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course outlook

 Labs: 35% (ISE-483)
 Complete 5 (best 4 graded) assignments based on algorithms presented in class

 Lab 3: March 31st

 Cellular Automata and Boolean Networks (Assignment 3)
 Delivered by Kaeli Ahn and Erik Fiolkoski
 Due: April 7th

 Lab 4 : April 22nd (Tuesday after Easter break)???? 
 Evolutionary Algorithms, (Assignment 4)

 Delivered by Kristen Beideman
 Due April 29th

 SSIE – 583 -Presentation and Discussion: 25% 
 Present and lead the discussion of an article related to the class materials

 Enginet students post/send video or join by Zoom 
 April 22, 2025

 Rik Pardun
 Conrad, M. [1990]. "The geometry of evolution.“ Biosystems 24: 61-81. 

 Kiet Ngo Tuan
 Garg, Shivam, Kirankumar Shiragur, Deborah M. Gordon, and Moses Charikar. “Distributed Algorithms from Arboreal Ants for the Shortest 

Path Problem.”PNAS 120, no. 6 (February 7, 2023): e2207959120.
 Eric Fiolkoski

 Schmidt, M. and H. Lipson [2009]. “Distilling Free-Form Natural Laws from Experimental Data". Science, 324: 81-85.

key events coming up

bit.ly/atBIC
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final project schedule
 Projects

 Due by May 7th in Brightspace, “Final Project 483/583” assignment
 ALIFE 2025

 Not necessarily to submit to actual conference due date 
 May 4 full paper, July 4, abstract

 https://2025.alife.org/
 Max 8 pages, author guidelines:
 https://2025.alife.org/calls#paper-call
 MS Word and Latex/Overleaf templates

 Preliminary ideas by March 7
 Submit to “Project Idea” assignment in Brightspace. 

 Individual or group
 With very definite tasks assigned per member of group

ALIFE 2025
Tackle a real problem using bio-inspired 

algorithms, such as those used in the labs. 

Reusing and expanding labs is 
highly encouraged.

bit.ly/atBIC
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readings

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, Methods, and 

Technologies. MIT Press. Preface, Chapters 1 and 4. 
 Lecture notes

 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior
 Chapter 5: Reality is Stranger than Fiction
 Chapter 6: Von Neumann and Natural Selection

 posted online @ http://informatics.indiana.edu/rocha/i-bic 
 Papers and other materials

 Optional
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, 

Algorithms, and Applications. Chapman & Hall. 
 Chapter 2, 7, 8
 Chapter 3, sections 3.1 to 3.5

until now

bit.ly/atBIC
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D’

D
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as a general principle (system) of evolution or open-ended complexity
Von Neumann’s generalization of Turing’s tape

A

operations

universal 
constructor

universal 
copier

description

A
C

B
A

B

C

extra functions

D for functions not involved in reproduction
Mutations in D can be propagated vertically
Leads to open-ended evolution

Von Neumann, J. [1949]. “Theory and 
organization of complicated automata.” 
5 lectures at University of Illinois
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importance of the “external tape”

 The “information turn”
 Unlike Schrödinger, Turing and Von Neumann had no direct effect on 

molecular biology
 But the “external tape” separated from the constructor (semiotic closure) 

has become an unavoidable principle of organization of 
biocomplexity

 A new synthesis?
 In 1971 Brenner: “in the next twenty-five years we are going to have 

to teach biologists another language still, […] where a science like 
physics works in terms of laws, or a science like molecular biology, 
to now, is stated in terms of mechanisms, maybe now what one has 
to begin to think of is algorithms. Recipes. Procedures.”

in biology

Brenner, Sydney. [2012]. “Life’s code script.” Nature 482 (7386): 461-461.

“The concept of the gene as a symbolic representation of the organism — a code script —
is a fundamental feature of the living world and must form the kernel of biological theory. 
[…] at the core of everything are the tapes containing the descriptions to build these 
special Turing machines.”  (Sydney Brenner)
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fundamental principle of organisms as cybernetic mechanisms
Turing’s tape
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decoupled information
information not just biochemistry

Millar & Lambert [2013]. “Ancient DNA: Towards a million-
year-old genome.” Nature. doi:10.1038/nature12263

Orlando, L. et al. [2013] Nature
doi.org/10.1038/nature12323

400,000 Years, Oldest Human DNA 
Meyer et al [2013]. Nature. 
doi:10.1038/nature12788

What other components of life 
can be fossilized and 
recovered with  biochemical 
reproducibility this way? 

Schweitzer et al [2007] Science. 316 (5822): 277-280
Schweitzer et al [2009] Science. 324 (5927): 626-631.
Schroeter et al [2017] J. Proteome Res.16 (2):920–932
Lee et al [2017] Nature Communications 8: 1422.
Service, R. [2017] Science. DOI: 10.1126/science.aal0679

Schweitzer et al [2007] Science. 316 (5822): 277-280
Schweitzer et al [2009] Science. 324 (5927): 626-631.
Schroeter et al [2017] J. Proteome Res.16 (2):920–932
Lee et al [2017] Nature Communications 8: 1422.
Service, R. [2017] Science. DOI: 10.1126/science.aal0679

Schweitzer et al [2007] Science. 316 (5822): 277-280
Schweitzer et al [2009] Science. 324 (5927): 626-631.
Schroeter et al [2017] J. Proteome Res.16 (2):920–932
Lee et al [2017] Nature Communications 8: 1422.
Service, R. [2017] Science. DOI: 10.1126/science.aal0679

ancient (80-100 million year) fossilized 
protein fragments (collagen)
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information not just biochemistry
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doi.org/10.1038/nature12323
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What other components of life 
can be fossilized and 
recovered with  biochemical 
reproducibility this way? 
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the tape is not necessarily self-contained in cells, brains, or machines
from autonomy to “semiopoiesis”

Rocha, L.M. [2000] Annals N.Y. Acad. Sci. 901(1): 207-223.
Rocha, L.M. & W. Hordijk [2005] Artificial Life 11:189 - 214.

codecode

nonlinear
dynamics

symbolic
memory

semiotic closuresemiotic closuredecoupling and 
externalization enable 
collective behavior

“Let the whole outside world consist of a long 
paper tape”. —John von Neumann, 1948

two roles of information
data/program (Turing)
passive/active (Von Neumann)
description/construction-function (Pattee)
genotype/phenotype (Biology)
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semiotic control networkssemiotic control networks
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stigmergy
(material) symbols  in the wild

S Goss, S Aron, JL Deneubourg, JM Pasteels [1989]. “Self-organized shortcuts in the 
Argentine ant”.  Naturwissenschaften, 76: 579–581. 

S Goss, S Aron, JL Deneubourg, JM Pasteels [1989]. “Self-organized shortcuts in the 
Argentine ant”.  Naturwissenschaften, 76: 579–581. 

decoupling and 
externalization enable 
collective behavior
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Turing machines written on other Turing machines (naturally)
endogenous retroviruses

Weiss & Stoye [2013]. “Our Viral Inheritance.” Science.340 (6134): 820-821. 

Sequences from RNA and DNA viruses found in host genomes Retroviral 
genomes, account for 6 to 14% of host genomes

∼8% of human DNA.
endogenous retroviruses (ERVs) comprise more DNA than host proteome. 
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The social symbiome
genomic and collective behavior complexity

semiotic control networks enable new, interacting 
levels of organization and selection, which take control 
of genes, organisms, and even societies.

Examples: eukaryotic RNA/DNA complexity, vertebrate 
immunity, eusociality, cultural constraints on reproduction, 
GMOs (including via CRISPR), viral pandemics, etc.

Mercer et al. [2012] Targeted RNA sequencing 
reveals the deep complexity of the human 
transcriptome. Nat. Biotech. 30, 99–104.
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The social symbiome
genomic and collective behavior complexity

semiotic control networks enable new, interacting 
levels of organization and selection, which take control 
of genes, organisms, and even societies.

Examples: eukaryotic RNA/DNA complexity, vertebrate 
immunity, eusociality, cultural constraints on reproduction, 
GMOs (including via CRISPR), viral pandemics, etc.

Eukaryote complexity in regulation: 
regulatory components larger than 
coding, genome size is secondary: 10-
100K times more energy per gene than 
bacteria (# proteins expressed) 
Lane & Martin [2010] Nature 467(7318):929–934.
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The social symbiome
genomic and collective behavior complexity

semiotic control networks enable new, interacting 
levels of organization and selection, which take control 
of genes, organisms, and even societies.

Examples: eukaryotic RNA/DNA complexity, vertebrate 
immunity, eusociality, cultural constraints on reproduction, 
GMOs (including via CRISPR), viral pandemics, etc.

Pescosolido et al [2017] The Social Symbiome
Framework: Linking genes-to-global cultures in
public health using network science, in The
Handbook of Applied Systems Science.
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fundamental principle of organisms as cybernetic mechanisms
Turing’s tape
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from cybernetic mechanisms to bio-inspired algorithms
Turing’s tape
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modeling genetic-based (open-ended) evolution

 Evolutionary Operation
 Box (1957)

 Perturbations to continuous variables followed by selection to improve industrial 
productivity

 Evolution Strategies
 Rechenberg (1960’s),  Schweffel (1970’s)

 To optimize real-valued parameters in wind-tunnel experiments
 Real-valued genotypes under variation and selection

 Evolutionary Programming
 Fogel, Owens, and Walsh (1966)

 Evolution of tables of state-transition functions (diagrams) under mutation and selection
 Artificial ecosystems

 Conrad and Pattee (1970)
 Population of artificial cells evolving with genotype and phenotype

 Other early evolution-inspired algorithms and models
 Barricelli CA-like model(1957), game-strategy model (1963) 

 Symbiogenetic evolution
 Friedman (1957, 1959), Bledsoe (1961), Bremmermann (1962)

 Genetic Algorithms
 John Holland (1960’s and 1970’s)

 Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975. (MIT 
Press, second edition 1992)

History of evolutionary computation
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optimization

 Search algorithms based on the mechanics of Natural Selection
 Holland, Conrad, Fogel
 Based on distinction between a machine and a description of a machine

 Solution alternatives for optimization problems

via genetic algorithms

0
dx
df

0
dx
df

f

x

Direct analysis depends on
Knowing the function
Existence of derivatives
continuity

“hill-climbing”
“hop” on the function and 
move along the steepest 
direction until a local 
extrema is found

Enumerative Search
Search point by point

Random Search
directionless

Objective function
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fitness landscapes
examples
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genetic algorithms

 Work with an encoding of the parameter set, not the 
parameters themselves
 solution alternative encoded as descriptions

 Search a population of points in parallel
 Not a single point

 Uses objective function directly
 Not derivatives

 Uses probabilistic transition rules
 Statistical bias
 Not deterministic rules

 Advantages
 Samples the space widely

 like an enumerative  or random algorithm, but more efficiently
 Directed search

 Not so easily stuck on local extrema
 Population search
 Variation mechanisms to search new points
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computational evolution
artificial genotype/phenotype mapping
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of a machine
Solution alternatives for optimization problems
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coding

 Solution space encoded as finite-length string over a finite alphabet
 E.g. {0, 1}

 GA’s exploit coding similarities
 Searches the code space, not the solution space

in genetic algorithms
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1) Generate Random population of bit-strings
 Chromosomes/Genotypes

• A candidate solution to a problem
 Genes

 Single or short blocks of adjacent bits
 Allele

 Actual value of a gene
2) Evaluate Fitness Function for each decoded solution
3) Reproduce next generation

 Genotypes of solutions with higher fitness value reproduce with higher 
probability

4) Go back to 2)

The workings
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probabilistic selection

 Solution space encoded as finite-length string over a finite alphabet
 E.g. {0, 1}

 GA’s exploit coding similarities
 Searches the code space, not the solution space

 Searches the space with many alternatives in parallel
 Avoids getting trapped in local optima
 Higher probability of finding better solutions

 Not random search
 Search towards regions with likely improvement
 Better solutions reproduce more often

 Does not work in very rugged, chaotic, uncorrelated landscapes

biased population generation

011001
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1) Reproduction: New population is generated
a) Selection

 Select two parent chromosomes from a population according to their fitness
 Biased roulette wheel according to fitness of solution
 Elite group
 Tournament

f(x1)

f(x2)

f(x3)

1010111010

Modeling fitness selection
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1) Reproduction: New population is generated
a) Selection

 Select two parent chromosomes from a population according to their fitness
b) Variation: Crossover

 With a crossover probability produce offspring pair by recombining parents. 

Variation: crossover

1010111010

Parents

0100101110

1010111010 0100101110

1010111010

0100101010

1010111110
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reproduction

1) Reproduction: New population is generated
a) Selection

 Select two parent chromosomes from a population according to their fitness
b) Variation: Crossover

 With a crossover probability produce offspring pair by recombining parents. 
c) Variation: Mutation

 With a mutation probability mutate (bit flip) new offspring at each bit position

Variation: mutation

Parents

0100101110

1010111010
0100101110

1010111010

0100101010

1010111110

1100100010

1010011110

0100101100

1010101010
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genetic algorithms

1) Generate Random population of bit-strings
2) Evaluate Fitness Function for each decoded solution
3) Reproduce next generation

 Selection by fitness
 Variation 

 crossover and mutation
 Fill new population

4) Go back to 2) until stop criteria is met
 Desired fitness
 Specified number of generations
 Convergence

 Lack of variability in population and/or fitness
 Tends to a peak

The workings

f(x1)

f(x2)

f(x3)

0100101110

1110011110

0110101001

…

f(xi)

Parents
0100101110

1010111010

0100101110
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0100101010

1010111110

1100100010

1010011110

0100101100

1010101010
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computational evolution
artificial genotype/phenotype mapping
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evolving computer programs

 Fogel, Owens and Walsh (1966)
 Artificial Intelligence through simulated evolution. Wiley.

 Evolution of finite-state machines
 John Koza (1992) at Stanford University

 Genetic Programming: On the programming of 
computers by means of Natural Selection. MIT Press.
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genetic programming

 Evolving computer programs to perform a task
 No strict genotype-phenotype mapping
 LISP programs

 Can be expressed in the form of parse trees

tree encodings

(DEFUN AREA-OF-CIRCLE () 

(SETF R 45)

(SETF PI 3.1415)

(* PI (* R R)))

*
PI

R R

*
functions terminals



rocha@indiana.edu
casci.binghamton.edu/academics/i-bic

genetic programming

1) Choose a pool of possible functions and terminals
 Setting up a language of description

2) Generate Random population of trees (programs)
 Must be syntactically correct (parsing)
 Size is usually restricted

3) Evaluate Fitness Function for each tree
 Desired I/O
 Simplicity, speed

4) Reproduce next generation with variation
 Trees with higher fitness value reproduce with higher probability

5) Go back to 3)

the workings

*
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R

R
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* √

C

/
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PI

PI

/

/ /

PI PI

+

R

D
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√

PI
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- / + == √ ABS …

PI C R B …
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genetic programming

 Choose random point in each parent’s tree
 Exchange subtrees beneath to produce offspring

 Allows size of program to increase or decrease

crossover
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genetic programming

 Choose random point in a tree
 Replace subtree beneath with random tree

mutation

+

R

D

*

√

PI

R+(√PI*D)

A

PI

-

MAX

B

+

R *

√

PI

R+{√PI*[MAX(A,B)-PI]}
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Creation demo
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crossover demo
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Mutation demo
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Genetic programming
Architecture-altering operations
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genetic programming

1) Generate Random population of 
trees/programs

2) Evaluate Fitness Function for each program
 Desired I/O, simplicity, speed

3) Reproduce next generation
 Selection by fitness
 Variation 
 crossover and mutation

 Fill new population
4) Go back to 2) until stop criteria is met
 Desired fitness
 Specified number of generations
 Convergence

The workings

f(x1)

f(x2)

f(x3)

…

f(xi)

*

PI

R

R

-

* √

C

R*[(PI*C)-√R]

+

R

D

*

√

PI

R+(√PI*D)

/

PI

PI

PI

/

/ /

PI PI

+

R

D

*

√

PI

/

PI D

PIPI PI

/

/ /

PI

+

R *

√

PI
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Genetic programming

 Optimal control
 Planning
 Symbolic regression

 Fit real data
 Example: Uncover laws of physics

 Schmidt M., Lipson H. (2009) "Distilling Free-Form Natural Laws from Experimental Data," Science, 324 (5923): 81 - 85.
 Binary Classification

 Software Tool
 Eureqa: https://www.creativemachineslab.com/eureqa.html

 Robot strategies
 Robocup

 Evolvable hardware

applications
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Genetic programming
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A symbolic regression tool
Eureqa

Eureqa: https://www.creativemachineslab.com/eureqa.html
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A symbolic regression tool
Eureqa

Eureqa: https://www.creativemachineslab.com/eureqa.html

https://gplearn.readthedocs.io/
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Types of encoding

 Binary encodings
 Typically fixed-length

 Many-letter encoding
 Larger alphabet (e.g. graph-generation grammars)

 Real-valued encodings
 Genes take real values

 Tree Encodings
 Genetic programming

 Indirect Encodings
 Modeling Phenotype development or post-transcription processes

 L-Systems, Dynamical systems, evolutionary robotics
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Cellular automata
homogenous lattice of state-determined systems

xx-1 x+1

Cellular Automata

x
t

Density Task 
(a.k.a majority classification problem)

#Lattices of 149 Binary Cells (599, 999)
#Rules of Radius 3 (7 Cells in

Neighborhood)
#Task: Organize to
< All 1's if Initial Configuration (IC) has more

1 Cells
< All 0's if IC has more 0 Cells

x
t

x

12827 NK

Possible neighborhood states

38128 104.32 
NKK

Possible CA transition functions
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Cellular automata
encoding in GA with binary encoding

x
t

x
12827 NKPossible neighborhood states

00000000

01000000

10100000

01100000

10010000

01010000

00110000

01110000

10001000

01001000

10101000

11101000

00011000

01011000

………

0

0

1

0

1

0

0

0

1

0

1

1

0

0

010010101100100

010010101100100

010010101100100

010010101100100

010010101100100

Used in the evolutionary search by GA 
(elite selection)

x x x1 2 np

φCode:

!!!
S S np21 S

Selection

Variation

Genotype

Phenotype

Traditional Genetic Algorithm

01100
1

co
de

Pop of rules
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Evolving CA rules
With genetic algorithms

#Das, Mitchell and Crutchfield
< Used Genetic Algorithm to

evolve rules for this task

Das,R., Mitchell,M., Crutchfield,J.P., [1994]. "A genetic algorithm
discovers particle-based computation in cellular automata". In:
Parallel Problem Solving from Nature - PPSN III. Davidor,Y.,

Schwefel,H.-P., Manner,R. (Eds.), Springer-Verlag, pp. 344-353.

Typical Result:
Block Expansion

Regular
domains

{1+}

{10+}

{0+}

Particles
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to evolve photos with numerical encodings
evolutionary algorithms
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real and integer encoding

1) Genotypes contain real or integer values
1) Crossover is performed in the same way
2) Mutation assigns a random number in a given interval

2) More computationally demanding for Reals
3) Attention to crossover points

1) Conversion to binary avoids crossover issues, but longer genotypes

In genetic algorithms

02.86.43.21.261.73.81.70.3

02.86.43.21.22.91.73.81.70.3

n Genes

192112012510854

x y r R G B
12141110018254 12141110018254…

Agent Chromosome/Genotype (Population of p agents)

n circles
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neuroevolution

 Capabilities (not in gradient-based ANN)
 Generation of ANN building blocks

 Activation functions
 Hyperparameter optimization
 Architecture and learning algorithm search and optimization

 Massive Paralellism
 Population of solutions

Evolutionary algorithms to optimize neural networks

Stanley, K.O., Clune, J., Lehman, J. et al (2019). Designing neural networks through 
neuroevolution. Nat Mach Intell, 24–35.
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evolving morphologies and robots with indirect encodings
Karl Sim´s  simulations, Genobots, and the Golem project

http://demo.cs.brandeis.edu/golem/

https://www.karlsims.com/evolved-virtual-creatures.html

Sims, Karl. "Evolving virtual creatures." 
In Seminal Graphics Papers: Pushing the 
Boundaries, Volume 2, pp. 699-706. 2023.

http://www.demo.cs.brandeis.edu/pr/evo_design/evo_design.html
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Next lectures

 Class Book
 Floreano, D. and C. Mattiussi [2008]. Bio-Inspired Artificial Intelligence: Theories, 

Methods, and Technologies. MIT Press. 
 Chapter 7

 Lecture notes
 Chapter 1: What is Life?
 Chapter 2: The logical Mechanisms of Life
 Chapter 3:  Formalizing and Modeling the World
 Chapter 4: Self-Organization and Emergent Complex Behavior
 Chapter 5: Reality is Stranger than Fiction
 Chapter 6: Von Neumann and Natural Selection

 posted online @ casci.binghamton.edu/academics/i-bic 
 Papers and other materials

 Optional
 Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, 

and Applications. Chapman & Hall.
 Chapter 5, 7.7, 8.3.1, 8.3.6,  

readings


