariate data

ant clustering algorithm (ACA)

x1,nx1,n-1…x1,3x1,2x1,1    
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Data vector: X1

Distance between two data samples 
(in original multivariate space):

Data vector: X2 e.g. Euclidean

Ants see data points in a certain 
neighborhood

s2: area of neighborhood 
(side s, radius 1) 

x2,nx2,n-1…x2,3x2,2x2,1

Group n-dimensional data samples in 2-dimensional grid

xnxn-1…x3x2x1
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ant clustering algorithm (ACA)

1. Project high-dimensional data items onto 2-
dimensional grid randomly

2. Distribute N ants randomly on grid
3. repeat

 For every ant i in colony
 Compute neighborhood density f(xi)
 If ant i is unloaded and its cell is occupied with data item xi

then pick up xi with probability pp(xi)
 Else if ant i is loaded with xi and its cell is empty drop xi with 

probability pd (xi)
 Move randomly to neighbor cell with no ant

4. Until maximum iterations

The workings
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sorting with ants
Inspired by brood sorting

Same principle as Clustering
 Pick data sample of type t

If there are few of type t
 Drop data sample of type t

If there are many of type t
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sorting swarm-robots
based on ant algorithm

Holland O. & Melhuish C. (1999) “Stigmergy, Self-
organisation, and Sorting in Collective Robotics” 
Journal of Adaptive Behaviour . 5(2).

Bristol Robotics Laboratory.

See Also: J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chretien. “The Dynamics 
of Collective Sorting Robot-Like Ants and Ant-Like Robots”. From Animals to Animats: Proc. of the 1st Int. 
Conf. on Simulation of Adaptive Behaviour. 356-363 (1990).
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artificial bug worlds

 Automata with diverse 
characteristics
 Bugs have an identity separate from 

the world
 Bug: data structure and set of rules
 World: Arena for information exchange 

plus set of rules

Artificial ecosystems

Figure by Rudy Rucker in Artificial Life Lab.
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artificial bug worlds

 Automata with diverse characteristics
 Bugs have an identity separate from the world

 Bug: data structure and set of rules
 World: Arena for information exchange plus set of rules

 Typical bug implementation
 ID#
 Transition tables, rules of operations
 Position in world
 Fitness value
 State (e.g. mood)
 Velocity

 Speed and direction
 Group membership

Figures by Rudy Rucker in Artificial Life Lab.
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Flocking Behavior

simple rules, complex behavior

 Boids by Craig Reynolds (1986)
 3 Steering behaviors

 Alignment: move towards the average heading of local flockmates
 Adjust velocity direction according to others in vicinity 

 Separation: steer to avoid crowding local flockmates
 Maintain minimum distance to others (adjusting speed)

 Cohesion: steer to move toward the average position of local flockmates
 Adjust velocity direction according to others in vicinity  

 Each boid sees only  flockmates within a certain small neighborhood around itself.
 http://www.red3d.com/cwr/boids/
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Boid rules
Separation: maintain minimum distance adjusting speed

Figures by Rudy Rucker in 
Artificial Life Lab.

Separation: move (speed up or slow 
down) move to avoid crowding and 
attain desired cruising distance with 
local flockmates
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Boid rules
velocity vector update

Figure by Rudy Rucker in Artificial Life Lab.

Alignment: steer towards the average 
heading of local flockmates

Cohesion: steer to move toward the 
average position of local flockmates
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Flocking Behavior

 Boids by Craig Reynolds (1986)
 3 Steering behaviors

 Separation: move (speed up or slow down) 
 to avoid crowding and attain desired cruising distance 

with local flockmates
 Alignment: steer towards the average heading of 

local flockmates
 Adjust velocity according to others in vicinity 

 Cohesion: steer to move toward the average position 
of local flockmates

Boids
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Flocking Behavior
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Boids Used in Movies

 Batman Returns
 to simulate bats and penquins

 Cliffhanger
 Simulation of bats 

 Jurassic Park
 Simulation of gallamunus herd 

 The Lion King
 Scene of wildbeast stampede 

 Jumanji
 Stampede of zoo animals 

 Star Trek Voyager "Elogium“
 Simulation a swarm of space creatures 

classics
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flocking robots
based on boids

Intelligent Autonomous Systems Laboratory. 
University of the West of England.

Cybernetic Intelligence Research Group, 
University of Reading, England
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particle swarm optimization (PSO)

   )(ˆ.)(ˆ.)(.)1( 2211 trctrctwt s xxxxvv 

 Search by flocking
 Social flocks looking for good positions

 Metaphor: food, resources
 Agents flock according to social knowledge of

 Their best position so far
 The best position of the swarm or local neighbors

 Not necessarily neighbors in search space but in some social structure (e.g. one 
dimensional lattice)

 Algorithm
 Generate a random population of particles

 xi(t) --- vector of variables (similar to genotypes)
 The position of agent i is xi moving with velocity vector vi

 xi(t+1) = xi(t) + vi(t + 1)
 Velocity update rule

 w : inertia constant
 c1 and c2 : constants
 r1 and r2 : random values in [0,1] 

social flocking

Agent best so far 
(cognitive term)

Swarm best (social term)

𝑥ଷ

x(𝑡)
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particle swarm optimization (PSO)
The workings

1. Generate random population of 
particles in search space

2. Generate random velocity vectors 
for each particle

3. Repeat (t++)
 For every particle i in population

 If                             then  
 Compute




4. Until maximum iterations
Axel Thevenot [2020]. “Particle Swarm Optimization 
(PSO) Visually Explained”. Towards Data Science. 

𝐯(𝑡 + 1) = 𝑤. 𝐯(𝑡) + 𝑐ଵ. 𝑟ଵ 𝐱ො − 𝐱(𝑡) + 𝑐ଶ. 𝑟ଶ 𝐱ො௦ − 𝐱(𝑡)

f xi t    f x̂i   tii xx ˆ

sx̂

𝐱(𝑡 + 1) = 𝐱(𝑡) + 𝐯(𝑡 + 1)
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Next lectures

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, 

and Technologies. MIT Press. 
 Chapter 7

 Lecture notes
 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior
 Chapter 5: Reality is Stranger than Fiction
 Chapter 6: Von Neumann and Natural Selection
 Chapter 7: Modeling Evolutionary Systems

 posted online @ casci.binghamton.edu/academics/i-bic 
 Papers and other materials

 Optional
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and 

Applications. Chapman & Hall.
 Chapter 5, 7.7, 8.3.1, 8.3.6,  

readings


