biologically-inspired computing

lecture 2

BINGHAMTON UNIVERSITY OF NEW YORK

the roles of information

in the living organization

- organisms act according to information they perceive in an environment
- organisms reproduce and develop from genetic information
 - genetic information is *transmitted* "vertically" (inherited) in phylogeny and cell reproduction, and *expressed* "horizontally" within a cell in ontogeny and plain functioning
- Self-reference
 - Information relevant to organism/environment: function
 - Only in *reference* to an organism/environment does a piece of DNA *function* as a gene
 - Biology is contextual and historical, physics is universal
 - How is *purpose/function* generated from processes without purpose?

"Life is a dynamic state of matter <u>organized</u> by <u>information</u>". Manfred Eigen [1992]

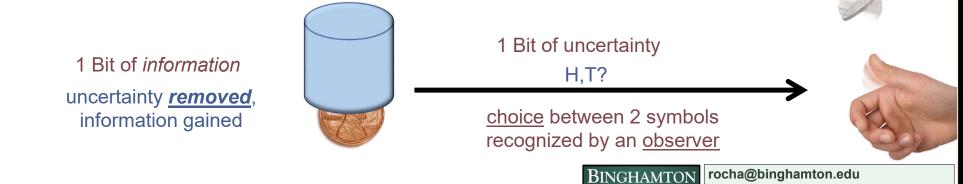
"Biology and physics have nothing to do with each other because biological evolution is essentially historical, and physical laws must be independent of history". Ernst Mayer

information processes in biology

how to best understand life?

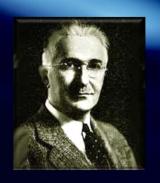
- Genetic System
 - Construction (expression, development, maintenance, and response) ontogenetically: horizontal transmission
 - Heredity (reproduction) of cells and phenotypes: vertical transmissio
- Immune System
 - Internal response based on accumulated experience (information)
- Nervous and Neurological system
 - Response to external cues based on memory
- Language, Social, Ecological, Eco-social, etc.

"Life is a complex system for information storage and processing". Minoru Kanehisa [2000]



information basics

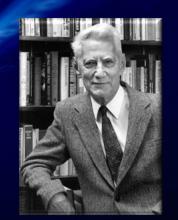
casci.binghamton.edu/academics/i-bic


observer and choice

- Information is defined as "a measure of the freedom from choice with which a message is selected from the set of all possible messages"
- Bit (short for *binary digit*) is the most elementary **choice** one can make
 - Between two items: "0' and "1", "heads" or "tails", "true" or "false", etc.
 - Bit is equivalent to the choice between two equally likely alternatives
 - Example, if we know that a coin is to be tossed, but are unable to see it as it falls, a message telling whether the coin came up heads or tails gives us one bit of information

UNIVERSITY

Fathers of uncertainty-based information


Hartley, R.V.L., "Transmission of Information", *Bell System Technical Journal*, July 1928, p.535.

- Information is transmitted through noisy communication channels
 - Ralph Hartley and Claude Shannon (at Bell Labs), the fathers of Information Theory, worked on the problem of efficiently transmitting information; i. e. decreasing the uncertainty in the transmission of information.

C. E. Shannon [1948], "A mathematical theory of communication". *Bell System Technical Journal*, **27**:379-423 and 623-656

C. E. Shannon, "A Symbolic analysis of relay and switching circuits" . MS Thesis, (unpublished) MIT, 1937.

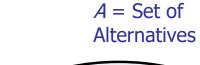
C. E. Shannon, "An algebra for theoretical genetics." *Phd Dissertation*, MIT, 1940.

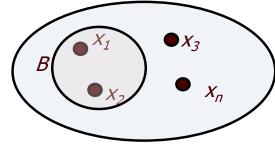
Let's talk about choices

- Multiplication Principle
 - "If some choice can be made in M different ways, and some subsequent choice can be made in N different ways, then there are M x N different ways these choices can be made in succession" [Paulos]
 - 3 shirts and 4 pants = 3 x 4 = 12 outfit choices

Combinations quickly grow with long sequences of variables (and state choices)

Hartley uncertainty


- Nonspecificity
 - Hartley measure
 - The amount of uncertainty associated with a set of alternatives (e.g. messages) is measured by the amount of information needed to remove the uncertainty


Quantifies how many yes-no questions need to be asked to establish what the correct alternative is

Elementary Choice is between 2 alternatives: 1 bit

$$H(B) = \log_2(2) = 1$$

$$\log_2(4) = 2$$
 $2^2 = 4$

$$H(A) = \log_2|A|$$

Measured in bits

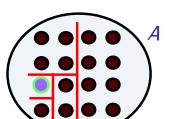
$$\log_2(16) = 4$$

$$\log_2(1) = 0$$

Number of Choices

$$2^4 = 16$$

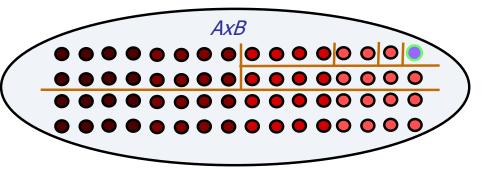
Hartley Uncertainty


$$H(A) = \log_2(16) = 4$$

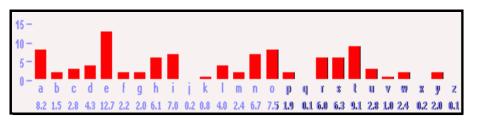
$$H(B) = \log_2(4) = 2$$

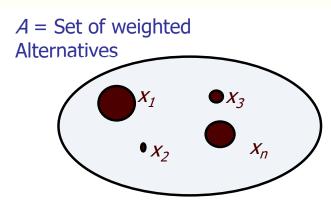
$$H(A) = log_2 |A|$$
Measured in bits
Number of Choices

Quantifies how many yes-no questions need to be asked to establish what the correct alternative is

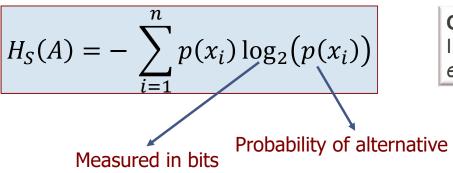


- Menu Choices
 - A = 16 Entrees
 - B = 4 Desserts
- How many dinner combinations?
 - 16 x 4 = 64


$$|H(A \times B) = \log_2(16 \times 4) =$$

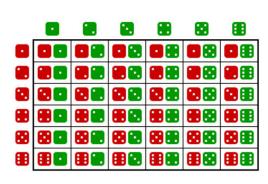

$$= \log_2(16) + \log_2(4) = 6$$

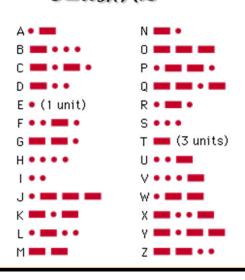
entropy

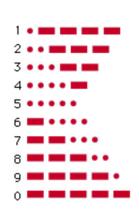

uncertainty-based information

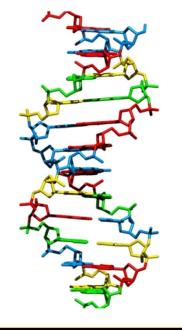
■ Shannon's measure

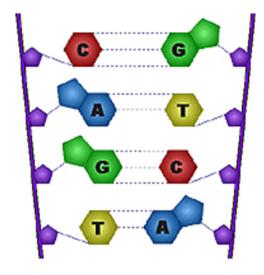
 The average amount of uncertainty associated with a set of weighted alternatives (e.g. messages) is measured by the average amount of information needed to remove the uncertainty


Optional Reading: Aleksander, I. [2002]. "Understanding Information Bit by Bit". In: *It must be beautiful : great equations of modern science*. G. Farmelo (Ed.), Grant.


entropy of a message


alphabet examples

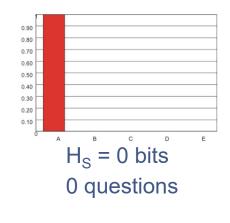

abcdefg hijklm nopqrst uvwxyz chllñ

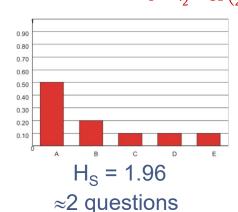


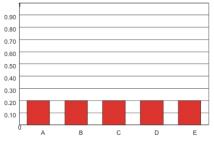
- Message encoded in an alphabet of *n* symbols, for example:
 - English (26 letters + space + punctuations)
 - Morse code (dot, dash, space)
 - DNA (A, T, G, C)
 - Two dice (11 integers)

example

5-letter "english"


- Given a symbol set {A,B,C,D,E}
 - And occurrence probabilities P_A, P_B, P_C, P_D, P_E,
- The Shannon entropy is
 - The average minimum number of bits needed to represent a symbol


$$H_S = -(p_A \log_2(p_A) + p_B \log_2(p_B) + p_C \log_2(p_C) + p_D \log_2(p_D) + p_E \log_2(p_E))$$


$$H_S = -(1.\log_2(1) + 0.\log_2(0) + 0.\log_2(0) + 0.\log_2(0) + 0.\log_2(0)) = -\log_2(1)$$

$$H_S = -5.\left(\frac{1}{5}\right).\log_2\left(\frac{1}{5}\right) = -(\log_2(1) - \log_2(5)) = \log_2(5)$$

$$H_S = -\left(\frac{1}{2}.\log_2\left(\frac{1}{2}\right) + \frac{1}{5}.\log_2\left(\frac{1}{5}\right) + 3.\left(\frac{1}{10}\right).\log_2\left(\frac{1}{10}\right)\right)$$

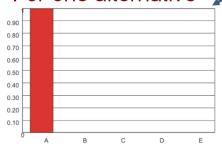
 $H_{\rm S}$ = 2.32 bits

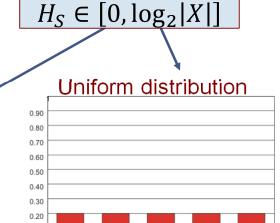
information is surprise

BINGHAMTON
UNIVERSITY
STATE UNIVERSITY OF NEW YORK

Shannon's entropy formula

what it measures




uncertainty, about outcome. How much information is gained when symbol is known

- **on average**, how many *yes-no* questions need to be asked to establish what the symbol is
- "structure" of uncertainty in situations

$$H_S \in = -\sum_{i=1}^n p(x_i) \log_2(p(x_i))$$

Next lectures

readings

- Class Book
 - Floreano, D. and C. Mattiussi [2008]. *Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies*. MIT Press. **Preface**.
 - Nunes de Castro, Leandro [2006]. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall. Chapter 1, pp. 1-23.
- Lecture notes
 - Chapter 1: "What is Life?"
 - posted online @ http://informatics.indiana.edu/rocha/i-bic
- Papers for Presentations
 - Logical mechanisms of life (optional for SSIE 483)
 - Langton, C. [1989]. "Artificial Life" In Artificial Life. C. Langton (Ed.). Addison-Wesley. pp. 1-47.
 - Pattee, H. [1989], "Simulations, Realizations, and Theories of Life". In Artificial Life. C. Langton (Ed.). pp. 63-77
- Other Readings
 - Life and Information
 - Dennet, D.C. [2005]. "Show me the Science". New York Times, August 28, 2005
 - Polt, R. [2012]. "Anything but Human". New York Times, August 5, 2012
 - Optional
 - Gleick, J. [2011]. *The Information: A History, a Theory, a Flood*. Random House. **Chapter 8**.
 - Cobb, Matthew. [2013]. "1953: When Genes Became 'Information'." Cell 153 (3): 503-506.
 - Aleksander, I. [2002]. "Understanding Information Bit by Bit". In: *It must be beautiful : great equations of modern science*. G. Farmelo (Ed.), Grant
 - James, R., and Crutchfield, J. (2017). Multivariate Dependence beyond Shannon Information. Entropy, 19(10), 531.
 - Prokopenko, Mikhail, Fabio Boschetti, and Alex J. Ryan. "An information-theoretic primer on complexity, self-organization, and emergence." Complexity 15.1 (2009): 11-28.

