biologically-inspired computing
lecture 11 - Evolutionary Algorithms
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course outlook
key events coming up

m Labs: 35% (ISE-483)

o Complete 5 (best 4 graded) assignments based on algorithms presented iy
m Lab 3: March 31st

e Cellular Automata and Boolean Networks (Assignment 3)
m Delivercaroy KaelbAln and Erik Fiolkoski
m Due: April 7th
m Lab 4 : AprilF22"9"(Tuesday after Easter break)????

L |
e Evolutionary Algorithms, (Assignment 4) r:ﬁ'l
mDelivered by Kristen Beideman E'I'::':lh bitly
= DU April 20" _ _ \ bit.ly/atBIC
m SSIE — 583 -Presentation and Discussion: 25% '

e Present and lead the discussion of an article related to the class materials
m Enginet students post/send video or join by Zoom
e April 22, 2025
m Rik Pardun
e Conrad, M. [1990]. "The geometry of evolution.” Biosystems 24: 61-81.

m Kiet Ngo Tuan

e Garg, Shivam, Kirankumar Shiragur, Deborah M. Gordon, and Moses Charikar. “Distributed Algorithms from Arboreal Ants for the Shortest
Path Problem.”PNAS 120, no. 6 &ebruary 7, 2023): €2207959120.

m Eric Fiolkoski
e Schmidt, M. and H. Lipson [2009]. “Distilling Free-Form Natural Laws from Experimental Data". Science, 324: 81-85.
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final project schedule

Projects
e Due by May 7th in Brightspace, “Final Project 483/583” assignment
= ALIFE 2025

e Not necessarily to submit to actual conference due date
m  May 4 full paper, July 4, abstract

https://2025.alife.org/
Max 8 pages, author guidelines:
https://2025.alife.org/calls#paper-call

e MS Word and Latex/Overleaf templates
m Preliminary ideas by March 7

e Submit to “Project Idea” assignment in Brightspace.

e Individual or group
m  With very definite tasks assigned per member of group

ALIFE 2025

Tackle a real problem using bio-inspired
algorithms, such as those used in the labs.

ALIFE 2025

Ciphers of Life

The 2025 Conference on Artificial Life
6-10 October; 2025
Kyoto, Japan

bit.ly/atBIC

Reusing and expanding labs is
highly encouraged.
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readings

until now

m Class Book

e Floreano, D. and C. Mattiussi ;2008 . Bio-Inspired Artificial Intelligence: Theories, Methods, and
Technologies. MIT Press. Pretace, Chapters 1 and 4.

m Lecture notes
Chapter 1: What is Life?
Chapter 2: The logical Mechanisms of Life
Chapter 3: Formalizing and Modeling the World
Chapter 4: Self-Organization and Emergent Complex Behavior
Chapter 5: Reality is Stranger than Fiction
Chapter 6: Von Neumann and Natural Selection

m posted online @ http://informatics.indiana.edu/rochali-bic
m Papers and other materials

e Optional

m Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts,
Algorithms, and Applications. Chapman & Hall.
e Chapter 2,7, 8
e Chapter 3, sections 3.1 to 3.5
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Von Neumann’s generalization of Turing’s tape
as a general principle (system) of evolution or open-ended complexity

@
¢(A,B,C,D’)j

-
[‘]&&,E,C, D;]

description

universal
constructor

|
T_\ universal

operations copier

[0}

B ¢(A,B,C,D’)J

Von Neumann, J. [1949]. “Theory and
organization of complicated automata.”
5 lectures at University of Illinois

extra functions

D for functions not involved in reproduction
Mutations in D can be propagated vertically

Leads to open-ended evolution 133N 2INYUae) M | rocha@binghamton.edu
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semiotic closure: genetic information at work
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semiotic closure: genetic information at work
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H.M. Al-Hashimi [2023]. “Turing, von Neumann, and the computational
architecture of biological machines”, PNAS. 120 (25) e2220022120.

ions
BINGHAMTON

UNINSERS | TY
STATE UNIVERSITY OF NEW YORK

Commeon ways of depicting transfer RNA (tRNA)

Alanine Alanine

3 Amino acid
attachment site

rocha@blnghamton edu
casci.binghamton.edu/academics/i-bic




semiotic closure: genetic information at work
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H.M. Al-Hashimi [2023]. “Turing, von Neumann, and the computational
architecture of biological machines”, PNAS. 120 (25) e2220022120.

ions

jani

rocha@binghamton.edu

casci.binghamton.edu/academics/i-bic

TTTTTTTTTTTTTTTTTTTTTTTT




semiotic closure: genetic information at work
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semiotic closure: genetic information at work
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importance of the “external tape”
in biology

m The “information turn”
e Unlike Schrodinger, Turing and Von Neumann had no direct effect on
molecular biology
e But the “external tape” separated from the constructor (semiotic closure)
has become an unavoidable principle of organization of
biocomplexity
e A new synthesis?

m In 1971 Brenner: “in the next twenty-five years we are going to have
to teach biologists another language still, [...] where a science like
physics works in terms of laws, or a science like molecular biology,
to now, is stated in terms of mechanisms, maybe now what one has
to begin to think of is algorithms. Recipes. Procedures.”

“The concept of the gene as a symbolic representation of the organism — a code script —
is a fundamental feature of the living world and must form the kernel of biological theory.
[...] at the core of everything are the tapes containing the descriptions to build these
special Turing machines.” (Sydney Brenner)

- . IRINE@ PNV el | rocha@indiana.edu
Brenner, Sydney. [2012]. “Life’s code script.” Nature 482 (7386): 461-461. AEREATENERY | c2sci.binghamton.edulacademics/i-bic
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fundamental principle of organisms as cybernetic mechanisms
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decoupled information

Donkey

4.0 million to
4.5 million—®
years ago

—e —— Late Pleistocene horse

— Przewalski's horse

ley

- Domestic horses

Middle Pleistocene horse

information not just biochemistry

Millar & Lambert [2013]. “Ancient DNA: Towards a million-

year-old genome.” Nature. doi:10.1038/nature12263

Orlando, L. et al. [2013] Nature

doi.org/10.1038/nature12323

J
. i

%00,000 Years, ©ldest Human DNA
Meyer et al [2‘)13]. Nature.
doi:10.1038/nature12788

|

What other components of life

ancient (80-100 million year) fossilized
protein fragments (collagen)

can be fossilized and Schweitzer et al [2007] Science. 316 (5822): 277-280
recovered with biochemical Schweitzer et al [2009] Science. 324 (5927): 626-631.
Schroeter et al [2017] J. Proteome Res.16 (2):920-932
Lee et al [2017] Nature Communications 8: 1422.

reproducibility this way?

Service, R. [2017] Science. DOI: 10.1126/science.aal0679
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decoupled information

4.0 million to

4.5 million—%

years ago

Donkey

Middle Pleistocene horse

—— Late Pleistocene horse

— Przewalski's horse

®- Domestic horses

Millar & Lambert [2013]. “Ancient DNA: Towards a million-
year-old genome.” Nature. doi:10.1038/nature12263

Orlando, L. et al. [2013] Nature
doi.org/10.1038/nature12323

¥

4 : 3
0,000 Years, Oldest Human DNA
\Meyer et al [2‘)13]. Nature. i
doii10.10381nature12788

|

What other components of life
can be fossilized and
recovered with biochemical
reproducibility this way?

information not just biochemistry
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from autonomy to “semiopoiesis”
the tape is not necessarily self-contained in cells, brains, or machines

semiotic closure

decoupling and
externgllzatlon e_nable .
collective behavior memory
\’ nonlinear
dynamics

Autonol!

two roles of information

data/program (Turing)

passive/active (Von Neumann)
description/construction-function (Pattee)
genotype/phenotype (Biology)

“Let the whole outside world consist of a long
paper tape”. —John von Neumann, 1948

Rocha, L.M. [2000] Annals N.Y. Acad. Sci. 901(1): 207-223. .
o« W. Hordiik 120051 Artificial Life 11:189 - 212 )€} SPNYSLON]l | rocha@binghamton.edu
Rocha, L.M. & W. Hordijk [2005] Artificial Life 11:189 - 214. casci.binghamton.edu/academics/i-bic




from autonomy to “semiopoiesis”
the tape is not necessarily self-contained in cells, brains, or machines

semiotic closure | >semiotic control networks
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nonlinear 4=\, nonlinear

dynamics dynamics nonlinear

N E S B dynamics
; ; symbolic /
two roles of information memory

| 4
data/program (Turing)

symbolic
passive/active (Von Neumann) m | memory
description/construction-function (Pattee) nonlinear #
genotype/phenotype (Biology) dynamics m
“Let the whole outside world consist of a long nonlinear
paper tape”. —John von Neumann, 1948 dynamics

decoupling and
externgllzatlon epable symbolic
collective behavior A memory

>

Rocha, L.M. [2000] Annals N.Y. Acad. Sci. 901(1): 207-223
21
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(material) symbols in the wild

stigmergy
food Foraging Foraging
area area
2.4
1
Nest
nest
4 mn 8 mn
decoupllng and S Goss, S Aron, JL Deneubourg, JM Pasteels [1989]. “Self-organized shortcuts in the
externalization enable _ Argentine ant”. Naturwissenschaften, 76: 579-581.

collective behavior
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(material) symbols in the wild

stigmergy

decoupling and
externalization enable
collective behavior

BINGHAMTON

UNIVERSITY
STATE UNIVERSITY OF NEW YORK

rocha@binghamton.edu
casci.binghamton.edu/academics/i-bic




Turing machines written on other Turing machines (naturally)

Chromosomal DNA of host
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genomes, account for 6 to 14% of host genomes
~8% of human DNA.

endogenous retroviruses (ERVs) comprise more DNA than host proteome.

Weiss & Stoye [2013]. “Our Viral Inheritance.” Science.340 (6134): 820-821.

endogenous retroviruses
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endogenous retroviruses
Turing machines written on other Turing machines (naturally)

Chromosomal DNA of host
Expression of original virus e [nfection of other species
[' Elpfessron oi re(ombmant virus — Infection of other species
ERV ‘
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Sequences from RNA and DNA viruses found in host genomes Retroviral
genomes, account for 6 to 14% of host genomes

~8% of human DNA.
endogenous retroviruses (ERVs) comprise more DNA than host proteome.

Weiss & Stoye [2013]. “Our Viral Inheritance.” Science.340 (6134): 820-821.

I3 @ S INY el | rocha@binghamton.edu
SE S RSN SR ld  casci.binghamton.edu/academicsl/i-bic

STATE UNIVERSITY OF NEW YORK




genomic and collective behavior complexity
The social symbiome
semiotic control networks enable new, interacting

levels of organization and selection, which take control
of genes, organisms, and even societies.
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Cytosol

Examples: eukaryotic RNA/DNA complexity, vertebrate
immunity, eusociality, cultural constraints on reproduction,

GMOs (including via CRISPR), viral pandemics, etc. | ) INEISPNY§YON) rocha@binghamton.edu
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genomic and collective behavior complexity
The social symbiome
semiotic control networks enable new, interacting

levels of organization and selection, which take control
of genes, organisms, and even societies.

Stress

i — Eukaryote complexity in regulation:
) n0S, g NuckusEERN regulatory components larger than
i /A tionall TN : L
. coding, genome size is secondary: 10-

response T Stress ;
\ AONGRNGUT "’a,ggﬁ‘g:,ag"ez?,y 100K times more energy per gene than
smetaboltes — N3 Epigeneic bacteria (# proteins expressed)
NAD"andacsyi G Lane & Martin [2010] Nature 467(7318):929-934.
\'h——-—/

Examples: eukaryotic RNA/DNA complexity, vertebrate
immunity, eusociality, cultural constraints on reproduction,

GMOs (including via CRISPR), viral pandemics, etc. | ) INEISPNY§YON) rocha@binghamton.edu
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genomic and collective behavior complexity
The social symbiome

semiotic control networks enable new, interacting "
levels of organization and selection, which take control

Networked

Systems
of genes, organisms, and even societies.
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| Examples: eukaryotic RNA/DNA complexity, vertebrate Sy
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' GMOs (including via CRISPR), viral pandemics, etc.
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genomic and collective behavior complexity

The social symbiome

' semiotic control networks enable new, interacting a
‘ levels of organization and selection, which take control j
' of genes, organisms, and even societies.

— Ty \m Flu}‘ome. Nat.g%@@h. .

Examples: eukaryotic RNA/DNA complexity, vertebrate
immunity, eusociality, cultural constraints on reproduction,
GMOs (including via CRISPR), viral pandemics, etc.
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fundamental principle of organisms as cybernetic mechanisms
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Turing’s tape
from cybernetic mechanisms to bio-inspired algorithms

Genotype
DNA

transcription > RNA

translation
(code)

Inherited
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description
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modeling genetic-based (open-ended) evolution

History of evolutionary computation

Evolutionary Operation
e Box (1957)

m Perturbations to continuous variables followed by selection to improve industrial
productivity

Evolution Strategies
e Rechenberg (1960’s), Schweffel (1970’s)
m To optimize real-valued parameters in wind-tunnel experiments
m Real-valued genotypes under variation and selection
Evolutionary Programming
e Fogel, Owens, and Walsh (1966)
m Evolution of tables of state-transition functions (diagrams) under mutation and selection
Artificial ecosystems
e Conrad and Pattee (1970)
m Population of artificial cells evolving with genotype and phenotype
Other early evolution-inspired algorithms and models
e Barricelli CA-like model(1957), game-strategy model (1963)
m  Symbiogenetic evolution
e Friedman (1957, 1959), Bledsoe (1961), Bremmermann (1962)
Genetic Algorithms
e John Holland (1960’s and 1970’s)

m Adaptation in Natural and Atrtificial Systems, University of Michigan Press, 1975. (MIT
Press, second edition 1992)

JOHN H. HOLLAND

Inherited variation

environmental
ramifications

Genotype lranscriplion p| RNA
" DNA

translation

development

(code) v

ol

amino acid

chains
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via genetic algorithms

m Search algorithms based on the mechanics of Natural Selection
e Holland, Conrad, Fogel

e Based on distinction between a machine and a description of a machine
m Solution alternatives for optimization problems

+ Objective function “hill-climbing”

“hop” on the function and
move along the steepest
direction until a local
extrema is found

»
»

dx
X
Random Search Enumerative Search
directionless Search point by point

BINGHAMTON

UNIVERSITY
STATE UNIVERSITY OF NEW YORK

optimization

Direct analysis depends on

Knowing the function
Existence of derivatives

continuity
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examples

fitness landscapes

BINGHAMTON
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genetic algorithms

Work with an encoding of the parameter set, not the
parameters themselves

e solution alternative encoded as descriptions
Search a population of points in parallel
e Not a single point
Uses objective function dirgctly
e Not derivatives
Uses probabilistic transition rules
e Statistical bias
e Not deterministic rules
Advantages

e Samples the space widely
m like an enumerative or'fandom algorithmybut mare efficiently
m Directed search
e Not so easily stuck on local extrema
m Population search
m Variation mechanisms to search new points

13 IN@ 2PNV g0l | rocha@binghamton.edu
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artificial genotype/phenotype mapping

of a machine

Search algorithms based on the mechanics of Natural Selection
Based on distinction between a machine and a description

Solution alternatives for optimization problems

Traditional Genetic Algorithm

Genotype

computational evolution

Genotype
NA

transcription . RNA

translation
(code)

Inherited
variation

U
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development
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coding
in genetic algorithms

m Solution space encoded as finite-length string over a finite alphabet
e E.g.{0, 1}

m GA's exploit coding similarities
e Searches the code space, not the solution space

Traditional Genetic Algorithm
Genotype

S
& o mmim Variation

= Code:
E Q' "& 25"'
k C AN %, Selection
L%, N o
\ X\ \+u\¥ Phenotype

R IN® VNV UYLl | rocha@indiana.edu
OB B0 SR W  casci.binghamton.edu/academics/i-bic
STATE UNIVERSITY OF NEW YORK




genetic algorithms
The workings

1) Generate Random population of bit-strings

. Chromosomes/Genotypes

. A candidate solution to a problem
. Genes

. Single or short blocks of adjacent bits
. Allele

. Actual value of a gene
2) Evaluate Fithess Function for each decoded solution

Reproduce next generation

. Genotypes of solutions with higher fitness value reproduce with higher
probability

'/\/R p vy
_/ 4)  Go back to 2)

ofl[1]1 Traditional Genetic Algorithm
¥ Genotype

S
T G eeo mmam  Variation

TR s
X4 X,

X .
n,  Selection

1

-~ ny vy
./-‘ 7
N
‘\
Qe \
Y'Y i
Y % .
CRyRY N\
RAYY

e Genes ﬂx i)
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biased population generation

probabilistic selection

m  Solution space encoded as finite-length string over a finite alphabet
m  GA’s exploit coding similarities

m  Searches the space with many alternatives in parallel

m Not random search

E.g. {0, 1}
Searches the code space, not the solution space

Avoids getting trapped in local optima
Higher probability of finding better solutions

Search towards regions with likely improvement

Better solutions reproduce more often
m  Does not work in very rugged, chaotic, uncorrelated landscapes

Traditional Genetic Algorithm
Genotype

S S .
e oo mmim  Variation

R s

% X”p Selection
Phenotype
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Modeling fitness selection

reproduction

1)

Reproduction: New population is generated

a)

Selection

=  Select two parent chromosomes from a population according to their fithess
Biased roulette wheel according to fitness of solution

= Elite group
=  Tournament
oj1|{1f1fof1]0|J0f[1(|O
of1fof1]1{1][of1]o]1] Traditional Genetic Algorithm
Genotype
S S L
Total fitness = F & & Variation

B

C

7

re|0,F)

el

”p Selection
Phenotype




Variation: crossover

reproduction

1) Reproduction: New population is generated
a) Selection
Select two parent chromosomes from a population according to their fithess

b) Variation: Crossover
With a crossover probability produce offspring pair by recombining parents.




Variation: mutation

reproduction

1)  Reproduction: New population is generated
a) Selection
. Select two parent chromosomes from a population according to their fithess
b)  Variation: Crossover
. With a crossover probability produce offspring pair by recombining parents.
c) Variation: Mutation
. With a mutation probability mutate (bit flip) new offspring at each bit position
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The workings

1)
2)
3)

4)

Generate Random population of bit-strings
Evaluate Fitness Function for each decoded solution

Reproduce next generation
. Selection by fithess

. Variation
. crossover and mutation

. Fill new population

Go back to 2) until stop criteria is met
. Desired fitness
. Specified number of generations

. Convergence
. Lack of variability in population and/or fitness
. Tends to a peak

genetic algorithms

0|o|1|o|1|0|1|1|0|
 HRERDHERDREDEE
B el 1]

Sfx;)

S(x3)

Parents
ol1|1|[1kof1|o]o]1]o0
of1]o|1f1]1]of[1]0]1

Crossover

v
m11010010
of1
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artificial genotype/phenotype mapping

of a machine

Search algorithms based on the mechanics of Natural Selection
Based on distinction between a machine and a description

Solution alternatives for optimization problems

Traditional Genetic Algorithm

Genotype

computational evolution

Genotype
NA

transcription . RNA

translation
(code)

Inherited
variation

U

amino acid

chains

development

environmental |F
ramifications

S S L.
m ..o mmim  Variation

1~

- —Q\Code 25"’

n

Phenotype

b  Selection
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m Fogel, Owens and Walsh (1966)
e Artificial Intelligence through simulated evolution. Wiley.
m Evolution of finite-state machines

m John Koza (1992) at Stanford University

e Genetic Programming: On the programming of
computers by means of Natural Selection. MIT Press.

ARTIFICIAL
INTELLIGENCE
THROUGH
SIMULATED
EVOLUTION

evolving computer programs
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tree encodings

genetic programming

m Evolving computer programs to perform a task
e No strict genotype-phenotype mapping

e LISP programs
m Can be expressed in the form of parse trees

*,
Dk
®) (R

(DEFUN AREA-OF-CIRCLE ()
(SETF R 45)

(SETF PI 3.1415)

(; B ¢ RR))

i

functions terminals
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genetic programming
the workings

1) Choose a pool of possible functions and terminals

. Setting up a language of description
2) Generate Random population of trees (programs)

. Must be syntactically correct (parsing) _ —_—

. Size is usually restricted / + == \/ ABS
3) Evaluate Fitness Function for each tree

. Desired 1/0 PI CRB

. Simplicity, speed
4) Reproduce next generation with variation

. Trees with higher fitness value reproduce with higher probability
5) Go back to 3)

R+ (VPI*D)

R*[ (PI*C) _\/R] PI/{[(PI/PI)/(PI/PI)]} IRIN(@ SN 8 e | rocha@indiana.edu
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genetic programming
crossover

Choose random point in each parent’s tree

Exchange subtrees beneath to produce offspring
Allows size of program to increase or decrease

PI/{[(PI/PI)/(PI/PI)]} R+ (VPI*D) e

RN @2INY el | rocha@indiana.edu
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mutation

Choose random point in a tree
Replace subtree beneath with random tree

genetic programming

R+{VPI*[MAX (A,B)-PI]}
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crossover demo

: ()

K] (FLTD) €9 ()

0 O J®edts ONC
¥
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Genetic programming
Architecture-altering operations
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The workings

R*[ (PI*C)-VR]

genetic programming

Sx;)

1)

2)

3)

4)

Generate Random population of
trees/programs

Evaluate Fitness Function for each program
Desired I/O, simplicity, speed
Reproduce next generation
Selection by fitness
Variation
= crossover and mutation
Fill new population
Go back to 2) until stop criteria is met
Desired fitness
Specified number of generations
Convergence

R IN® VNV UYLl | rocha@indiana.edu
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Genetic programming

applications
m  Optimal control
m Planning

m  Symbolic regression

e Fitreal data
m Example: Uncover laws of physics

m Binary Classification

e Software Tool
m Eureqa: https://www.creativemachineslab.com/eurega.html

m Robot strategies
e Robocup
m Evolvable hardware

e Schmidt M., Lipson H. (2009) "Distilling Free-Form Natural Laws from Experimental Data," Science, 324 (5923): 81 - 85.

Cc

Detected Invariance:

l-‘).()ll.:(m: fm,)cos 0l
19.6m.1 .,COS 0:

Smeim)e S+ m L e,
m.L L.w @cos(0 - 0,)
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applications

Optimal control
Planning

Symbolic regression

e Fitreal data

s Example: Uncover laws of ph
e Schmidt M., Lipson H. (200
m Binary Classification

e Software Tool
m Eureqa: https://www.creative|

Robot strategies
e Robocup
Evolvable hardware

B

Time (s)

+ Build models
— Model insights
+ Evaluate
+ Understand

— Describe
Blueprint

+ Predict

Genetic programming

APldocs Platform Learnmore Releases

> Eureqa Models

Eurega Models

The Eureqa Models tab provides access to model blueprints for Eureqa generalized additive models
(Eureqa GAM), Eureqa regression, and Eureqa classification models. These blueprints use a proprietary
Eurega machine learning algorithm to construct models that balance predictive accuracy against

complexity.

Eureqa Model

Grad_Rate  High Cardinanty and Text features Modeing STANDARDIZED_Top2Sper
STANDARDIZ

STANDARDIZED_Outstate

Models by Drror va. Complesity Selected Mode! Detail

rocha@indiana.edu
casci.binghamton.edu/academics/i-bic
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applications
m  Optimal control
m Planning
m  Symbolic regression Fundamentals of modeling
e Fitreal data Dat
m Example: Uncover laws of ph + Build models
e Schmidt M., Lipson H. (200 _ Model insights
m Binary Classification -
e Software Tool * vt
» Eureqa: https://www.creative| | * Understand
m Robot strategies ~ Describe
e Robocup Chueprint
m Evolvable hardware ,
| otor
A B .-‘
Mo
2 S A Mod
B¥ Wa¥, Rating Tab
. ! / ! ‘ ating
2 § ,f*“ij\\_g,/’f“uj GA2
v Rating T
+ Predict

<0

Time (s)

aRobot workflow overview

> M

Eureqa l

The Eureqa Mod¢
(Eureqa GAM), Eu
Eurega machine |

complexity.

Eureqa Model

Models by Lrror vs. Complexity

>0 > Eureqa Models

SoftSea.com -

Eureqa

* Rating: R AR AR

») Version: 0.99.8 Beta

;) Publisher:
creativemachines.cornell.edu

5) File Size: 9.12 MB

») Date: Apr 03, 2014

aa nAn

y) Pnce: $2499.00

» License: Free Tnal Software
;) Category:

Calculator

Office

Genetic programming

Learnmore Releases

AP docs

Platform

additive models
1s use a proprietary

uracy against

STANDARDIZED Outstata

BINGHAMTON

UNIDVIERR'S I T Y

STATE UNIVERSITY OF NEW YORK

rocha@indiana.edu
casci.binghamton.edu/academics/i-bic




A symbolic regression tool
Eureqa: https://www.creativemachineslab.com/eureqa.html

Candidate models

dx 2 dbx x
—==2y"+logx |[-=-W+r
d e 5
¥ s

ﬂ=_x+X r sin y
dt 6

-
g__3_y+l ﬁ:—ym&-]ogx
dt y-1 dt
dy x* Y_ 2
& xi+1 dt 4x

b The inference proce‘w
generates several different
candidate symbolic models

that match sensor data
collected while performing

Inference Process

! Candidate tests

Candidate - e
Initial
conditions —_—
X H
~y_
time g

V The inference process
generates several possible
new candidate tests that

disambiguate competing
models (make them disagree

previous tests. It does not in their predictions).
know which model is S Y 7Y 7
correct. ) Initial

Outputs Conditions

(sensors) (actuators)

D <« 4

<« <«

<« U <«

N o

@ The inference process physically performs an
experiment by setting initial conditions, perturbing the
hidden system and recording time series of its behavior.
Initially, this experiment is random; subsequently, it is
the best test generated in step c.

Eurega

eq

i File

Edit Control

List of current solutions

Untitled - Eureqa

Options Tools View Help

Enter Data m Smoaoth Data f(x) Pick Modeling Task b | Start Search E' Solution Statistics

Selected solution plotted with the data

4 Pp M

Complexity [size]

Size | Emor | Solution & S VildatonData +
17 -f(r)=-1,Clﬁ cos(-1.62 +2 x) = xcos(-1.62 ‘| il X IR ) ==
13 [JOEE (x) - -1.00 sin(2 x) + xsin(2 x)
o
6 | 0482 f(x)=xsin(2 x)
4 0494 r(x)=-047 +cos(x) =
2 -f(.r) = cos(x) 2+
1 x)=-0.26
L HQ 4
L . |
0 50 100
<index>
Quick statistics of solution: Accuracy/ lexity front of best solutions
08 » Train Solutions Points @
Validated Solutions Foints =
-1.06 cos(-1.62 +2 x) +xcos(-1.62 =2 x) [/ S Selected Soluton @
.
—0 .6
Name Train Data = Validation Data % 2 T
Sample Size 80 52 =05 | ! .
R-squared 096 094 = |
Comelation Coeff  0.98 0.97 Bod
Mean Squared Error  0.08 0.09
Mean Absolute Error 024 026 0.3~
Minirmurm Error 0.00082 0.00
Maximum Error 0.66 063 - - - %
' " . 5 L . f L f
| More Todks ? I 2 4 & 8 10 12 14 16 18

Ready
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A symbolic regression tool

Eureqa: https://www.creativemachineslab.com/eureqa.html

Candidate models . Candidate tests
dx_ 2 2 l g — X I I N S
Ei_ y + ng gf

Y
ﬂ:—x+x dt|
dt 6
dc_ ay+l " fdx
dt y-1 dt
dy x? dy
57 x2+1 dt

that match sensor data
collected while performing
previous tests. It does not
know which model is
correct.
! OL
(ser
«
<
«

b The inference process | 1e ar | I
generates several different
candidate symbolic models

Eurega

eq Untitled - Eurega

! File Edit Control Options Tools View Help

Genetic Programming in Python,
with a scikit-learn inspired API:

https://gplearn.readthedocs.io/

One general law, leading tothe advancement of all organic beings, namely,
multiply, vary, let the strongest live and the weakest die.

—Charles Darwin, Onthe Originof Species (1859)

Selected solution plotted with the data

El Start Search B | Solution Statistics H 4 b M

o - Train Data =
Validation Data =
Validated Solution ———

0 50
<index>
lexity front of best solutions

0.8+ » Train Solutions Points @
Validated Solutions Points @
0.7+ |8 Selected Solution ¥
.
T
S
Fos| -
3 .
0.4
4
0.3
02
- *

| O O O |
@ The inference process physically performs an
experiment by setting initial conditions, perturbing the
hidden system and recording time series of its behavior.
Initially, this experiment is random; subsequently, it is
the best test generated in step c.

.
' ! : ! L ! ! L !
2 4 6 8 10 12 14 16 18
More Tools » . z
;] Complexity [size]

Ready
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Types of encoding

Binary encodings

e Typically fixed-length

Many-letter encoding

e Larger alphabet (e.g. graph-generation grammars)
Real-valued encodings

e Genes take real values
Tree Encodings

e Genetic programming

Indirect Encodings

e Modeling Phenotype development or post-transcription processes
m L-Systems, Dynamical systems, evolutionary robotics

e N(e) 2PN Y U | rocha@indiana.edu
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homogenous lattice of state-determined systems

Cellular Automata  Density Task

X-1

X

xX+1

Cellular automata

(a.k.a majority classification problem)

L

X

1 Cells

m|_attices of 149 Binary Cells (599, 999)
mRules of Radius 3 (7 Cells in
Neighborhood)
mTask: Organize to
» All 1's if Initial Configuration (IC) has more

» All O's if IC has more 0 Cells

X

X

Possible CA transition functions

Possible neighborhood states

KM=27-128

KK =21 £3.4x10%

1 33IN(@ 2PNV )M | rocha@binghamton.edu
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encoding in GA with binary encoding

|

X

X

Possible neighborhood states K|N| =2" =

Pop of rules

010010101100100

010010101100100

010010101100100

010010101100100

010010101100100

128

Used in the evolutionary search by GA

(elite selection)

/ Traditional Genetic Algorithm

Genotype
S Sn -
& oo mmam Variation

AR
X4 X,

Q *n, Selection
i Phenotype
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Cellular automata

o|o|lo|lo|lo|o|lo|o|o|lo|lo|o|o |
o|lo|l0o|]o|]0o|l0o|lo|o|lo|]o|]oo|o|o|o
o|loco|lo|]o|]o|loo|lo|o|lo|j]0o|]oo|o|o|o
=== =20 0l0|lO|lO|lOCO|OC O
== O 0O | 0CO|O|=m=212lO|lOC|OC|O
- E-A Y Y- - Y =Y - - =Y =Y - -]
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OO | =|=|O|l=|OCO|OC|O|=|O|=|O|OC
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With genetic algorithms

mDas, Mitchell and Crutchfield

» Used Genetic Algorithm to
evolve rules for this task

Typical Result: .
Block Expansion {104}
domains
{1+}
Particles

Das,R., Mitchell, M., Crutchfield,J.P., [1994]. "A genetic algorithm
discovers particle-based computation in cellular automata". In:
Parallel Problem Solving from Nature - PPSN III. Davidor,Y .,

Schwetel H.-P., Manner,R. (Eds.), Springer-Verlag, pp. 344-353.
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to evolve photos with numerical encodings

Original 128 circles 256 circles

In silico means that its simulated or implemented
in gilicon (ie silicon transistors in a com puter)

evolutionary algorithms

BINGHAMTON
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In genetic algorithms

real and integer encoding

1)  Genotypes contain real or integer values
1)  Crossover is performed in the same way

2)  More computationally demanding for Reals
3) Attention to crossover points

2)  Mutation assigns a random number in a given interval

1) Conversion to binary avoids crossover issues, but longer genotypes

03 [ 1.7 | 3.8 1.7 | 6 12 |32 (64 | 28 0

1l

03 [ 1.7 | 3.8 1.7 12 | 32 (64 | 28 0

n circles
X Yy r R G B

54 [ 108 | 25 201 | 11 192 |254 18 100 | 1 141 12

|77 Genes ]

|

In silico means that its simulated or im plemented
in silicon (ie silicon transistors in a com puter)

. R IN® VNV UYLl | rocha@indiana.edu
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neuroevolution

Evolutionary algorithms to optimize neural networks
m Capabilities (not in gradient-based ANN) E : :J\
e Generation of ANN building blocks 1 f—* "
m Activation functions - Me / - '!
e Hyperparameter optimization ! \ﬂ //i
e Architecture and learning algorithm search and optimization Cor 9.7;(;;/ : ';
m  Massive Paralellism x oy a e f*u_\,/f
e Population of solutions 20 CPPN nputs and outputs Skut-generatng CPPN
[- d
. o . Weight X,
nature machine intelligence , '
Explore content v About the journal v  Publish with us v Subscribe tttr ot
nature > nature machine intelligence > review articles > article Po— HyprNEAT: 4D CPPI ganaratas N weighta

Review Article ’ Published: 07 January 2019

Designing neural networks through neuroevolution

Kenneth O. Stanley &, Jeff Clune &, Joel Lehman & & Risto Miikkulainen

Nature Machine Intelligence 1, 24-35 (2019) | Cite this article

Example HyperNEAT network. view from front (left) and back (right)

Stanley, K.O., Clune, J., Lehman, J. et al (2019). Designing neural networks through —
neuroevolution. Nat Mach Intell, 24-35. I3) (€} s VY g O | rocha@indiana.edu
OB B0 SR W  casci.binghamton.edu/academics/i-bic
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evolving morphologies and robots with indirect encodings

Karl Sim’s simulations, Genobots, and the Golem project

Sims, Karl. "Evolving virtual creatures."
In Seminal Graphics Papers: Pushing the
Boundaries, Volume 2, pp. 699-706. 2023.

Generative Representations for
Evolutionary Desigh Automation

3D Genobots

https://www.karlsims.com/evolved-virtual-creatures.html

http://www.demo.cs.brandeis.edu/pr/evo_design/evo_design.html

http://demo.cs.brandeis.edu/golem/

The Golem
Project
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Next lectures
readings

m Class Book

e Floreano, D. and C. Mattipssil\;IZOOS]. Bio-Inspired Artificial Intelligence: Theories,
Methods, and Technologies. MIT Press.

m Chapter 7
m Lecture notes
e Chapter 1: What is Life?
e Chapter 2: The logical Mechanisms of Life
e Chapter 3: Formalizing and Modeling the World
e Chapter 4: Self-Organization and Emergent Complex Behavior
e Chapter 5: Reality is Stranger than Fiction
e Chapter 6: Von Neumann and Natural Selection
m posted online @ casci.binghamton.edu/academics/i-bic
m Papers and other materials
e Optional

m Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms,
and Applications. Chapman & Hall.

e Chapter 5, 7.7, 8.3.1, 8.3.6,
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