biologically-inspired computing

lecture 13

Natural design principles

exploring similarities across nature

self-similar structures Trees, plants, clouds, mountains morphogenesis Mechanism Iteration, recursion, feedback dynamical systems and unpredictability From limited knowledge or inherent in nature? Mechanism Chaos, measurement self-organization, collective behavior, emergence • Complex behavior from collectives of many simple units or agents cellular automata, dynamical networks, morphogenesis, swarms, brains, social systems Mechanism Parallelism, multiplicity, multi-solutions, redundancy evolution Adaptation, learning, social evolution Mechanism Reproduction, transmission, variation, selection, Turing's tape Collective behavior Behavior derived from many inseparable sources Multi-level selection, swarm intelligence, immune system, anticipatory systems, brain-body-environment-culture, embodiment, epigenetics, culture Mechanism Network causality, odularity, control, hierarchy, connectivity, stigmergy, redundancy rocha@binghamton.edu BINGHAMTON casci.binghamton.edu/academics/i-bic UNIVERSITY

swarm intelligence

dumb agents, intelligent collective

stigmergy

BINGHAMTON UNIVERSITY

termite mounds

natural achievements

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

termite mounds

natural achievements

termites

Aimless bots

- Very simple Agents that primarily wander around randomly
 - Mitchell Resnick
- Rules
 - *Wander* aimlessly until bumping into a wood chip (Random walk)
 - If carrying a wood chip, drop it and *wander*
 - Else, pick chip up and *wander*

Figure by Gary Flake in *The Computational Beauty of Nature*.

ants

Probabilistic cleaning

Very simple rules for colony clean up

- *Pick dead ant.* if a dead ant is found pick it up (with probability inversely proportional to the quantity of dead ants in vicinity) and wander.
 - Drop dead ant. If dead ants are found, drop ant (with probability proportional to the quantity of dead ants in vicinity) and wander.

Real and Simulated Ants Clustering

Real ants *Messor sancta* build clusters starting from randomly located corpses

Simulated ants build clusters starting from randomly located items See Also: J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chretien. "The Dynamics of Collective Sorting Robot-Like Ants and Ant-Like Robots". *From Animals to Animats: Proc. of the 1st Int. Conf. on Simulation of Adaptive Behaviour*. 356-363 (1990).

Figure by Marco Dorigo in Real ants inspire ant algorithms

BINGHAMTON rocha@

ant-inspired robots

Clustering by collective or swarm robots

Becker et al Rules

- Move: with no sensor activated move in straight line
- **Obstacle avoidance**: if obstacle is found, turn with a random angle to avoid it and **move**.
- **Pick up and drop**: Robots can pick up a number of objects (up to 3)
 - If shovel contains 3 or more objects, sensor is activated and objects are dropped. Robot backs up, chooses new angle and moves.
- Results in clustering
 - The probability of dropping items increases with quantity of items in vicinity

Figure from R Beckers, OE Holland, and JL Deneubourg [1994]. "From local actions to global tasks: Stigmergy and collective robotics". In *Artificial Life IV*.

> BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

becker et al experiments

ant clustering algorithm (ACA)

based on dead body cleaning

- *Pick dead ant.* if a dead ant is found pick it up (with probability inversely proportional to the quantity of dead ants in vicinity) and wander.
 - Drop dead ant. If dead ants are found, drop ant (with probability proportional to the quantity of dead ants in vicinity) and wander.

Lumer, E. D. and Faieta, B. 1994. Diversity and adaptation in populations of clustering ants. In *From Animals To Animats 3*, pp. 501-508.

BINGHAMTON	rocha@binghamton.edu
U N I V E R S I T Y	casci.binghamton.edu/academics/i-bic

ant clustering algorithm (ACA)

using thresholds

for multivariate data

Group n-dimensional data samples in 2-dimensional grid

ant clustering algorithm (ACA)

The workings

- 1. Project high-dimensional data items onto 2dimensional grid randomly
- 2. Distribute N ants randomly on grid

3. repeat

- For every ant *i* in colony
 - Compute neighborhood density $f(x_i)$
 - If ant *i* is unloaded and its cell is occupied with data item x_i then pick up x_i with probability $p_p(x_i)$
 - **Else if** ant *i* is loaded with x_i and its cell is empty drop x_i with probability $p_d(x_i)$
 - Move randomly to neighbor cell with no ant
- 4. Until maximum iterations

sorting with ants

Inspired by brood sorting

 $p_p(\mathbf{x}_i \mid t) = \left(\frac{k_1}{k_1 + f_r(\mathbf{x}_i)}\right)^2$

Probability of picking up item of type t

 $p_d(\mathbf{x}_i \mid t) = \left(\frac{f_t(\mathbf{x}_i)}{k_2 + f_t(\mathbf{x}_i)}\right)^2$

Probability of dropping item of type *t*

$$f_t(\mathbf{x}_i) = \begin{cases} \frac{1}{s^2} \sum_{\mathbf{x}_j \in Neigh_t(s \times s)} \left(1 - \frac{D(\mathbf{x}_i, \mathbf{x}_j)}{\alpha} \right) & \text{if } f > 0 \\ 0 & \text{otherwise} \end{cases}$$

Neighborhood density of type t

sorting swarm-robots

based on ant algorithm

organisation, and Sorting in Collective Robotics" Journal of Adaptive Behaviour . 5(2).

See Also: J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chretien. "The Dynamics of Collective Sorting Robot-Like Ants and Ant-Like Robots". From Animals to Animats: Proc. of the 1st Int. Conf. on Simulation of Adaptive Behaviour. 356-363 (1990).

rocha@binghamton.edu casci.binghamton.edu/academics/i-bic Bristol Robotics Laboratory.

artificial bug worlds

Artificial ecosystems

Automata with diverse characteristics

- Bugs have an identity separate from the world
 - Bug: data structure and set of rules
 - World: Arena for information exchange plus set of rules

a - is a bug at <5,8> with a trail of 4 cells \Huge{a} - is a bug at <7,6> with a trail of 4 cells \Huge{b} - is a bug at <8,3> with a trail of 6 cells \Huge{a} - is food markings

Figure by Rudy Rucker in Artificial Life Lab.

BINGHAMTON UNIVERSITY casci.binghamton.edu/academics/i-bic

artificial bug worlds

simple rules, complex behavior

- Boids by Craig Reynolds (1986)
 - 3 Steering behaviors
 - Alignment: move towards the average heading of local flockmates
 - Adjust velocity direction according to others in vicinity
 - Separation: steer to avoid crowding local flockmates
 - Maintain minimum distance to others (adjusting speed)
 - Cohesion: steer to move toward the average position of local flockmates
 - Adjust velocity direction according to others in vicinity
 - Each boid sees only flockmates within a certain small neighborhood around itself.
 - http://www.red3d.com/cwr/boids/

simple rules, complex behavior

simple rules, complex behavior

Boid rules

Separation: maintain minimum distance adjusting speed

Boid rules

Alignment: steer towards the average heading of local flockmates

Cohesion: steer to move toward the average position of local flockmates

Boids Used in Movies

classics

Batman Returns

- to simulate bats and penquins
- Cliffhanger
 - Simulation of bats
- Jurassic Park
 - Simulation of gallamunus herd
- The Lion King
 - Scene of wildbeast stampede
- Jumanji
 - Stampede of zoo animals
- Star Trek Voyager "Elogium"
 - Simulation a swarm of space creatures

UNIVERSITY

casci.binghamton.edu/academics/i-bic

flocking robots

based on boids

Cybernetic Intelligence Research Group, University of Reading, England

Intelligent Autonomous Systems Laboratory. University of the West of England.

particle swarm optimization (PSO)

The workings

- 1. Generate random population of particles in search space
- 2. Generate random velocity vectors for each particle
- 3. Repeat (t++)
 - For every particle *i* in population
 - If $f(\mathbf{x}_i(t)) > f(\hat{\mathbf{x}}_i)$ then $\hat{\mathbf{x}}_i = \mathbf{x}_i(t)$
 - Compute $\hat{\mathbf{x}}_{s}$

•
$$\mathbf{v}_i(t+1) = w. \mathbf{v}_i(t) + c_1. r_1(\hat{\mathbf{x}} - \mathbf{x}_i(t)) + c_2. r_2(\hat{\mathbf{x}}_s - \mathbf{x}_i(t))$$

- $\mathbf{x}_i(t+1) = \mathbf{x}_i(t) + \mathbf{v}_i(t+1)$
- 4. Until maximum iterations

Axel Thevenot [2020]. "Particle Swarm Optimization (PSO) Visually Explained". *Towards Data Science*.

BINGHAMTON	rocha@binghamton.edu
UNIVERSITY OF NEW YORK	casci.binghamton.edu/academics/i-bic

 $[1/100] w: 0.800 - c_1: 3.500 - c_2: 0.500$

Next lectures

Class Book
 Floreano, D. and C. Mattiussi [2008]. <i>Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies</i>. MIT Press. Chapter 7
ecture notes
Chapter 1: What is Life?
Chapter 2: The logical Mechanisms of Life
Chapter 3: Formalizing and Modeling the World
Chapter 4: Self-Organization and Emergent Complex Behavior
Chapter 5: Reality is Stranger than Fiction
Chapter 6: Von Neumann and Natural Selection
Chapter 7: Modeling Evolutionary Systems
posted online @ casci.binghamton.edu/academics/i-bic
Papers and other materials
Optional Nunes de Castra, Laandra [2006], Fundamentale et Natural Computing: Resis Consents, Algerithme, and
 Nunes de Castro, Leandro [2006]. Fundamentais of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall. Chapter 5, 7.7, 8.3.1, 8.3.6,

BINGHAMTON U N I V E R S I T Y STATE UNIVERSITY OF NEW YOCK